Topological Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Topological Spaces Chapter III Topological Spaces 1. Introduction In Chapter I we looked at properties of sets, and in Chapter II we added some additional structure to a set. a distance function to create a pseudometric space. We then looked at some of the most basic definitions and properties of pseudometric spaces. There is much more, and some of the most useful and interesting properties of pseudometric spaces will be discussed in Chapter IV. But in Chapter III we look at an important generalization. Early in Chapter II we observed that the idea of continuity (in calculus) depends on talking about “nearness,” so we used a distance function . to make the idea of “nearness” precise. The result was that we could carry over the definition of continuity from calculus to pseudometric spaces. The distance function . also led us to the idea of an open set in a pseudometric space. From there we developed properties of closed sets, closures, interiors, frontiers, dense sets, continuity, and sequential convergence. One important observation was that open (or closed) sets are all we need to work with many of these concepts; that is, we can often do what we need using the open sets without knowing what specific . that generated these open sets: the topology g. is what really matters. For example, clEÐ\ß.ÑßE. is defined in in terms of the closed sets so cl doesn't change if is replaced with a different but equivalent metric .w one that generates the same open sets. Changing . to an equivalent metric .w also doesn't affect interiors, continuity, or convergent sequences. In summary: for many purposes .. is logically unnecessary (although might be a handy tool) after .Þ has done its job in creating the topology g. This suggests a way to generalize our work. For a particular set \ we can simply add a topology that is, a collection of “open” sets given without any mention of a pseudometric that might have generated them. Of course when we do this, we want these “open sets” to “behave the way open sets should behave.” This leads us to the definition of a topological space. 2. Topological Spaces Definition 2.1 A topology g on a set \\ is a collection of subsets of such that i) gß \ − g ii) if for each then S−α gα −Eß+−E S−+ g iii) if S"8 ß ÞÞÞß S −gg ßthen S " ∩ ÞÞÞ ∩ S 8 − Þ A set S©\ is called open if S−gg. The pair Ð\ß Ñis called a topological space. 103 We emphasize that in a topological space there is no distance function .: therefore concepts like “distance between two points” and “%g -ball” make no sense in Ð\ß ÑÞ There is no preconceived idea about what “open” means; to say “SS− is open” means nothing more or less than “g .” In a topological space Ð\ßg Ñ, we can go on to define closed sets and isolated points just as we did in pseudometric spaces. Definition 2.2 A set J©Ð\ßgg Ñ is called closed if X J is open, that is, if \J− . Definition 2.3 A point + − Ð\ßgg Ñis called isolated if Ö+} is open, that is, if Ö+× − Þ The proof of the following theorem is the same as it was for pseudometric spaces; we just take complements and apply properties of open sets. Theorem 2.4 In any topological space Ð\ßg Ñ i) g\ and are closed ii) if is closed for each then is closed J+−EßJααα−E iii) if are closed, then 8 is closed. J"8 ß ÞÞÞß J3œ3 J 3 More informally, ii) and iii) state that intersections and finite unions of closed sets are closed. Proof Read the proof for Theorem II.4.2. ñ For a particular topological space Ð\ßg Ñ, it is sometimes possible to find a pseudometric . on \ for which gg. œthat is, a . which generates exactly the same open sets as those already given in g . But this cannot always be done. Definition 2.5 A topological spaceÐ\ßg Ñ is calledpseudometrizable if there exists a pseudometric .\ on such that gg. œÞ.If is a metric, then Ð\ßÑ g is called metrizable. Examples 2.6 1) Suppose \ is a set and gg œ Ögß \×Þ is called the trivial topology on \ and it is the smallest possible topology on \Ð\ßÑ. g is called a trivial topological space. The only open (or closed) sets are g\Þ and If we put the trivial pseudometric .\ on , then gg. œÞSo a trivial topological space turns out to be pseudometrizable. At the opposite extreme, suppose gcœÐ\Ñ. Then gis called the discrete topology on \\ÞÐ\ßÑ and it is the largest possible topology on g is called a discrete topological space. Every subset is open (and also closed). Every point of \ is isolated. If we put the discrete unit metric .\œÞ (or any equivalent metric) on , then gg. So a discrete topological space is metrizable. 2) Suppose \ œ Ö!ß "×and let gg œ Ögß Ö"×ß \×. Ð\ß Ñ is a topological space called 104 Sierpinski space. In this case it is not possible to find a pseudometric .\ on for which gg. œ, so Sierpinski space is not pseudometrizable. To see this, consider any pseudometric .\ on . If .Ð!ß "Ñ œ !, then . is the trivial pseudometric on \ and Ögß \× œgg. Á . If .Ð!ß "Ñ œ$ggg !, then the open ball F$ Ð!Ñ œ Ö!× −.. ßso Á Þ (In this caseg. is actually the discrete topology: . is just a rescaling of the discrete unit metric.) Another possible topology on \ œ Ö!ß "} is gggww œ Ögß Ö!×ß \×, although Ð\ß Ñand Ð\ß Ñ seem very much alike: both are two-point spaces, each with containing exactly one isolated point. One space can be obtained from the other simply renaming “!""! ” and “ ” as “ ” and “ ” respectively. Such “topologically identical” spaces are called “homeomorphic.” We will give a precise definition of what this means later in this chapter. 3) For a set \, let gg œÖS©\À Sœg or \S is finite ×Þ is a topology on \À i) Clearly, g−ggand \− . ii) Suppose for each If then . S−αααgα −EÞαα−E Sœgß −E S− g Otherwise there is at least one SÁg. Then \S is finite, so \ S αα!!α−E α œ Ð\S Ñ©\S. Therefore \ S is finite, so S −g . ααα−Eαα! −E α −E α iii) If and some , then 88 so . S"8 ß ÞÞÞß S −gg S 4 œ g3œ" S 3 œ g 3œ" S 3 − Otherwise each S33"8 is nonempty, so each \S is finite Þ Then Ð\SÑ∪ÞÞÞ∪Ð\S Ñ 88 is finite, so . œ\3œ" S33 3œ" S −g In Ð\ßg Ñ, a set J is closed iff J œ g or J is finite. Because the open sets are g and the complements of finite sets, g is called the cofinite topology on \. If \ is a finite set, then the cofinite topology is the same as the discrete topology on \. (Why? ) In \Ð\ßÑ is infinite, then no point in g is isolated. Suppose \ÞYZ is an infinite set with the cofinite topologyg If and are nonempty open sets, then \Y and \Z must be finite so Ð\YÑ∪Ð\ZÑœ\ÐY∩ZÑ is finite. Since \Y∩ZÁgÐÑ is infinite, this means that in fact, Y∩Z must be infinite . Therefore every pair of nonempty open sets in Ð\ßg Ñ has nonempty intersection! The preceding paragraph lets us see that an infinite cofinite space Ð\ßg Ñ is not pseudometrizable: i) if .\Á is the trivial pseudometric on , then certainly gg. , and ii) if .\ is not the trivial pseudometric on , then there exist points +ß , − \ for which .Ð+ß ,Ñ œ$ !. In that case, F$$ Ð+Ñ and F Ð,Ñ ## would be disjoint nonempty open sets in ggg..ßÁÞso 4) On ‘g, let œÖÐ+ß∞Ñ: +− ‘ ×∪Ög, ‘ × . It is easy to verify that g is a topology on ‘‘g, called the right-ray topology. Is Ðß Ñmetrizable or pseudometrizable? 105 If \ œ g, then gg œ Ög× is the only possible topology on \, and œ Ögß Ö+×× is the only possible topology on a singleton set \œÖ+×. But for l\l", there are many possible topologies on \\œÖ+ß,×. For example, there are four possible topologies on the set . These are the trivial topology, the discrete topology, Ögß Ö+×ß \×ß and Ögß Ö,×ß \× although the last two, as we mentioned earlier, can be considered as “topologically identical.” If gg is a topology on \\ß©Ð\Ñ, then is a collection of subsets of so gc. This means that gcc− Ð Ð\ÑÑ, so | cc Ð Ð\ÑÑ | œ #Ð#l\l Ñ is an upper bound for the number of possible topologies on \#¸$Þ%‚"!\. For example, there are no more than #$)( topologies on a set with 7 elements. But this upper bound is actually very crude, as the following table (given without proof) indicates: 8œl\l Actual number of topologies on \ 0 1 1 1 2 4 3 29 4 355 5 6942 6 209527 7 9535241 (many less than "!$) ) Counting topologies on finite sets is really a question about combinatorics and we will not pursue that topic. Each concept we defined for pseudometric spaces can be carried over directly to topological spaces if the concept was defined in topological terms ßthat is in terms of open (or closed) sets. This applies, for example, to the definitions of interior, closure, and frontier in pseudometric spaces, so these definitions can also be carried over verbatim to a topological space Ð\ßg ÑÞ Definition 2.7 Suppose E©Ð\ßg Ñ.
Recommended publications
  • Pg**- Compact Spaces
    International Journal of Mathematics Research. ISSN 0976-5840 Volume 9, Number 1 (2017), pp. 27-43 © International Research Publication House http://www.irphouse.com pg**- compact spaces Mrs. G. Priscilla Pacifica Assistant Professor, St.Mary’s College, Thoothukudi – 628001, Tamil Nadu, India. Dr. A. Punitha Tharani Associate Professor, St.Mary’s College, Thoothukudi –628001, Tamil Nadu, India. Abstract The concepts of pg**-compact, pg**-countably compact, sequentially pg**- compact, pg**-locally compact and pg**- paracompact are introduced, and several properties are investigated. Also the concept of pg**-compact modulo I and pg**-countably compact modulo I spaces are introduced and the relation between these concepts are discussed. Keywords: pg**-compact, pg**-countably compact, sequentially pg**- compact, pg**-locally compact, pg**- paracompact, pg**-compact modulo I, pg**-countably compact modulo I. 1. Introduction Levine [3] introduced the class of g-closed sets in 1970. Veerakumar [7] introduced g*- closed sets. P M Helen[5] introduced g**-closed sets. A.S.Mashhour, M.E Abd El. Monsef [4] introduced a new class of pre-open sets in 1982. Ideal topological spaces have been first introduced by K.Kuratowski [2] in 1930. In this paper we introduce 28 Mrs. G. Priscilla Pacifica and Dr. A. Punitha Tharani pg**-compact, pg**-countably compact, sequentially pg**-compact, pg**-locally compact, pg**-paracompact, pg**-compact modulo I and pg**-countably compact modulo I spaces and investigate their properties. 2. Preliminaries Throughout this paper(푋, 휏) and (푌, 휎) represent non-empty topological spaces of which no separation axioms are assumed unless otherwise stated. Definition 2.1 A subset 퐴 of a topological space(푋, 휏) is called a pre-open set [4] if 퐴 ⊆ 푖푛푡(푐푙(퐴) and a pre-closed set if 푐푙(푖푛푡(퐴)) ⊆ 퐴.
    [Show full text]
  • I-Sequential Topological Spaces∗
    Applied Mathematics E-Notes, 14(2014), 236-241 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ -Sequential Topological Spaces I Sudip Kumar Pal y Received 10 June 2014 Abstract In this paper a new notion of topological spaces namely, I-sequential topo- logical spaces is introduced and investigated. This new space is a strictly weaker notion than the first countable space. Also I-sequential topological space is a quotient of a metric space. 1 Introduction The idea of convergence of real sequence have been extended to statistical convergence by [2, 14, 15] as follows: If N denotes the set of natural numbers and K N then Kn denotes the set k K : k n and Kn stands for the cardinality of the set Kn. The natural densityf of the2 subset≤ Kg is definedj j by Kn d(K) = lim j j, n n !1 provided the limit exists. A sequence xn n N of points in a metric space (X, ) is said to be statistically f g 2 convergent to l if for arbitrary " > 0, the set K(") = k N : (xk, l) " has natural density zero. A lot of investigation has been donef on2 this convergence≥ andg its topological consequences after initial works by [5, 13]. It is easy to check that the family Id = A N : d(A) = 0 forms a non-trivial f g admissible ideal of N (recall that I 2N is called an ideal if (i) A, B I implies A B I and (ii) A I,B A implies B I.
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • Chapter 7 Separation Properties
    Chapter VII Separation Axioms 1. Introduction “Separation” refers here to whether or not objects like points or disjoint closed sets can be enclosed in disjoint open sets; “separation properties” have nothing to do with the idea of “separated sets” that appeared in our discussion of connectedness in Chapter 5 in spite of the similarity of terminology.. We have already met some simple separation properties of spaces: the XßX!"and X # (Hausdorff) properties. In this chapter, we look at these and others in more depth. As “more separation” is added to spaces, they generally become nicer and nicer especially when “separation” is combined with other properties. For example, we will see that “enough separation” and “a nice base” guarantees that a space is metrizable. “Separation axioms” translates the German term Trennungsaxiome used in the older literature. Therefore the standard separation axioms were historically named XXXX!"#$, , , , and X %, each stronger than its predecessors in the list. Once these were common terminology, another separation axiom was discovered to be useful and “interpolated” into the list: XÞ"" It turns out that the X spaces (also called $$## Tychonoff spaces) are an extremely well-behaved class of spaces with some very nice properties. 2. The Basics Definition 2.1 A topological space \ is called a 1) X! space if, whenever BÁC−\, there either exists an open set Y with B−Y, CÂY or there exists an open set ZC−ZBÂZwith , 2) X" space if, whenever BÁC−\, there exists an open set Ywith B−YßCÂZ and there exists an open set ZBÂYßC−Zwith 3) XBÁC−\Y# space (or, Hausdorff space) if, whenever , there exist disjoint open sets and Z\ in such that B−YC−Z and .
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • DEFINITIONS and THEOREMS in GENERAL TOPOLOGY 1. Basic
    DEFINITIONS AND THEOREMS IN GENERAL TOPOLOGY 1. Basic definitions. A topology on a set X is defined by a family O of subsets of X, the open sets of the topology, satisfying the axioms: (i) ; and X are in O; (ii) the intersection of finitely many sets in O is in O; (iii) arbitrary unions of sets in O are in O. Alternatively, a topology may be defined by the neighborhoods U(p) of an arbitrary point p 2 X, where p 2 U(p) and, in addition: (i) If U1;U2 are neighborhoods of p, there exists U3 neighborhood of p, such that U3 ⊂ U1 \ U2; (ii) If U is a neighborhood of p and q 2 U, there exists a neighborhood V of q so that V ⊂ U. A topology is Hausdorff if any distinct points p 6= q admit disjoint neigh- borhoods. This is almost always assumed. A set C ⊂ X is closed if its complement is open. The closure A¯ of a set A ⊂ X is the intersection of all closed sets containing X. A subset A ⊂ X is dense in X if A¯ = X. A point x 2 X is a cluster point of a subset A ⊂ X if any neighborhood of x contains a point of A distinct from x. If A0 denotes the set of cluster points, then A¯ = A [ A0: A map f : X ! Y of topological spaces is continuous at p 2 X if for any open neighborhood V ⊂ Y of f(p), there exists an open neighborhood U ⊂ X of p so that f(U) ⊂ V .
    [Show full text]
  • 1.1.3 Reminder of Some Simple Topological Concepts Definition 1.1.17
    1. Preliminaries The Hausdorffcriterion could be paraphrased by saying that smaller neigh- borhoods make larger topologies. This is a very intuitive theorem, because the smaller the neighbourhoods are the easier it is for a set to contain neigh- bourhoods of all its points and so the more open sets there will be. Proof. Suppose τ τ . Fixed any point x X,letU (x). Then, since U ⇒ ⊆ ∈ ∈B is a neighbourhood of x in (X,τ), there exists O τ s.t. x O U.But ∈ ∈ ⊆ O τ implies by our assumption that O τ ,soU is also a neighbourhood ∈ ∈ of x in (X,τ ). Hence, by Definition 1.1.10 for (x), there exists V (x) B ∈B s.t. V U. ⊆ Conversely, let W τ. Then for each x W ,since (x) is a base of ⇐ ∈ ∈ B neighbourhoods w.r.t. τ,thereexistsU (x) such that x U W . Hence, ∈B ∈ ⊆ by assumption, there exists V (x)s.t.x V U W .ThenW τ . ∈B ∈ ⊆ ⊆ ∈ 1.1.3 Reminder of some simple topological concepts Definition 1.1.17. Given a topological space (X,τ) and a subset S of X,the subset or induced topology on S is defined by τ := S U U τ . That is, S { ∩ | ∈ } a subset of S is open in the subset topology if and only if it is the intersection of S with an open set in (X,τ). Alternatively, we can define the subspace topology for a subset S of X as the coarsest topology for which the inclusion map ι : S X is continuous.
    [Show full text]
  • Topology Via Higher-Order Intuitionistic Logic
    Topology via higher-order intuitionistic logic Working version of 18th March 2004 These evolving notes will eventually be used to write a paper Mart´ınEscard´o Abstract When excluded middle fails, one can define a non-trivial topology on the one-point set, provided one doesn’t require all unions of open sets to be open. Technically, one obtains a subset of the subobject classifier, known as a dom- inance, which is to be thought of as a “Sierpinski set” that behaves as the Sierpinski space in classical topology. This induces topologies on all sets, rendering all functions continuous. Because virtually all theorems of classical topology require excluded middle (and even choice), it would be useless to reduce other topological notions to the notion of open set in the usual way. So, for example, our synthetic definition of compactness for a set X says that, for any Sierpinski-valued predicate p on X, the truth value of the statement “for all x ∈ X, p(x)” lives in the Sierpinski set. Similarly, other topological notions are defined by logical statements. We show that the proposed synthetic notions interact in the expected way. Moreover, we show that they coincide with the usual notions in cer- tain classical topological models, and we look at their interpretation in some computational models. 1 Introduction For suitable topologies, computable functions are continuous, and semidecidable properties of their inputs/outputs are open, but the converses of these two state- ments fail. Moreover, although semidecidable sets are closed under the formation of finite intersections and recursively enumerable unions, they fail to form the open sets of a topology in a literal sense.
    [Show full text]
  • Basis (Topology), Basis (Vector Space), Ck, , Change of Variables (Integration), Closed, Closed Form, Closure, Coboundary, Cobou
    Index basis (topology), Ôç injective, ç basis (vector space), ç interior, Ôò isomorphic, ¥ ∞ C , Ôý, ÔÔ isomorphism, ç Ck, Ôý, ÔÔ change of variables (integration), ÔÔ kernel, ç closed, Ôò closed form, Þ linear, ç closure, Ôò linear combination, ç coboundary, Þ linearly independent, ç coboundary map, Þ nullspace, ç cochain complex, Þ cochain homotopic, open cover, Ôò cochain homotopy, open set, Ôý cochain map, Þ cocycle, Þ partial derivative, Ôý cohomology, Þ compact, Ôò quotient space, â component function, À range, ç continuous, Ôç rank-nullity theorem, coordinate function, Ôý relative topology, Ôò dierential, Þ resolution, ¥ dimension, ç resolution of the identity, À direct sum, second-countable, Ôç directional derivative, Ôý short exact sequence, discrete topology, Ôò smooth homotopy, dual basis, À span, ç dual space, À standard topology on Rn, Ôò exact form, Þ subspace, ç exact sequence, ¥ subspace topology, Ôò support, Ô¥ Hausdor, Ôç surjective, ç homotopic, symmetry of partial derivatives, ÔÔ homotopy, topological space, Ôò image, ç topology, Ôò induced topology, Ôò total derivative, ÔÔ Ô trivial topology, Ôò vector space, ç well-dened, â ò Glossary Linear Algebra Denition. A real vector space V is a set equipped with an addition operation , and a scalar (R) multiplication operation satisfying the usual identities. + Denition. A subset W ⋅ V is a subspace if W is a vector space under the same operations as V. Denition. A linear combination⊂ of a subset S V is a sum of the form a v, where each a , and only nitely many of the a are nonzero. v v R ⊂ v v∈S v∈S ⋅ ∈ { } Denition.Qe span of a subset S V is the subspace span S of linear combinations of S.
    [Show full text]
  • Normal Spaces
    ––––––––––––––– Chapter 8 Normal Spaces 1 Regular Spaces The Hausdorff property is perhaps the most important “separation by open sets” property, but it is certainly not the only one worth studying. There are natural ways of strengthening this property, and a few of these pave the way for some of the deeper results of general topology. As we shall see, im- posing such stronger separation properties avoids many sorts of pathologies, and leads us to topological spaces whose behavior are reminiscent of metric spaces in some important aspects. Regularity The first strengthening we will consider in this chapter is called regularity. While the Hausdorff property asks for separating two distinct points by two open sets, this property asks for the separation of a closed set from a point that lies in its outside in this manner. Definition. Let X be a topological space. We say that X (or the topology of X) is regular if X is a T1-space, and for every closed set C in X and x X C, there are disjoint open subsets O and U of X such that x O and2 C n U. (In this case, we refer to X simply as a regular space.) 2 Warning. Some authors omit the T1-condition in the definition of regularity, and refer to what we call here a regular space as a “regular T1-space”or “T3-space.” It is plain that regularity is a topological invariant. Moreover, since singletons are closed in any T1-space, every regular space is Hausdorff. As 1 such, regularity is a stronger “separation by open sets”property than being Hausdorff.
    [Show full text]
  • [Math.GN] 25 Dec 2003
    Problems from Topology Proceedings Edited by Elliott Pearl arXiv:math/0312456v1 [math.GN] 25 Dec 2003 Topology Atlas, Toronto, 2003 Topology Atlas Toronto, Ontario, Canada http://at.yorku.ca/topology/ [email protected] Cataloguing in Publication Data Problems from topology proceedings / edited by Elliott Pearl. vi, 216 p. Includes bibliographical references. ISBN 0-9730867-1-8 1. Topology—Problems, exercises, etc. I. Pearl, Elliott. II. Title. Dewey 514 20 LC QA611 MSC (2000) 54-06 Copyright c 2003 Topology Atlas. All rights reserved. Users of this publication are permitted to make fair use of the material in teaching, research and reviewing. No part of this publication may be distributed for commercial purposes without the prior permission of the publisher. ISBN 0-9730867-1-8 Produced November 2003. Preliminary versions of this publication were distributed on the Topology Atlas website. This publication is available in several electronic formats on the Topology Atlas website. Produced in Canada Contents Preface ............................................ ............................v Contributed Problems in Topology Proceedings .................................1 Edited by Peter J. Nyikos and Elliott Pearl. Classic Problems ....................................... ......................69 By Peter J. Nyikos. New Classic Problems .................................... ....................91 Contributions by Z.T. Balogh, S.W. Davis, A. Dow, G. Gruenhage, P.J. Nyikos, M.E. Rudin, F.D. Tall, S. Watson. Problems from M.E. Rudin’s Lecture notes in set-theoretic topology ..........103 By Elliott Pearl. Problems from A.V. Arhangel′ski˘ı’s Structure and classification of topological spaces and cardinal invariants ................................................... ...123 By A.V. Arhangel′ski˘ıand Elliott Pearl. A note on P. Nyikos’s A survey of two problems in topology ..................135 By Elliott Pearl.
    [Show full text]
  • On Some Problems of Local Approximability in Compact Spaces
    Toposym 3 Gino Tironi; Romano Isler On some problems of local approximability in compact spaces In: Josef Novák (ed.): General Topology and its Relations to Modern Analysis and Algebra, Proceedings of the Third Prague Topological Symposium, 1971. Academia Publishing House of the Czechoslovak Academy of Sciences, Praha, 1972. pp. 443--446. Persistent URL: http://dml.cz/dmlcz/700741 Terms of use: © Institute of Mathematics AS CR, 1972 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz 443 ON SOME PROBLEMS OF LOCAL APPROXIMABILITY IN COMPACT SPACES G. TIRONI and R. ISLER1) Trieste 1. Introduction. In this paper we study some problems concerning T2 compact spaces. The main problem, not yet solved, is the following: Problem 1. Is a compact separable and accessible Hausdorff space E first countable? We give three examples showing that the conjecture is not true if the compact separable and accessible space is not Hausdorff or if the separable and accessible Hausdorff space fails to be compact or finally, if the compact Hausdorff space is neither separable nor accessible. Another question arises if we require such a space to be FrSchet or sequential. In this paper it is proved that a T2 compact, sequentially compact space is sequential provided that the topology induced by the sequential closure is Lindelof.
    [Show full text]