Rett Syndrome Exploring the Autism Link

Total Page:16

File Type:pdf, Size:1020Kb

Rett Syndrome Exploring the Autism Link NEUROLOGICAL REVIEW Rett Syndrome Exploring the Autism Link Alan K. Percy, MD he presence of autism in individuals with neurodevelopmental disorders, whether tran- sient as in Rett syndrome (RTT) or enduring as in fragile X syndrome or Down syn- drome, suggests the possibility of common neurobiologic mechanisms whose eluci- dation could fundamentally advance our understanding. This review explores the Tcommonalities and differences between autism and RTT at clinical and molecular levels with re- spect to current status and challenges for each, highlights recent findings from the Rare Disease Network Natural History study on RTT, and summarizes the broad range of phenotypes resulting from mutations in the methyl-CpG-binding protein 2 gene (MECP2), which is responsible for RTT in 95% of individuals with the disorder. For RTT, animal models have been critical resources for advancing pathobiologic discovery and promise to be important test beds for evaluating new thera- pies. Fundamental understanding of autism based on unique genetic mechanism(s) must await similar advances. Arch Neurol. 2011;68(8):985-989 Rett syndrome (RTT) is a neurodevelop- tact, language, and finger skills; and sub- mental disorder, predominantly affect- sequent improvement in social contact and ing females, resulting from mutations in eye gaze by age 5. Effective interaction per- the methyl-CpG-binding protein 2 gene sists throughout life, yet motor functions (MECP2) (OMIM 312750) located at Xq28 gradually slow in adulthood. in at least 95% of individuals meeting clini- Autism is a complex neurodevelopmen- cal criteria for the disorder.1-5 Rett syn- tal disorder involving poor communication drome is characterized by profound cog- and socialization and a limited repertoire of nitive impairment, poor communication behaviors and interests.6 Unlike RTT and a skills, stereotypic hand movements, and growing number of other gene-based neu- pervasive growth failure beginning be- rodevelopmental disorders discussed here, tween ages 6 and 18 months after a pe- mutations in a gene or specific set of genes riod of apparently normal development in- have not been identified in nonsyndromic cluding acquisition of fine motor skills and autism.Thediagnosisofautismhasbeencon- language. During the regression period, firmed in several neurodevelopmental dis- fine motor skills, effective eye contact, and orders including fragile X syndrome, Down communication are lost. Features of au- syndrome, Angelman syndrome (AS), tism, including limited eye contact and Prader-Willi syndrome, Smith-Magenis syn- poor socialization or interaction, along drome, Williams syndrome, neurofibroma- with inconsolable crying or irritability, oc- tosis type 1, tuberous sclerosis, Sanfilippo cur at this time. Typically, autistic fea- syndrome, phenylketonuria, adenylosucci- tures are transient, lasting from weeks to natelyasedeficiency,andSmith-Lemli-Opitz many months. By school age, intense eye syndrome. Specifically, up to 60% of indi- gaze and interaction with others return, viduals with fragile X syndrome and up to yet language does not. As such, individu- 7% of those with Down syndrome may have als with RTT demonstrate a rather pre- autism. The diagnosis of autism in some, but dictable temporal profile: apparently nor- not all, individuals with these disorders, mal early development; arrest of whether transient as in RTT or enduring as developmental progress at 6 to 18 months in fragile X syndrome or Down syndrome, followed by frank regression of social con- suggests the possibility of common neuro- biologic mechanisms whose elucidation Author Affiliation: Civitan International Research Center, University of Alabama could fundamentally advance our under- at Birmingham. standing. However, concern has been raised ARCH NEUROL / VOL 68 (NO. 8), AUG 2011 WWW.ARCHNEUROL.COM 985 ©2011 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Table 1. Comparative Features of Autism and Rett Syndrome Characteristic Autism Rett Syndrome Regression Some Universal Eye gaze Poor Good, except during regression period Socialization Poor Good, except during regression period Head circumference Infants: large; Postnatal deceleration adults: normal Hand skills Generally good Poor to absent Gait Good Dyspraxic/none Periodic breathing Uncommon Common as to whether individuals with neurodevelopmental disor- has a predicted binding site in the MECP2 promoter re- ders demonstrating severe or profound cognitive impair- gion, and the MECP2 family of methyl-binding proteins ment can be assigned an autism diagnosis.6 binds the EGR2 enhancer region. In this review, the phenotypic variability and molecu- Angelman syndrome, due principally to 15q11-q13 de- lar complexities associated with MECP2 gene abnormali- letions, represents another potentially important link with ties and the clinical and molecular convergence be- autism and RTT. Mutations in ubiquitin protein ligase tween RTT and autism are explored. E3A (UBE3A/E6AP) (OMIM *601623), a gene con- tained within this deletion, result in AS. Expression of ␤ ␥ RTT AND AUTISM UBE3A/E6AP and the 3 subunit of -aminobutyric acidA receptors located within the deleted region (GABRB3) Clinical Considerations (OMIM ϩ137192) reduced in Mecp2-deficient mice and in the brains of humans with RTT, AS, or autism.8 Rett syndrome and autism are regarded as neurodevelop- mental disorders characterized clinically by apparently FUNCTIONAL ROLE OF MECP2 normal early development, failure of normal developmen- tal progress, and absence of progressive deterioration; neu- Methyl-CpG-binding protein 2, a member of the methyl- robiologic characteristics include fundamental failure of binding protein family, is capable of transcriptional regu- normalneuronalmaturationandabsenceofprogressiveneu- lation. However, specific gene targets are not defined fully.9 ronal or glial pathologic changes. As such, these disorders Methyl-CpG-binding protein 2 is ubiquitous in mam- are potentially reversible. Autism and RTT share many com- malian tissues and is highly expressed in the brain, func- mon features, but clear differences exist (Table 1). Autism tioning in the development and maintenance of neu- occurs predominantly in males, is associated at least initially rons. During brain development, MECP2 appears in a with accelerated rate of head growth, lacks a specific genetic caudal-rostral gradient, with cortical neurons being the basis, and has a greater incidence than RTT (1:100 births last to express. In the early prenatal period, forebrain ex- vs 1:10 000 female births), which occurs mainly in females pression is limited to Cajal-Retzius neurons. Recent evi- and is associated with postnatal deceleration in the rate of dence9 suggests that MECP2, initially proposed as a tran- head growth and MECP2 mutations. scriptional repressor, participates in upregulation or A clear understanding of the relationship between au- downregulation of many genes. tism and RTT is lacking. Does brain function differ in autism and RTT? Are similar brain regions affected, and BRAIN MORPHOLOGIC do these change over time? Innovative technologies such CHARACTERISTICS IN RTT as functional magnetic resonance imaging should be able to provide important insights into such questions. In the human brain, morphologic characteristics of RTT include reduced volume, particularly of the fronto- Molecular Convergence temporal lobes and caudate, reduced brain weight, and re- duced or absent melanin pigmentation, notably in sub- A potential molecular convergence exists for autism and stantia nigra.10 At the microscopic level, cortical neurons RTT involving MECP2 and early growth response gene-2 are small and demonstrate simplified dendrites with re- (EGR2) (OMIM *129010), an activity-dependent imme- duced and immature dendritic spines.10 No evidence of rec- diate-early gene.7 EGR2, the only member of the EGR fam- ognizable disease progression, especially neuronal loss, is ily restricted to central nervous system neurons, encodes evident in RTT. This pattern appears to be a common theme a DNA-binding zinc finger protein important for cerebral among other neurodevelopmental disorders. Autism is as- development and synaptic plasticity. Expression of EGR2 sociated with increased packing density, decreased cell size, and MECP2 increase coordinately in mouse and human and increased spine density; Down syndrome with re- cortex; regulation of EGR2 and MECP2 is disrupted in au- duced dendritic branches and spines after early infancy; AS tism and RTT; MECP2 expression is decreased in the cor- with reduced dendritic branches and immature spines; and tex of people with autism; and EGR2 expression is de- fragile X syndrome with immature spines. These common- creased in the cortex of individuals with autism or RTT, alities suggest a convergence of molecular mechanisms un- as well as in the cortex of an Mecp2 knockout mouse. EGR2 derlying their pathobiologic characteristics. ARCH NEUROL / VOL 68 (NO. 8), AUG 2011 WWW.ARCHNEUROL.COM 986 ©2011 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/02/2021 A 14 † 2 µm ∗ 12 10 8 Control (eYEP) R106W 6 4 2 Spine Density, spines/10 µm Spine Density, 0 Control R106W T158M Wild-type Wild-type MECP2 T158M (eYEP) MECP2 14 B Non-MR, age 3 Non-MR, age 35 12 10 † 8 6 RTT, age 5 RTT, age 21 4 Spine Density, spines/10 µm Spine Density, 2 0 Non-MR Control RTT Figure. Pyramidal neuron dendritic spines from rat hippocampal slice cultures
Recommended publications
  • Developmental Delay and the Methyl Binding Genes H Turner, F Macdonald, S Warburton, F Latif, T Webb
    1of3 ELECTRONIC LETTER J Med Genet: first published as 10.1136/jmg.40.2.e13 on 1 February 2003. Downloaded from Developmental delay and the methyl binding genes H Turner, F MacDonald, S Warburton, F Latif, T Webb ............................................................................................................................. J Med Genet 2003;40:e13(http://www.jmedgenet.com/cgi/content/full/40/2/e13) he report by Amir et al1 that Rett syndrome (RS) is associ- children referred with a clinical diagnosis of Angelman ated with mutations in the MECP2 gene permitted labora- syndrome (AS) but without an abnormality in 15q11q13 tory diagnosis of this devastating yet common neurode- showed that 4/46 of the girls in one case8 and 5/40 in the T 9 velopmental disorder. Hitherto the paucity of familial cases of other actually had Rett syndrome. Of these nine probands, the syndrome and the failure to identify the syndrome in only one was later found to have a clinical presentation incon- males despite fairly wide clinical criteria had defined it as an sistent with the laboratory diagnosis. This may not be surpris- X linked dominant disorder with male lethality.2 Soon, ing given that in very small girls the two syndromes may however, reports from the few families in which RS is present with overlapping clinical features and so be difficult to segregating showed that male family members who inherited differentiate on clinical grounds alone. the same mutation in the MECP2 gene as their affected female Familial cases of developmental handicap
    [Show full text]
  • Methyl-Cpg2-Binding Protein 2 Mediates Overlapping Mechanisms Across Brain Disorders
    bioRxiv preprint doi: https://doi.org/10.1101/819573; this version posted October 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Methyl-CpG2-binding protein 2 mediates overlapping mechanisms across brain disorders. Snow Bach1,2, Niamh M. Ryan2, Paolo Guasoni1,3, Aiden Corvin2, Daniela Tropea2,4* 1 School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, D09 W6Y4, Ireland 2 Neuropsychiatric Genetics, Department of Psychiatry, Trinity College Dublin, School of Medicine, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland 3 Department of Mathematics and Statistics, Boston University, 111 Cummington Street, Boston, MA 02215, USA 4 Trinity College Institute of Neuroscience, Trinity College Dublin, Lloyd Building, Dublin 2, Dublin, Ireland *Correspondence should be addressed to D.T. (email: [email protected]) bioRxiv preprint doi: https://doi.org/10.1101/819573; this version posted October 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Methyl-CpG binding protein 2 (MeCP2) is a chromatin-binding protein and a modulator of gene expression. Initially identified as an oncogene, MECP2 is now mostly associated to Rett Syndrome, a neurodevelopmental condition, though there is evidence of its influence in other brain disorders. We design a procedure that considers several binding properties of MeCP2 and we screen for potential targets across neurological and neuropsychiatric conditions. We find MeCP2 target genes associated to a range of disorders, including - among others- Alzheimer Disease, Autism, Attention Deficit Hyperactivity Disorder and Multiple Sclerosis.
    [Show full text]
  • Soothing Sensory Sensitivity May Ease Social Problems in Mice
    Spectrum | Autism Research News https://www.spectrumnews.org NEWS Soothing sensory sensitivity may ease social problems in mice BY NICHOLETTE ZELIADT 12 NOVEMBER 2017 Dampening the signals that relay touch from the limbs to the brain can ease anxiety and social problems in two mouse models of autism, a new study suggests. Peripheral neurons typically relay these signals. The findings suggest that some features of autism arise from malfunctioning neurons outside the brain and spinal cord, says Lauren Orefice, a research fellow in David Ginty’s lab at Harvard University. They also hint that treatments targeting these peripheral neurons could help to ease some features of the condition. Orefice presented the unpublished findings yesterday at the 2017 Society for Neuroscience annual meeting in Washington, D.C. Last year, Orefice and her colleagues showed that mice with mutations in various genes tied to autism — including MECP2, GABRB3 and SHANK3 — in only their touch neurons are hypersensitive to small puffs of air on their backs early in life. The animals later show signs of anxiety and social difficulties. In the new work, the researchers explored how loss of any of these genes affects the function of touch neurons. They found that touch neurons lacking a copy of either MECP2 or GABRB3 have decreased levels of GABRB3 protein. This protein helps to dampen signals relayed by touch neurons to the spinal cord. Touch neurons in the mutant mice also fire unusually easily when stimulated with electricity. “The flow of information from those neurons to the spinal cord and brain is enhanced,” Orefice says.
    [Show full text]
  • Electronic Letter 1Of4 J Med Genet: First Published As 10.1136/Jmg.37.12.E41 on 1 December 2000
    Electronic letter 1of4 J Med Genet: first published as 10.1136/jmg.37.12.e41 on 1 December 2000. Downloaded from Electronic letter J Med Genet 2000;37 (http://jmedgenet.com/cgi/content/full/37/12/e41) Spectrum of mutations in the MECP2 We screened genomic DNA from 13 sporadic RTT patients and 21 patients with autism and mental gene in patients with infantile autism retardation by DHPLC and by direct DNA sequencing. All and Rett syndrome the subjects were unrelated females and were ethnic Chinese, with no family history of the disease. The clinical findings met the criteria of inclusion and exclusion for the diagnosis of RTT.10 Patients with autism and mental retar- dation were obtained from a previous study.11 The diagno- EDITOR—Rett syndrome (RTT, MIM 312750) is a sis of autism was based on clinical features and evaluated progressive neurological disorder, occurring almost exclu- by diagnostic criteria from DSM-IV.12 Most of them had sively in females during their first two years of life . RTT is onset of autistic features at less than 3 years of age. one of the most common causes of mental retardation in Informed consent was obtained from the patients or the females, with an incidence of 1 in 10 000-15 000 female parents. births. Patients with classical RTT appear to develop nor- Genomic DNA was extracted from peripheral blood mally until 6-18 months of age, then gradually lose speech samples using a QIAamp Blood Kit (Qiagen) according to and purposeful hand use, and, eventually, develop the manufacturer’s instructions.
    [Show full text]
  • MECP2 Disorders: from the Clinic to Mice and Back
    MECP2 disorders: from the clinic to mice and back Laura Marie Lombardi, … , Steven Andrew Baker, Huda Yahya Zoghbi J Clin Invest. 2015;125(8):2914-2923. https://doi.org/10.1172/JCI78167. Review Two severe, progressive neurological disorders characterized by intellectual disability, autism, and developmental regression, Rett syndrome and MECP2 duplication syndrome, result from loss and gain of function, respectively, of the same critical gene, methyl-CpG–binding protein 2 (MECP2). Neurons acutely require the appropriate dose of MECP2 to function properly but do not die in its absence or overexpression. Instead, neuronal dysfunction can be reversed in a Rett syndrome mouse model if MeCP2 function is restored. Thus, MECP2 disorders provide a unique window into the delicate balance of neuronal health, the power of mouse models, and the importance of chromatin regulation in mature neurons. In this Review, we will discuss the clinical profiles of MECP2 disorders, the knowledge acquired from mouse models of the syndromes, and how that knowledge is informing current and future clinical studies. Find the latest version: https://jci.me/78167/pdf REVIEW The Journal of Clinical Investigation MECP2 disorders: from the clinic to mice and back Laura Marie Lombardi,1,2,3 Steven Andrew Baker,2,4,5 and Huda Yahya Zoghbi1,2,3,4 1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA. 2Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA. 3Howard Hughes Medical Institute, 4Program in Developmental Biology, and 5Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA. Two severe, progressive neurological disorders characterized by intellectual disability, autism, and developmental regression, Rett syndrome and MECP2 duplication syndrome, result from loss and gain of function, respectively, of the same critical gene, methyl-CpG–binding protein 2 (MECP2).
    [Show full text]
  • Mecp2 Nuclear Dynamics in Live Neurons Results from Low and High
    RESEARCH ARTICLE MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions Francesco M Piccolo1*, Zhe Liu2, Peng Dong2, Ching-Lung Hsu2, Elitsa I Stoyanova1, Anjana Rao3, Robert Tjian4, Nathaniel Heintz1* 1Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States; 2Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; 3La Jolla Institute for Allergy and Immunology, La Jolla, United States; 4Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Howard Hughes Medical Institute, Berkeley, United States Abstract Methyl-CpG-binding-Protein 2 (MeCP2) is an abundant nuclear protein highly enriched in neurons. Here we report live-cell single-molecule imaging studies of the kinetic features of mouse MeCP2 at high spatial-temporal resolution. MeCP2 displays dynamic features that are distinct from both highly mobile transcription factors and immobile histones. Stable binding of MeCP2 in living neurons requires its methyl-binding domain and is sensitive to DNA modification levels. Diffusion of unbound MeCP2 is strongly constrained by weak, transient interactions mediated primarily by its AT-hook domains, and varies with the level of chromatin compaction and cell type. These findings extend previous studies of the role of the MeCP2 MBD in high affinity DNA binding to living neurons, and identify a new role for its AT-hooks domains as critical determinants of its kinetic behavior. They suggest that limited nuclear diffusion of MeCP2 in live neurons contributes to its local impact on chromatin structure and gene expression.
    [Show full text]
  • An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity
    International Journal of Molecular Sciences Review An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity 1, 1, 1 2 Elena Masini y, Eleonora Loi y, Ana Florencia Vega-Benedetti , Marinella Carta , Giuseppe Doneddu 3, Roberta Fadda 4 and Patrizia Zavattari 1,* 1 Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; [email protected] (E.M.); [email protected] (E.L.); [email protected] (A.F.V.-B.) 2 Center for Pervasive Developmental Disorders, Azienda Ospedaliera Brotzu, 09121 Cagliari, Italy; [email protected] 3 Centro per l’Autismo e Disturbi correlati (CADc), Nuovo Centro Fisioterapico Sardo, 09131 Cagliari, Italy; [email protected] 4 Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy; [email protected] * Correspondence: [email protected] The authors contributed equally to this work. y Received: 30 September 2020; Accepted: 30 October 2020; Published: 5 November 2020 Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects social interaction and communication, with restricted interests, activity and behaviors. ASD is highly familial, indicating that genetic background strongly contributes to the development of this condition. However, only a fraction of the total number of genes thought to be associated with the condition have been discovered. Moreover, other factors may play an important role in ASD onset. In fact, it has been shown that parental conditions and in utero and perinatal factors may contribute to ASD etiology. More recently, epigenetic changes, including DNA methylation and micro RNA alterations, have been associated with ASD and proposed as potential biomarkers.
    [Show full text]
  • The Role of Mecp2 in Learning and Memory
    Downloaded from learnmem.cshlp.org on August 21, 2019 - Published by Cold Spring Harbor Laboratory Press Review The role of MeCP2 in learning and memory Holly A. Robinson and Lucas Pozzo-Miller Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA Gene transcription is a crucial step in the sequence of molecular, synaptic, cellular, and systems mechanisms underlying learning and memory. Here, we review the experimental evidence demonstrating that alterations in the levels and function- ality of the methylated DNA-binding transcriptional regulator MeCP2 are implicated in the learning and memory deficits present in mouse models of Rett syndrome and MECP2 duplication syndrome. The significant impact that MeCP2 has on gene transcription through a variety of mechanisms, combined with well-defined models of learning and memory, make MeCP2 an excellent candidate to exemplify the role of gene transcription in learning and memory. Together, these studies have strengthened the concept that precise control of activity-dependent gene transcription is a fundamental mech- anism that ensures long-term adaptive behaviors necessary for the survival of individuals interacting with their congeners in an ever-changing environment. The roles of gene transcription and mRNA translation in learning DNA-associated histones, which leads to transient or enduring and memory throughout the animal kingdom have been exten- regulation of gene transcription without changes in the gene cod- sively and very well defined over the past five decades. Studies in- ing sequence itself. The most common occurrence of epigenetic hibiting gene transcription demonstrate its necessity for learning modification is during the differentiation of specific cell types by and memory in both invertebrates and vertebrates (Brink et al.
    [Show full text]
  • DNA Binding Selectivity of Mecp2 Due to a Requirement for A/T Sequences Adjacent to Methyl-Cpg
    Molecular Cell, Vol. 19, 667–678, September 2, 2005, Copyright ©2005 by Elsevier Inc. DOI 10.1016/j.molcel.2005.07.021 DNA Binding Selectivity of MeCP2 Due to a Requirement for A/T Sequences Adjacent to Methyl-CpG Robert J. Klose, Shireen A. Sarraf, 2004). Mammalian MBD3 does not bind specifically to Lars Schmiedeberg, Suzanne M. McDermott, methylated DNA, and MBD4 is a DNA repair protein Irina Stancheva,* and Adrian P. Bird* (Hendrich et al., 1999; Millar et al., 2002), although re- Wellcome Trust Centre for Cell Biology cent evidence suggests that MBD4 may also act as a Michael Swann Building transcriptional repressor (Kondo et al., 2005). University of Edinburgh The biomedical relevance of MBD proteins became Mayfield Road apparent with the discovery that the human neurode- Edinburgh EH9 3JR velopmental disorder Rett syndrome is caused by mu- United Kingdom tations in the MECP2 gene (Amir et al., 1999). Muta- tional profiling of Rett syndrome patients identified a significant fraction of point mutations that inactivated Summary the MBD itself (Kriaucionis and Bird, 2003). The DNA and protein features that determine the specificity of DNA methylation is interpreted by a family of methyl- the MBD for methyl-CpG sites have been examined CpG binding domain (MBD) proteins that repress (Free et al., 2001; Meehan et al., 1992; Nan et al., 1993; transcription through recruitment of corepressors Yusufzai and Wolffe, 2000), and the three-dimensional that modify chromatin. To compare in vivo binding of structure of the domain, both alone (Ohki et al., 1999; MeCP2 and MBD2, we analyzed immunoprecipitated Wakefield et al., 1999) and in complex with methylated chromatin from primary human cells.
    [Show full text]
  • Rett Syndrome – Biological Pathways Leading from MECP2 to Disorder Phenotypes Friederike Ehrhart1,2* , Susan L
    Ehrhart et al. Orphanet Journal of Rare Diseases (2016) 11:158 DOI 10.1186/s13023-016-0545-5 REVIEW Open Access Rett syndrome – biological pathways leading from MECP2 to disorder phenotypes Friederike Ehrhart1,2* , Susan L. M. Coort2, Elisa Cirillo2, Eric Smeets1, Chris T. Evelo1,2 and Leopold M. G. Curfs1 Abstract Rett syndrome (RTT) is a rare disease but still one of the most abundant causes for intellectual disability in females. Typical symptoms are onset at month 6–18 after normal pre- and postnatal development, loss of acquired skills and severe intellectual disability. The type and severity of symptoms are individually highly different. A single mutation in one gene, coding for methyl-CpG-binding protein 2 (MECP2), is responsible for the disease. The most important action of MECP2 is regulating epigenetic imprinting and chromatin condensation, but MECP2 influences many different biological pathways on multiple levels although the molecular pathways from gene to phenotype are currently not fully understood. In this review the known changes in metabolite levels, gene expression and biological pathways in RTT are summarized, discussed how they are leading to some characteristic RTT phenotypes and therefore the gaps of knowledge are identified. Namely, which phenotypes have currently no mechanistic explanation leading back to MECP2 related pathways? As a result of this review the visualization of the biologic pathways showing MECP2 up- and downstream regulation was developed and published on WikiPathways which will serve as template for future omics data driven research. This pathway driven approach may serve as a use case for other rare diseases, too. Keywords: Rett syndrome, MECP2, Systems biology, Bioinformatics, Data integration, DNA methylation, Epigenetics Background a RTT like phenotype, i.e.
    [Show full text]
  • Mecp2 Enforces Foxp3 Expression to Promote Regulatory T
    MeCP2 enforces Foxp3 expression to promote PNAS PLUS regulatory T cells’ resilience to inflammation Chaoran Lia,1, Shan Jianga,1,2, Si-Qi Liua, Erik Lykkena, Lin-tao Zhaob, Jose Sevillaa, Bo Zhub, and Qi-Jing Lia,3 aDepartment of Immunology, Duke University Medical Center, Durham, NC 27710; and bInstitute of Cancer, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China Edited by Harvey Cantor, Dana-Farber Cancer Institute, Boston, MA, and approved June 3, 2014 (received for review January 24, 2014) Forkhead box P3+ (Foxp3+) regulatory T cells (Tregs) are crucial for the intestinal barrier; most intriguingly, the transplantation of peripheral tolerance. During inflammation, steady Foxp3 expres- wild-type (WT) bone marrow successfully arrested RTT disease sion in Tregs is essential for maintaining their lineage identity and in MeCP2-null mice (16). Nevertheless, apart from these cor- suppressive function. However, the molecular machinery govern- relative studies, MeCP2’s causative role in immune regulation ing Tregs’ resilience to inflammation-induced Foxp3 destabili- remains largely unexplored. + + zation remains elusive. Here, we demonstrate that methyl-CpG As potent suppressors of inflammation, CD4 CD25 regu- binding protein 2 (MeCP2), an eminent epigenetic regulator known latory T cells (Tregs) are an indispensable T-cell subset re- primarily as the etiological factor of Rett syndrome, is critical to sus- sponsible for peripheral tolerance and immune homeostasis (17). tain Foxp3 expression in Tregs during inflammation. In response to Foxp3 is the master regulator of the Treg gene expression pro- inflammatory stimuli, MeCP2 is specifically recruited to the Conserved gram, and consequently Foxp3 mutation in both humans and foxp3 Non-Coding sequence 2 region of the locus, where it collabo- mice is sufficient to trigger the development of severe lympho- rates with cAMP responsive element binding protein 1 to promote proliferative autoimmune disorders (18–24).
    [Show full text]
  • Role of DNA Methyl-Cpg-Binding Protein Mecp2 in Rett Syndrome Pathobiology and Mechanism of Disease
    biomolecules Review Role of DNA Methyl-CpG-Binding Protein MeCP2 in Rett Syndrome Pathobiology and Mechanism of Disease Shervin Pejhan † and Mojgan Rastegar * Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-(204)-272-3108; Fax: +1-(204)-789-3900 † Current Address: Neuropathology Program, Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C, Canada. Abstract: Rett Syndrome (RTT) is a severe, rare, and progressive developmental disorder with patients displaying neurological regression and autism spectrum features. The affected individuals are primarily young females, and more than 95% of patients carry de novo mutation(s) in the Methyl- CpG-Binding Protein 2 (MECP2) gene. While the majority of RTT patients have MECP2 mutations (classical RTT), a small fraction of the patients (atypical RTT) may carry genetic mutations in other genes such as the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1. Due to the neurological basis of RTT symptoms, MeCP2 function was originally studied in nerve cells (neurons). However, later research highlighted its importance in other cell types of the brain including glia. In this regard, scientists benefitted from modeling the disease using many different cellular systems and transgenic mice with loss- or gain-of-function mutations. Additionally, limited research in human postmortem brain tissues provided invaluable findings in RTT pathobiology and disease mechanism. MeCP2 expression in the brain is tightly regulated, and its altered expression leads to abnormal brain function, implicating MeCP2 in some cases of autism spectrum disorders.
    [Show full text]