MAXIMUM LIKELIHOOD ESTIMATION for the Efficiency of Mles, Namely That the Theorem 1
MAXIMUM LIKELIHOOD It should be pointed out that MLEs do ESTIMATION not always exist, as illustrated in the follow- ing natural mixture example; see Kiefer and Maximum likelihood is by far the most pop- Wolfowitz [32]. ular general method of estimation. Its wide- spread acceptance is seen on the one hand in Example 2. Let X1, ..., Xn be independent the very large body of research dealing with and identically distributed (i.i.d.) with den- its theoretical properties, and on the other in sity the almost unlimited list of applications. 2 To give a reasonably general definition p 1 x − µ f (x|µ, ν, σ, τ, p) = √ exp − of maximum likelihood estimates, let X = 2πσ 2 σ (X1, ..., Xn) be a random vector of observa- − − 2 tions whose joint distribution is described + √1 p − 1 x ν | exp , by a density fn(x )overthen-dimensional 2πτ 2 τ Euclidean space Rn. The unknown parameter vector is contained in the parameter space where 0 p 1, µ, ν ∈ R,andσ, τ>0. ⊂ s ∗ R . For fixed x define the likelihood The likelihood function of the observed = = | function of x as L() Lx() fn(x )con- sample x , ...x , although finite for any per- ∈ 1 n sidered as a function of . missible choice of the five parameters, ap- proaches infinity as, for example, µ = x , p > ˆ = ˆ ∈ 1 Definition 1. Any (x) which 0andσ → 0. Thus the MLEs of the five maximizes L()over is called a maximum unknown parameters do not exist. likelihood estimate (MLE) of the unknown Further, if an MLE exists, it is not neces- true parameter .
[Show full text]