Proceedings of a Workshop for Monitoring Seagrass Habitats in the Port Curtis Coral Coast Region. 9-11 February

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of a Workshop for Monitoring Seagrass Habitats in the Port Curtis Coral Coast Region. 9-11 February Seagrass-Watch Proceedings of a workshop for monitoring seagrass habitats in the Port Curtis Coral Coast region Gidarjil Devel Corp Ltd offices, Gladstone, Queensland 9-11 February 2021 Len McKenzie & Rudi Yoshida First Published 2021 Seagrass-Watch HQ Copyright protects this publication. Reproduction of this publication for educational or other non- commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Disclaimer Information contained in this publication is provided as general advice only. For application to specific circumstances, professional advice should be sought. Seagrass-Watch HQ has taken all reasonable steps to ensure the information contained in this publication is accurate at the time of the survey. Readers should ensure that they make appropriate enquires to determine whether new information is available on the particular subject matter. The correct citation of this document is McKenzie, LJ & Yoshida, R.L. (2021). Seagrass-Watch: Proceedings of a workshop for monitoring seagrass habitats in the Port Curtis Coral Coast region. Gidarjil Devel Corp Ltd offices, Gladstone, Queensland, 9 - 11 February 2021. (Seagrass-Watch HQ, Cairns). 51pp. Produced by Seagrass-Watch HQ Front cover photos (left to right): seagrass on Lillies Beach sand flat (Boyne Island) with Zostera muelleri spathes in the foreground (Aug19, by Rudi Yoshida); monitoring at Lillies Beach (Aug19, by Len McKenzie); and dense Zostera muelleri on intertidal bank in Round Hill Creek, 1770 (Mar17, by Lucas Langlois). Enquires should be directed to: Seagrass-Watch Ltd PO Box 4 Clifton Beach QLD 4879 AUSTRALIA [email protected] Table of Contents OVERVIEW ................................................................................................................................................ 5 WORKSHOP TRAINERS ............................................................................................................................ 7 LEN MCKENZIE ................................................................................................................................................... 7 RUDI YOSHIDA .................................................................................................................................................... 7 AGENDA - LEVEL 1 (BASIC) ..................................................................................................................... 8 TUESDAY 9TH FEBRUARY 2021 (GIDARJIL OFFICES, GLADSTONE) ................................................................................... 8 WEDNESDAY 10TH FEBRUARY 2021 (GIDARJIL OFFICES GLADSTONE & LILLIES BEACH) ..................................................... 8 THURSDAY 11TH FEBRUARY 2021 (GIDARJIL OFFICES, GLADSTONE) ............................................................................... 8 ASSESSMENT REQUIREMENTS ................................................................................................................ 9 BACKGROUND ....................................................................................................................................... 10 SEAGRASS IN THE PORT CURTIS CORAL COAST REGION ................................................................... 17 SEAGRASS-WATCH IN THE PCCC REGION ..................................................................................................... 19 GLADSTONE HARBOUR ........................................................................................................................................... 19 RODDS BAY .......................................................................................................................................................... 21 ROUND HILL CREEK ............................................................................................................................................... 23 GREAT BARRIER REEF MARINE MONITORING PROGRAM ............................................................................................... 24 A GUIDE TO THE IDENTIFICATION OF SEAGRASSES OF THE PORT CURTIS CORAL COAST ............... 26 PARTS OF A SEAGRASS PLANT ............................................................................................................. 28 MONITORING A SEAGRASS MEADOW ................................................................................................. 30 MONITORING SEAGRASS .................................................................................................................................... 31 SEAGRASS-WATCH ............................................................................................................................................ 31 EACH SAMPLING EVENT ..................................................................................................................................... 35 AT COMPLETION OF MONITORING ...................................................................................................................... 36 MAKING A HERBARIUM PRESS SPECIMEN ............................................................................................ 39 COLLECTION ...................................................................................................................................................... 39 PRESSING ........................................................................................................................................................... 39 HERBARIA ......................................................................................................................................................... 41 UNDERSTANDING SEDIMENT ............................................................................................................... 42 SEAGRASS CONSERVATION .................................................................................................................. 44 THREATS TO SEAGRASS HABITATS ..................................................................................................................... 44 MANAGEMENT .................................................................................................................................................. 44 REFERENCES ........................................................................................................................................... 47 3 Gidarjil Development Corp Limited offices, 28 Beckinsale Street, Gladstone City QLD 4680 Telephone: (07) 4972 8646 Lillies Beach (Boyne Island) field exercise, located 27km south of Gidarjil Gladstone offices via Gladstone Benaraby Rd/State Route 58 (approx 30min drive). Field site 6.5km via 4WD (permit only) from beach access. 4 Port Curtis Coral Coast, 9-11 February 2021 Overview Seagrass-Watch is a global seagrass observing network, where scientists, coastal managers and local stakeholders from across the globe collaborate to assess the status of their seagrass meadows to provide an early warning of coastal ecological decline. The program started in 1998 in Australia, using standardised global monitoring protocols, and has so far expanded to include 424 sites across 21 countries. Anyone can participate in Seagrass-Watch, as it responds to local needs, and includes some elements of citizen science. Seagrass-Watch is a monitoring program that brings people together for seagrass conservation. Seagrass-Watch implements a globally standardised seagrass assessment and monitoring protocol, that has a rigorous quality assurance and quality control procedure to ensure data is of the highest quality and that time and resources are not wasted. The only condition is that on-ground data collection must be overseen by a qualified scientist or trained and competent participant (18 years or over). The program identifies areas important for seagrass species diversity and conservation. The information collected can be used to assist the management of coastal environments and to prevent significant areas and species being lost. Monitoring seagrass resources is important for two reasons: it is a valuable tool for improving management practices; and it allows us to know whether resource status and condition is stable, improving or declining. Successful management of coastal environments (including seagrass resources) requires regular monitoring of the status and condition of natural resources. Early detection of change allows coastal management agencies to adjust their management practices and/or take remedial action sooner for more successful results. Monitoring is important in improving our understanding of seagrass resources and to coastal management agencies for: exposing coastal environmental problems before they become intractable, developing benchmarks against which performance and effectiveness can be measured, identifying and prioritising future requirements and initiatives, determining the effectiveness of management practices being applied, maintaining consistent records so that comparisons can be made over time, developing within the community a better understanding of coastal issues, developing a better understanding of cause and effect in land/catchment management practices, assisting education and training, and helping to develop links between local communities, schools and government agencies, and assessing new management practices. Seagrass-Watch
Recommended publications
  • Partial Flora Survey Rottnest Island Golf Course
    PARTIAL FLORA SURVEY ROTTNEST ISLAND GOLF COURSE Prepared by Marion Timms Commencing 1 st Fairway travelling to 2 nd – 11 th left hand side Family Botanical Name Common Name Mimosaceae Acacia rostellifera Summer scented wattle Dasypogonaceae Acanthocarpus preissii Prickle lily Apocynaceae Alyxia Buxifolia Dysentry bush Casuarinacea Casuarina obesa Swamp sheoak Cupressaceae Callitris preissii Rottnest Is. Pine Chenopodiaceae Halosarcia indica supsp. Bidens Chenopodiaceae Sarcocornia blackiana Samphire Chenopodiaceae Threlkeldia diffusa Coast bonefruit Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Suada australis Seablite Chenopodiaceae Atriplex isatidea Coast saltbush Poaceae Sporabolis virginicus Marine couch Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Pittosporaceae Pittosporum phylliraeoides Weeping pittosporum Poaceae Stipa flavescens Tussock grass 2nd – 11 th Fairway Family Botanical Name Common Name Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Atriplex isatidea Coast saltbush Cyperaceae Gahnia trifida Coast sword sedge Pittosporaceae Pittosporum phyliraeoides Weeping pittosporum Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Chenopodiaceae Sarcocornia blackiana Samphire Central drainage wetland commencing at Vietnam sign Family Botanical Name Common Name Chenopodiaceae Halosarcia halecnomoides Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Sarcocornia blackiana Samphire Poaceae Sporobolis virginicus Cyperaceae Gahnia Trifida Coast sword sedge
    [Show full text]
  • The 16Th International Congress on Marine Corrosion and Fouling
    16th Annual International Congress on Marine Corrosion and Fouling ABSTRACT SUMMARIES The 16th International Congress on Marine Corrosion and Fouling 24-28- June 2012 in Seattle, Washington ORGANIZED ON BEHALF OF COMITÉ INTERNATIONAL PERMANENT PUR LA RECHERCHE SU LA PRÉSERVATION DES MATÉRIAUX EN MILIEU MARIN (COIPM) The COIPM Committee consists of: Chair 2010-2012: . Geoff Swain Florida Institute of Technology Secretary and Vice Chair: . Andrew Scardino Defence Science and Technology Organisation Treasurer: . Claire Hellio University of Portsmouth Committee Members: . Maureen Callow University of Birmingham . Tony Clare Newcastle University . Ricardo Coutinho Instituto de Estudos do Mar Almirante Paulo Moreira . Brenda Little Naval Research Laboratory . Steve McElvany Office of Naval Research . Marianne Pereira Hempel . Kiyoshi Shibata Chiba Institute of Technology . Serena Teo National University of Singapore . David Williams International Paint, Ltd Student Committee: . Emily Ralston Florida Institute of Technology . Sheelagh Conlan Liverpool John Moores University i ABSTRACT SUMMARIES 16th Annual International Congress on Marine Corrosion and Fouling Organization Congress Chairman: . Steve McElvany The Office of Naval Research Local Organizing Committee: . Geoff Swain Florida Institute of Technology . Linda Chrisey The Office of Naval Research . Paul Armistead The Office of Naval Research . Shaoyi Jiang The University of Washington . Brenda Little Naval Research Laboratory . Kristin Grehawick Strategic Analysis, Inc. Anthony Brennan
    [Show full text]
  • Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species
    ORIGINAL RESEARCH published: 23 August 2017 doi: 10.3389/fpls.2017.01446 Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species Catherine J. Collier 1*, Yan X. Ow 1, 2, 3, Lucas Langlois 1, Sven Uthicke 3, Charlotte L. Johansson 3, Katherine R. O’Brien 4, Victoria Hrebien 2 and Matthew P. Adams 4 1 Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University Cairns, Cairns, QLD, Australia, 2 College of Marine and Environmental Sciences, James Cook University Townsville, Townsville, QLD, Australia, 3 Australian Institute of Marine Science, Townsville, QLD, Australia, 4 School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia Rising sea water temperature will play a significant role in responses of the world’s seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at ◦ Edited by: temperatures ranging from 15 to 43 C. The temperature-dependence of photosynthesis Richard K. F. Unsworth, and respiration was fitted to empirical models to obtain maximum metabolic rates and Swansea University, United Kingdom thermal optima. The thermal optimum (Topt) for gross photosynthesis of Z. muelleri, Reviewed by: ◦ Michael Joseph Durako, which is more commonly distributed in sub-tropical to temperate regions, was 31 C.
    [Show full text]
  • Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
    Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica.
    [Show full text]
  • Reassessment of Seagrass Species in the Marshall Islands1
    Micronesica 2016-04: 1–10 Reassessment of Seagrass Species in the Marshall Islands 1 ROY T. TSUDA Department of Natural Sciences, Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA [email protected] NADIERA SUKHRAJ U.S. Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office, 300 Ala Moana Blvd., Honolulu, HI 96850, USA [email protected] Abstract—Recent collections of specimens of Halophila gaudichaudii J. Kuo, previously identified as Halophila minor (Zollinger) den Hartog, from Kwajalein Atoll in September 2016 and the archiving of the specimens at BISH validate the previous observation of this seagrass genus in the Marshall Islands. Previously, no voucher specimen was available for examination. Molecular analyses of the Kwajalein Halophila specimens may demonstrate conspecificity with Halophila nipponica J. Kuo with H. gaudichaudii relegated as a synonym. Herbarium specimens of Cymodocea rotundata Ehrenberg and Hemprich ex Ascherson from Majuro Atoll were found at BISH and may represent the only specimens from the Marshall Islands archived in a herbarium. Cymodocea rotundata, however, has been documented in past literature and archived via digital photos in its natural habitat in Majuro. The previous validation of Thalassia hemprichii (Ehrenberg) Ascherson with specimens, and the recent validation of Halophila gaudichaudii and Cymodocea rotundata with specimens reaffirm the low coral atolls and islands of the Marshall Islands as the eastern limit for the three species in the Pacific Ocean. Introduction In a review of the seagrasses in Micronesia, Tsuda et al. (1977) reported nine species of seagrasses in Micronesia with new records of Thalassodendron ciliatum (Forsskål) den Hartog from Palau, and Syringodium isoetifolium (Ascherson) Dandy and Cymodocea serrulata (R.
    [Show full text]
  • Genome-Wide Survey of the Seagrass Zostera Muelleri Suggests Modification of the Ethylene Signalling Network
    Journal of Experimental Botany, Vol. 66, No. 5 pp. 1489–1498, 2015 doi:10.1093/jxb/eru510 Advance Access publication 6 January 2015 This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details) RESEArCH PApEr Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network Agnieszka A. Golicz1,2,*, Martin Schliep3,*, Huey Tyng Lee1,2, Anthony W.D. Larkum3, Rudy Dolferus4, Jacqueline Batley1,5, Chon-Kit Kenneth Chan1,5, Gaurav Sablok3, Peter J. Ralph3 and David Edwards1,2,5,† 1 School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia 2 Australian Centre for Plant Functional Genomics, School of Land, Crop and Food Sciences, University of Queensland, Brisbane, QLD 4067, Australia 3 Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia 4 CSIRO Agriculture Flagship, GPO Box 1600, Canberra ACT 2601, Australia 5 School of Plant Biology, University of Western Australia, WA 6009, Australia * These authors contributed equally to this work. † To whom correspondence should be addressed. E-mail: [email protected] Received 18 August 2014; Revised 28 November 2014; Accepted 2 December 2014 Abstract Seagrasses are flowering plants which grow fully submerged in the marine environment. They have evolved a range of adaptations to environmental challenges including light attenuation through water, the physical stress of wave action and tidal currents, high concentrations of salt, oxygen deficiency in marine sediment, and water-borne pollination. Although, seagrasses are a key stone species of the costal ecosystems, many questions regarding seagrass biology and evolution remain unanswered.
    [Show full text]
  • The Current Status of Halophila Beccarii: an Ecologically Significant, Yet Vulnerable
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2020 doi:10.20944/preprints202008.0126.v1 The current status of Halophila beccarii: An ecologically significant, yet Vulnerable seagrass of India 1Amrit Kumar Mishra, 1Deepak Apte 1Marine Conservation Department, Bombay Natural History Society, Hornbill House, Dr. Salim Ali Chowk, Shaheed Bhagat Singh Road, Opp. Lion Gate, Mumbai, 400001, India Corresponding author: [email protected] Abstract: We reviewed the current status of a Vulnerable seagrass, Halophila beccarii from the coast of India using the published data from 1977-2020. We found that the seagrass, H. beccarii has a pan India distribution on both east and west coast. It is abundant in the intertidal silty-muddy region on the west coast, while on the east coast it is found on sandy habitats, with few exceptions of muddy habitat. H. beccarii was found to be associated with mangroves or smaller seagrass species within a depth limit of 1.7m. Low salinity and high nitrate levels were observed for the H. beccarii meadows of the west coast due to its association with mangroves. The nutrient levels in H. beccarii meadows of India were comparatively lower than other seagrass meadows. Most of the research on H. beccarii has focoused on its morphometrics (41%), reproductive (33%) and distribution (29%) along the coast of India. Reproductive traits such as flowering and fruiting varying according to the seasons of each coast due to the influence of monsoon and its associated temperature, salinity and nutrient influx. H. beccarii has a great potential of various bioactive compounds, which needs further investigation.
    [Show full text]
  • 1 Phylogenetic Regionalization of Marine Plants Reveals Close Evolutionary Affinities Among Disjunct Temperate Assemblages Barna
    Phylogenetic regionalization of marine plants reveals close evolutionary affinities among disjunct temperate assemblages Barnabas H. Darua,b,*, Ben G. Holtc, Jean-Philippe Lessardd,e, Kowiyou Yessoufouf and T. Jonathan Daviesg,h aDepartment of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA bDepartment of Plant Science, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa cDepartment of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, United Kingdom dQuebec Centre for Biodiversity Science, Department of Biology, McGill University, Montreal, QC H3A 0G4, Canada eDepartment of Biology, Concordia University, Montreal, QC, H4B 1R6, Canada; fDepartment of Environmental Sciences, University of South Africa, Florida campus, Florida 1710, South Africa gDepartment of Biology, McGill University, Montreal, QC H3A 0G4, Canada hAfrican Centre for DNA Barcoding, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa *Corresponding author Email: [email protected] (B.H. Daru) Running head: Phylogenetic regionalization of seagrasses 1 Abstract While our knowledge of species distributions and diversity in the terrestrial biosphere has increased sharply over the last decades, we lack equivalent knowledge of the marine world. Here, we use the phylogenetic tree of seagrasses along with their global distributions and a metric of phylogenetic beta diversity to generate a phylogenetically-based delimitation of marine phytoregions (phyloregions). We then evaluate their evolutionary affinities and explore environmental correlates of phylogenetic turnover between them. We identified 11 phyloregions based on the clustering of phylogenetic beta diversity values. Most phyloregions can be classified as either temperate or tropical, and even geographically disjunct temperate regions can harbor closely related species assemblages.
    [Show full text]
  • Extension Bulletin on Seagrasses
    CYANMAGENTAYELLOWBLACK Extension Bulletin THE WEALTH OF INDIA RAW MATERIALS SERIES (A Wealth of information on Plants, Animals and Minerals of India) SEAGRASS FLOWERS For further details and information on Seagrasses please contact: Dr. Nobi E. P., Research Assistant (Environment), Ministry of Environment and Forests CGO Complex, New Delhi-110003, (Formerly Scientist-Fellow, CSIR-NISCAIR) E-mail: [email protected] SEAGRASSES THE OXYGEN PUMPS IN THE SEA For more information on The Wealth of India - Indian Raw Materials Series please contact: Dr (Mrs.) Sunita Garg Ms Nidhi Chaudhary Chief Scientist & Head Research Intern (Botany) E-mail: [email protected]; [email protected] E-mail: [email protected] Ph: 25846001; 25846301 Ext. 258/328/303 Ph: 25846301 Ext. 230 Mr. R. S. Jayasomu Mrs D. Leela Rama Mani Senior Principal Scientist Research Intern (Zoology) E-mail: [email protected] Ph: 25846301 Ext. 278 Ph: 25846301 Ext. 273/278 Mrs Renu Manchanda Mr. P. R. Bhagwat Senior Technical Officer Principal Technical Officer E-mail: [email protected] E-mail: [email protected] Ph: 25846301 Ext. 303 Ph: 25846301 Ext. 328 For ordering Wealth of India complete set or individual volumes Demand Draft should be marked payable to NISCAIR, New Delhi and sent to: Head, Sales and Marketing Wealth of India Division CSIR-National Institute of Science Communication And Information Resources CSIR-National Institute of Science Communication Dr. K. S. Krishnan Marg, Pusa Campus, New Delhi-110 012, India And Information Resources, Phones: + 91-11-25843359, 2584603-7 Extn. 287/288 Fax: +91-11-25847062; Dr K S Krishnan Marg, New Delhi-110 012 and E-mail: [email protected] S.
    [Show full text]
  • Genome-Wide Survey of the Seagrass Zostera Muelleri Suggests Modification of the Ethylene Signalling Network
    Journal of Experimental Botany, Vol. 66, No. 5 pp. 1489–1498, 2015 doi:10.1093/jxb/eru510 Advance Access publication 6 January 2015 This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details) RESEArCH PApEr Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network Agnieszka A. Golicz1,2,*, Martin Schliep3,*, Huey Tyng Lee1,2, Anthony W.D. Larkum3, Rudy Dolferus4, Jacqueline Batley1,5, Chon-Kit Kenneth Chan1,5, Gaurav Sablok3, Peter J. Ralph3 and David Edwards1,2,5,† 1 School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia 2 Australian Centre for Plant Functional Genomics, School of Land, Crop and Food Sciences, University of Queensland, Brisbane, QLD 4067, Australia 3 Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia 4 CSIRO Agriculture Flagship, GPO Box 1600, Canberra ACT 2601, Australia 5 School of Plant Biology, University of Western Australia, WA 6009, Australia * These authors contributed equally to this work. † To whom correspondence should be addressed. E-mail: [email protected] Received 18 August 2014; Revised 28 November 2014; Accepted 2 December 2014 Abstract Seagrasses are flowering plants which grow fully submerged in the marine environment. They have evolved a range of adaptations to environmental challenges including light attenuation through water, the physical stress of wave action and tidal currents, high concentrations of salt, oxygen deficiency in marine sediment, and water-borne pollination. Although, seagrasses are a key stone species of the costal ecosystems, many questions regarding seagrass biology and evolution remain unanswered.
    [Show full text]
  • An Open-Source Transcriptomics Landscape for Phylogenetically
    www.nature.com/scientificreports OPEN SeagrassDB: An open-source transcriptomics landscape for phylogenetically profled Received: 12 June 2017 Accepted: 11 December 2017 seagrasses and aquatic plants Published: xx xx xxxx Gaurav Sablok1, Regan J. Hayward1, Peter A. Davey1, Rosiane P. Santos 2, Martin Schliep1, Anthony Larkum1, Mathieu Pernice 1, Rudy Dolferus3 & Peter J. Ralph1 Seagrasses and aquatic plants are important clades of higher plants, signifcant for carbon sequestration and marine ecological restoration. They are valuable in the sense that they allow us to understand how plants have developed traits to adapt to high salinity and photosynthetically challenged environments. Here, we present a large-scale phylogenetically profled transcriptomics repository covering seagrasses and aquatic plants. SeagrassDB encompasses a total of 1,052,262 unigenes with a minimum and maximum contig length of 8,831 bp and 16,705 bp respectively. SeagrassDB provides access to 34,455 transcription factors, 470,568 PFAM domains, 382,528 prosite models and 482,121 InterPro domains across 9 species. SeagrassDB allows for the comparative gene mining using BLAST-based approaches and subsequent unigenes sequence retrieval with associated features such as expression (FPKM values), gene ontologies, functional assignments, family level classifcation, Interpro domains, KEGG orthology (KO), transcription factors and prosite information. SeagrassDB is available to the scientifc community for exploring the functional genic landscape of seagrass and aquatic plants at: http://115.146.91.129/index.php. Transcriptomics-assisted gene mining approaches have been widely used for understanding the physiological implications of how an organism responds to biotic and abiotic stress conditions. Next generation sequencing (NGS) based transcriptomics has not only accelerated but has also played a key role in the identifcation of new functional genes across diverse species, which has been leveraged to understand the genetic basis of ecological adaptation to their surrounding environment.
    [Show full text]
  • Restoration of Seagrass Meadows in the Mediterranean Sea: a Critical Review of Effectiveness and Ethical Issues
    water Review Restoration of Seagrass Meadows in the Mediterranean Sea: A Critical Review of Effectiveness and Ethical Issues Charles-François Boudouresque 1,*, Aurélie Blanfuné 1,Gérard Pergent 2 and Thierry Thibaut 1 1 Aix-Marseille University and University of Toulon, MIO (Mediterranean Institute of Oceanography), CNRS, IRD, Campus of Luminy, 13009 Marseille, France; [email protected] (A.B.); [email protected] (T.T.) 2 Università di Corsica Pasquale Paoli, Fédération de Recherche Environnement et Societé, FRES 3041, Corti, 20250 Corsica, France; [email protected] * Correspondence: [email protected] Abstract: Some species of seagrasses (e.g., Zostera marina and Posidonia oceanica) have declined in the Mediterranean, at least locally. Others are progressing, helped by sea warming, such as Cymodocea nodosa and the non-native Halophila stipulacea. The decline of one seagrass can favor another seagrass. All in all, the decline of seagrasses could be less extensive and less general than claimed by some authors. Natural recolonization (cuttings and seedlings) has been more rapid and more widespread than was thought in the 20th century; however, it is sometimes insufficient, which justifies transplanting operations. Many techniques have been proposed to restore Mediterranean seagrass meadows. However, setting aside the short-term failure or half-success of experimental operations, long-term monitoring has usually been lacking, suggesting that possible failures were considered not worthy of a scientific paper. Many transplanting operations (e.g., P. oceanica) have been carried out at sites where the species had never previously been present. Replacing the natural Citation: Boudouresque, C.-F.; ecosystem (e.g., sandy bottoms, sublittoral reefs) with P.
    [Show full text]