Angelman Syndrome, Rett Syndrome, and Tuberous Sclerosis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Developmental Delay and the Methyl Binding Genes H Turner, F Macdonald, S Warburton, F Latif, T Webb
1of3 ELECTRONIC LETTER J Med Genet: first published as 10.1136/jmg.40.2.e13 on 1 February 2003. Downloaded from Developmental delay and the methyl binding genes H Turner, F MacDonald, S Warburton, F Latif, T Webb ............................................................................................................................. J Med Genet 2003;40:e13(http://www.jmedgenet.com/cgi/content/full/40/2/e13) he report by Amir et al1 that Rett syndrome (RS) is associ- children referred with a clinical diagnosis of Angelman ated with mutations in the MECP2 gene permitted labora- syndrome (AS) but without an abnormality in 15q11q13 tory diagnosis of this devastating yet common neurode- showed that 4/46 of the girls in one case8 and 5/40 in the T 9 velopmental disorder. Hitherto the paucity of familial cases of other actually had Rett syndrome. Of these nine probands, the syndrome and the failure to identify the syndrome in only one was later found to have a clinical presentation incon- males despite fairly wide clinical criteria had defined it as an sistent with the laboratory diagnosis. This may not be surpris- X linked dominant disorder with male lethality.2 Soon, ing given that in very small girls the two syndromes may however, reports from the few families in which RS is present with overlapping clinical features and so be difficult to segregating showed that male family members who inherited differentiate on clinical grounds alone. the same mutation in the MECP2 gene as their affected female Familial cases of developmental handicap -
Methyl-Cpg2-Binding Protein 2 Mediates Overlapping Mechanisms Across Brain Disorders
bioRxiv preprint doi: https://doi.org/10.1101/819573; this version posted October 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Methyl-CpG2-binding protein 2 mediates overlapping mechanisms across brain disorders. Snow Bach1,2, Niamh M. Ryan2, Paolo Guasoni1,3, Aiden Corvin2, Daniela Tropea2,4* 1 School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, D09 W6Y4, Ireland 2 Neuropsychiatric Genetics, Department of Psychiatry, Trinity College Dublin, School of Medicine, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland 3 Department of Mathematics and Statistics, Boston University, 111 Cummington Street, Boston, MA 02215, USA 4 Trinity College Institute of Neuroscience, Trinity College Dublin, Lloyd Building, Dublin 2, Dublin, Ireland *Correspondence should be addressed to D.T. (email: [email protected]) bioRxiv preprint doi: https://doi.org/10.1101/819573; this version posted October 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Methyl-CpG binding protein 2 (MeCP2) is a chromatin-binding protein and a modulator of gene expression. Initially identified as an oncogene, MECP2 is now mostly associated to Rett Syndrome, a neurodevelopmental condition, though there is evidence of its influence in other brain disorders. We design a procedure that considers several binding properties of MeCP2 and we screen for potential targets across neurological and neuropsychiatric conditions. We find MeCP2 target genes associated to a range of disorders, including - among others- Alzheimer Disease, Autism, Attention Deficit Hyperactivity Disorder and Multiple Sclerosis. -
Soothing Sensory Sensitivity May Ease Social Problems in Mice
Spectrum | Autism Research News https://www.spectrumnews.org NEWS Soothing sensory sensitivity may ease social problems in mice BY NICHOLETTE ZELIADT 12 NOVEMBER 2017 Dampening the signals that relay touch from the limbs to the brain can ease anxiety and social problems in two mouse models of autism, a new study suggests. Peripheral neurons typically relay these signals. The findings suggest that some features of autism arise from malfunctioning neurons outside the brain and spinal cord, says Lauren Orefice, a research fellow in David Ginty’s lab at Harvard University. They also hint that treatments targeting these peripheral neurons could help to ease some features of the condition. Orefice presented the unpublished findings yesterday at the 2017 Society for Neuroscience annual meeting in Washington, D.C. Last year, Orefice and her colleagues showed that mice with mutations in various genes tied to autism — including MECP2, GABRB3 and SHANK3 — in only their touch neurons are hypersensitive to small puffs of air on their backs early in life. The animals later show signs of anxiety and social difficulties. In the new work, the researchers explored how loss of any of these genes affects the function of touch neurons. They found that touch neurons lacking a copy of either MECP2 or GABRB3 have decreased levels of GABRB3 protein. This protein helps to dampen signals relayed by touch neurons to the spinal cord. Touch neurons in the mutant mice also fire unusually easily when stimulated with electricity. “The flow of information from those neurons to the spinal cord and brain is enhanced,” Orefice says. -
Special Report
RARERARE PEDIATRICPEDIATRIC DISEASESDISEASES SPECIAL REPORT SELECTED ARTICLES Rare Diseases Pose a Pressing Challenge: Are State-by-State Differences in Newborn 02 09 Get the Diagnostic Work Done Swiftly Screening an Impediment or Asset? Rare Epileptic Encephalopathies: Neurodevelopmental Concerns May Emerge 05 21 Update on Directions in Treatment Later in Zika-exposed Infants EDITOR’S NOTE housands of rare diseases have been identified, but only T 35 core conditions are on the federal Recommended Uniform Screening Panel (RUSP). But the majority of states don’t screen for all 35 conditions. Read on to learn about the pros and cons of state-by- state differences in newborn screening for rare disorders. But newborn Catherine Cooper screening is not the only way to learn about a child’s rare disease. There Nellist is genetic screening, and now it is more widely available than ever. But how to make sense of that information? Certified genetic counselors will help, but health care providers need education about what to do when a rare disease is diagnosed. In this Rare Pediatric Diseases Special Report, there are resources for you as health care providers and for your patients provided by the National Institutes of Health and by the National Organization for Rare Disorders. Explore a synopsis of existing and emerging treatments of three rare epileptic encephalopathies that occur in infancy and early childhood— West syndrome, Lennox-Gastaut syndrome, and Dravet syndrome. Learn about important advancements in the treatment of three rare pediatric neuromuscular disorders—spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD), and X-linked myotubular myopathy (XLMTM)—and how improved quality of life and survival will challenge current EDITOR systems of transition care. -
Looks Like Angelman Syndrome but Isn’T – What Is in the Differential?
R.C.P.U. NEWSLETTER Editor: Heather J. Stalker, M.Sc. Director: Roberto T. Zori, M.D. R.C. Philips Research and Education Unit Vol. XXII No. 1 A statewide commitment to the problems of mental retardation January 2011 R.C. Philips Unit ♦ Division of Pediatric Genetics, Box 100296 ♦ Gainesville, FL 32610 ♦ (352)294-5050 E Mail: [email protected]; [email protected] Website: http://www.peds.ufl.edu/divisions/genetics/newsletters.htm Looks like Angelman syndrome but isn’t – What is in the differential? Charles A. Williams, MD Division of Pediatric Genetics & Metabolism University of Florida Angelman syndrome Differential Diagnosis of Angelman syndrome (AS) Angelman syndrome is a neurobehavioral disorder characterized by Individuals with AS-like features often present with psychomotor delay and/or developmental delay, progressive microcephaly, ataxic gait, absence of seizures and the differential diagnosis can be broad, encompassing such speech, seizures and a characteristic behavioral phenotype which includes non-specific entities as cerebral palsy, static encephalopathy, autism and happy demeanor and spontaneous bouts of laughter. AS was originally mitochondrial encephalomyopathy. Tremulousness and jerky limb called the “Happy Puppet Syndrome” in its description by Harry Angelman in movements, seen in most individuals with AS may help distinguish it from 1965 in an attempt to describe the upheld hands, clumsy gait and happy these conditions (see table below for other helpful distinguishing features). demeanor of individuals with this condition. The incidence is estimated to be Specific syndromes that mimic AS are reviewed below. Table 1 provides a between 1 in 15,000 and 1 in 20,000 live births. -
Electronic Letter 1Of4 J Med Genet: First Published As 10.1136/Jmg.37.12.E41 on 1 December 2000
Electronic letter 1of4 J Med Genet: first published as 10.1136/jmg.37.12.e41 on 1 December 2000. Downloaded from Electronic letter J Med Genet 2000;37 (http://jmedgenet.com/cgi/content/full/37/12/e41) Spectrum of mutations in the MECP2 We screened genomic DNA from 13 sporadic RTT patients and 21 patients with autism and mental gene in patients with infantile autism retardation by DHPLC and by direct DNA sequencing. All and Rett syndrome the subjects were unrelated females and were ethnic Chinese, with no family history of the disease. The clinical findings met the criteria of inclusion and exclusion for the diagnosis of RTT.10 Patients with autism and mental retar- dation were obtained from a previous study.11 The diagno- EDITOR—Rett syndrome (RTT, MIM 312750) is a sis of autism was based on clinical features and evaluated progressive neurological disorder, occurring almost exclu- by diagnostic criteria from DSM-IV.12 Most of them had sively in females during their first two years of life . RTT is onset of autistic features at less than 3 years of age. one of the most common causes of mental retardation in Informed consent was obtained from the patients or the females, with an incidence of 1 in 10 000-15 000 female parents. births. Patients with classical RTT appear to develop nor- Genomic DNA was extracted from peripheral blood mally until 6-18 months of age, then gradually lose speech samples using a QIAamp Blood Kit (Qiagen) according to and purposeful hand use, and, eventually, develop the manufacturer’s instructions. -
MECP2 Disorders: from the Clinic to Mice and Back
MECP2 disorders: from the clinic to mice and back Laura Marie Lombardi, … , Steven Andrew Baker, Huda Yahya Zoghbi J Clin Invest. 2015;125(8):2914-2923. https://doi.org/10.1172/JCI78167. Review Two severe, progressive neurological disorders characterized by intellectual disability, autism, and developmental regression, Rett syndrome and MECP2 duplication syndrome, result from loss and gain of function, respectively, of the same critical gene, methyl-CpG–binding protein 2 (MECP2). Neurons acutely require the appropriate dose of MECP2 to function properly but do not die in its absence or overexpression. Instead, neuronal dysfunction can be reversed in a Rett syndrome mouse model if MeCP2 function is restored. Thus, MECP2 disorders provide a unique window into the delicate balance of neuronal health, the power of mouse models, and the importance of chromatin regulation in mature neurons. In this Review, we will discuss the clinical profiles of MECP2 disorders, the knowledge acquired from mouse models of the syndromes, and how that knowledge is informing current and future clinical studies. Find the latest version: https://jci.me/78167/pdf REVIEW The Journal of Clinical Investigation MECP2 disorders: from the clinic to mice and back Laura Marie Lombardi,1,2,3 Steven Andrew Baker,2,4,5 and Huda Yahya Zoghbi1,2,3,4 1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA. 2Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA. 3Howard Hughes Medical Institute, 4Program in Developmental Biology, and 5Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA. Two severe, progressive neurological disorders characterized by intellectual disability, autism, and developmental regression, Rett syndrome and MECP2 duplication syndrome, result from loss and gain of function, respectively, of the same critical gene, methyl-CpG–binding protein 2 (MECP2). -
Angelman Syndrome Clinical Management Guidelines
Management of Angelman Syndrome A Clinical Guideline Angelman Syndrome Guideline Development Group Angelman Syndrome Clinical Management Guidelines Contents Introduction 3 … to Angelman Syndrome 3 … to the Angelman Syndrome Guidelines Development project 3 … to the Angelman Syndrome Clinical Management Guidelines 3 Diagnosis of Angelman Syndrome 4 … Clinical Diagnosis 4 … Genetic Investigation 5 Recommendations for the Management of Angelman Syndrome 6 … Feeding and Diet 6 … Speech and Communication 12 … Development 7 … Dental and Drooling 13 … Seizures and CNS 8 … General health and Anaesthesia 14 … Sleep 9 … Scoliosis and Skeletal 15 … Vision and Hearing 10 … Sexual health and Puberty 16 … Behaviour 11 … Alternative therapies 17 Information for Parents 18 Bibliography 19 APPENDIX: Genetic Mechanisms in Angelman Syndrome 24 Acknowledgements 25 Angelman Syndrome Clinical Management Guidelines 2 Introduction... … to Angelman Syndrome (AS) Angelman syndrome is a neurodevelopmental disorder that occurs in 1 in 20-40,000 births. It is characterised by severe learning difficulties, ataxia, a seizure disorder with a characteristic EEG, subtle dysmorphic facial features, and a happy, sociable disposition. Most children present with delay in developmental milestones and slowing of head growth during the first year of life. In the majority of cases speech does not develop. Patients with AS have a characteristic behavioural phenotype with jerky movements, frequent and sometimes inappropriate laughter, a love of water, and sleep disorder. The facial features are subtle and include a wide, smiling mouth, prominent chin, and deep set eyes. It is caused by a variety of genetic abnormalities involving the chromosome 15q11-13 region, which is subject to genomic imprinting. These include maternal deletion, paternal uniparental disomy, imprinting defects, and point mutations or small deletions within the UBE3A gene, which lies within this region (see Appendix: Genetic Mechanisms in AS, p. -
Mecp2 Nuclear Dynamics in Live Neurons Results from Low and High
RESEARCH ARTICLE MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions Francesco M Piccolo1*, Zhe Liu2, Peng Dong2, Ching-Lung Hsu2, Elitsa I Stoyanova1, Anjana Rao3, Robert Tjian4, Nathaniel Heintz1* 1Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States; 2Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; 3La Jolla Institute for Allergy and Immunology, La Jolla, United States; 4Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Howard Hughes Medical Institute, Berkeley, United States Abstract Methyl-CpG-binding-Protein 2 (MeCP2) is an abundant nuclear protein highly enriched in neurons. Here we report live-cell single-molecule imaging studies of the kinetic features of mouse MeCP2 at high spatial-temporal resolution. MeCP2 displays dynamic features that are distinct from both highly mobile transcription factors and immobile histones. Stable binding of MeCP2 in living neurons requires its methyl-binding domain and is sensitive to DNA modification levels. Diffusion of unbound MeCP2 is strongly constrained by weak, transient interactions mediated primarily by its AT-hook domains, and varies with the level of chromatin compaction and cell type. These findings extend previous studies of the role of the MeCP2 MBD in high affinity DNA binding to living neurons, and identify a new role for its AT-hooks domains as critical determinants of its kinetic behavior. They suggest that limited nuclear diffusion of MeCP2 in live neurons contributes to its local impact on chromatin structure and gene expression. -
HIGH RISK 1P36 This Pregnancy Is Classified As HIGH RISK by This Screen for a Deletion at 1P36, Which Is Associated with 1P36 Deletion Syndrome
Patient Report |FINAL Client: Example Client ABC123 Patient: Patient, Example 123 Test Drive Salt Lake City, UT 84108 DOB 4/3/1982 UNITED STATES Gender: Female Patient Identifiers: 01234567890ABCD, 012345 Physician: Doctor, Example Visit Number (FIN): 01234567890ABCD Collection Date: 01/01/2017 12:34 Non-Invasive Prenatal Testing for Fetal Aneuploidy with Microdeletions ARUP test code 2010232 Result Summary HIGH RISK 1p36 This pregnancy is classified as HIGH RISK by this screen for a deletion at 1p36, which is associated with 1p36 deletion syndrome. This result should be confirmed by a diagnostic test. Dependent on fetal fraction, 7 to 17% of pregnancies classified as HIGH RISK are found to have 1p36 deletion syndrome. TEST INFORMATION: Non-Invasive Prenatal Testing for Fetal Aneuploidy (Powered by Constellation) with or without Microdeletions METHODOLOGY: DNA isolated from the maternal blood, which contains placental DNA, is amplified at 13,300+ loci using a targeted PCR assay and sequenced using a high-throughput sequencer. Sequence data are analyzed using Natera's Constellation software to estimate the fetal copy number and identify whole chromosome abnormalities for chromosomes 13, 18, 21, X, and Y as well as fetal sex. Barring QC failures and fetal fractions below the performance limits of the algorithm, the minimum confidence threshold is 0.98 for a high risk call. For both low risk and high risk calls, the majority of specimens will have a confidence of >0.99 across all regions tested. If a sample fails to meet the quality threshold, no result will be reported for one or more chromosomes. Microdeletions: An additional 6,600+ loci are amplified to estimate the fetal copy numbers of chromosomal regions attributed to 22q11.2, Prader-Willi, Angelman, Cri-du-chat, and 1p36 deletion syndromes. -
An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity
International Journal of Molecular Sciences Review An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity 1, 1, 1 2 Elena Masini y, Eleonora Loi y, Ana Florencia Vega-Benedetti , Marinella Carta , Giuseppe Doneddu 3, Roberta Fadda 4 and Patrizia Zavattari 1,* 1 Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; [email protected] (E.M.); [email protected] (E.L.); [email protected] (A.F.V.-B.) 2 Center for Pervasive Developmental Disorders, Azienda Ospedaliera Brotzu, 09121 Cagliari, Italy; [email protected] 3 Centro per l’Autismo e Disturbi correlati (CADc), Nuovo Centro Fisioterapico Sardo, 09131 Cagliari, Italy; [email protected] 4 Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy; [email protected] * Correspondence: [email protected] The authors contributed equally to this work. y Received: 30 September 2020; Accepted: 30 October 2020; Published: 5 November 2020 Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects social interaction and communication, with restricted interests, activity and behaviors. ASD is highly familial, indicating that genetic background strongly contributes to the development of this condition. However, only a fraction of the total number of genes thought to be associated with the condition have been discovered. Moreover, other factors may play an important role in ASD onset. In fact, it has been shown that parental conditions and in utero and perinatal factors may contribute to ASD etiology. More recently, epigenetic changes, including DNA methylation and micro RNA alterations, have been associated with ASD and proposed as potential biomarkers. -
The Role of Mecp2 in Learning and Memory
Downloaded from learnmem.cshlp.org on August 21, 2019 - Published by Cold Spring Harbor Laboratory Press Review The role of MeCP2 in learning and memory Holly A. Robinson and Lucas Pozzo-Miller Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA Gene transcription is a crucial step in the sequence of molecular, synaptic, cellular, and systems mechanisms underlying learning and memory. Here, we review the experimental evidence demonstrating that alterations in the levels and function- ality of the methylated DNA-binding transcriptional regulator MeCP2 are implicated in the learning and memory deficits present in mouse models of Rett syndrome and MECP2 duplication syndrome. The significant impact that MeCP2 has on gene transcription through a variety of mechanisms, combined with well-defined models of learning and memory, make MeCP2 an excellent candidate to exemplify the role of gene transcription in learning and memory. Together, these studies have strengthened the concept that precise control of activity-dependent gene transcription is a fundamental mech- anism that ensures long-term adaptive behaviors necessary for the survival of individuals interacting with their congeners in an ever-changing environment. The roles of gene transcription and mRNA translation in learning DNA-associated histones, which leads to transient or enduring and memory throughout the animal kingdom have been exten- regulation of gene transcription without changes in the gene cod- sively and very well defined over the past five decades. Studies in- ing sequence itself. The most common occurrence of epigenetic hibiting gene transcription demonstrate its necessity for learning modification is during the differentiation of specific cell types by and memory in both invertebrates and vertebrates (Brink et al.