Cobalt and Palladium Reagents in Organic Synthesis: the Beginning
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Carbonylation of Protected Or Non-Protected 2-Bromobenzaldehyde Catalyzed by Cobalt Carbonyl
772 Bull. Korean Chem. Soc. 1994, Vol. 15, No. 9 Sang Chui Shim et al. Carbonylation of Protected or Non-protected 2-Bromobenzaldehyde Catalyzed by Cobalt Carbonyl Sang Chui S버 m*, Dong Yub Lee, Heung Jin Choi, Chil Hoon Doh1, and Keun Tai Huh* ^Department of Industrial Chemistry, Kyungpook National University, Taegu 701-702, Korea ^Department of Materials Science and Engineering Kyungsung University, Pusan 608-736, Korea Korea Electrotechnology Research Institute, Changwon, Korea Received May 11, 1994 The cobalt catalyzed carbonylation of bromobenzene having protected aldehyde group gives the corresponding ester in good yields, but 2-bromobenzaldehyde gives 3-alkoxyphthalide in the noticeable yield instead of alkyl 2-formylben- zoates. Introduction Table 1. Carbonylation of 2-Bromobenzenes Having Protected Aldehyde Groups to 2-Substituted Alkyl Benzoates Catalyzed by The metal-catalyzed carbonyl가 ion of aryl halides has ver Cobalt CarbonyF satile utility in the preparative organic chemistry1. Of many Run Reactant catalysts2 used in the carbonylation of aryl halides cobalt Alcohol Product Yield (%y carbonyl species have been conducted under mild conditions, 1 1 CH3CH2OH 2b 88 room temperature and one atmospheric pressure of carbon 2 1 CH3CH2OH 2b 75 。 monoxide. More recently, using dicobalt octacarbonyl at room 3 1 CH3CH2OH 2b 38d temperature under one atmospheric pressure of carbon mo 4 1 CH3OH 2a 80 noxide many applications were reported on the carbonylation 5 1 CH3CH2CH2OH 2c 85 of benzal halides,3-5 and halo (halomethyl)benzenes6-8. 6 (CH3)2CHOH 21 However, studies2,9-11 on the carbonylation of aryl halides 1 2d 7 CH3CH2CH2CH2OH having other reactive functional groups are rare. -
2. Catalysis Involving CO
2. Catalysis Involving CO (Source: Collman / Hegedus + Chiusoli / Maitlis + original papers mentioned below) !1 General Reactivity of CO-Complexes 1 is the resonance representing the pure "-donation of CO to the metal. 3 is contributing the most when the # back donation from the metal to CO is weak. The carbon is more electrophilic here. 2 is the extreme structure that evidences the # back donation of the metal to the #* of CO. !2 – Synthesis Gas and Water Gas Shift Reaction CO / H2 as feedstock. – Hydrocarbonylation (or Hydroformylation) of Olefins / Oxo Reaction Synthesis of aldehydes and alcohols from alkenes with cobalt and rhodium catalysts. – Carbonylation of Alcohols: Monsanto’s Acetic Acid Process Preparation of acetic acid from methanol and CO. !3 Synthesis Gas (Syn Gas, CO / H2) as Feedstock Steam over coal: C + H2O → CO + H2 0 0 (!ΔH 298 K = 131 kJ/mol; !ΔG1073 K= –12 kJ/mol) Steam reforming of methane: CH4 + H2O → CO + 3 H2 0 0 (!ΔH 298 K = 206 kJ/mol; !ΔG1073 K= –24 kJ/mol) Coupled with partial oxidation to give an endothermic overall reaction: H 0 2 C + H2O + O2 → CO + CO2 + H2 (Δ 298 K = –285 kJ/mol) 1 H 0 CH4 + 2 O2 → CO + 2 H2 (Δ 298 K = –36 kJ/mol) !4 Water-Gas-Shift Reaction (WGSR) Allows adjust the CO : H2 ratio by converting CO to H2: !!⇀ CO + H2O ↽!! CO2 + H2 Drawback: CO2 as byproduct. Catalysts: Heterogeneous Cr2O3 (T = 350°C) Cu-Zn-oxide (T = 200 – 300°C) Fe3O4 Homogeneous Carbonyl complexes: [FeH(CO)4]–, [RhI2(CO)2]–, [RuCl(bipy)2(CO)]+ !5 Homogeneously Catalyzed WGSR Principle: O CO OH– – CO2 M M CO M C M H – OH – + H O – ! M H 2 M + OH + H2 !6 Catalytic WGSR ! !7 Hydroformylation or Oxo Synthesis Synthesis of aldehydes and alcohols from alkenes. -
Reactions of Alkenes and Alkynes with Formaldehyde Catalyzed by Rhodium Systems Containing Phosphine Ligands
J. Mex. Chem. Soc. 2017, 61(2), 120-127 Article © 2017, Sociedad Química de México ISSN 1870-249X Reactions of alkenes and alkynes with formaldehyde catalyzed by rhodium systems containing phosphine ligands Merlín Rosales,1* Beatriz González,1 Jessely Molina,1 Homero Pérez,1 María Modroño-Alonso2 and Pablo J. Baricelli2 1 Universidad del Zulia (L.U.Z.), Facultad Experimental de Ciencias. Departamento de Química, Laboratorio de Química Inorgánica (LQI). Maracaibo (Venezuela). 2 Universidad de Carabobo, Facultad de Ingeniería, Centro de Investigaciones Químicas, Valencia (Venezuela). * Corresponding author: Tel +584143602104 FAX +582614127701 Ciudad Universitaria. Módulo 2. Maracaibo. Venezuela e-mail adress: merlin2002 @cantv.net; [email protected] (M. Rosales) Received October 18th, 2016; Accepted March 8th, 2017. Abstract. The reaction of alkenes (allyl alcohol, styrene and C6 Resumen. La reacción de alquenos (alcohol alílico, estireno y alquenos alkenes) with formaldehyde was efficiently performed by using Rh C6) con formaldehido se realizó eficientemente usando precatalizado- precatalysts formed in situ by the addition of triphenylphosphine res de Rh formados in situ por adición de trifenilfosfina (PPh3), (PPh3), 1,2-bis(diphenylphosphino)ethane (dppe) or 1,1,1-tris(diphen- 1,2-bis(difenilfosfino)etano (dffe) o 1,1,1-tris(difenilfosfinometil) etano ylphosphinomethyl)ethane (triphos) to the complex Rh(acac)(CO)2 at (trifos) al complejo Rh(acac)(CO)2 a 130ºC en 1,4-dioxano, produ- 130ºC in 1,4-dioxane, yielding their corresponding aldehydes; the best ciendo los correspondientes aldehídos. El mejor sistema catalítico fue 2 catalytic system was Rh(acac)(CO)2/2dppe, which generates the cat- Rh(acac)(CO)2/2dffe, el cual genera el complejo catiónico [Rh(k -P,P- 2 + + ionic complex [Rh(k -P,P-dppe)2] . -
Direct Carboniiatiom of Aromatic Nttriles Using
DIRECT CARBONIIATIOM OF AROMATIC NTTRILES USING DICOBALT OCTACARBONIL by JOSEPH EDMUND GERVAX B..Sc Honours, University of Montreal, Loyola College, l?6l A THESIS SUBMITTED IN PARTIAL FUIFIIMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Chemistry We accept this; thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA June, 1963 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that per• mission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying, or publi• cation of this thesis for financial gain shall not be allowed without my written permission. Department of CHEMISTRY The University of British Columbia,. Vancouver 8, Canada. Date June 2°» W ABSTRACT A new method of synthesizing N-substituted phthalimidines is described. When benzonitrile was reacted with carbon monoxide containing about 0.0k volume percent of hydrogen and in the presence of dicobalt octacarbonyl and pyridine in benzene solution at 235° and 3U00 p.s.i. pressure the following compounds were produced: MTbenzyphthalimidine (8$), N-phenylphthalimidine (3»7%), and benzamide (3*9%)- When lj.0 p.s.i. hydrogen was added under the same reaction conditions, the yield of N-benzylphthalimidine increased (16%)., When benzonitrile was subjected to the same reaction conditions using 2U0 p.s.d* hydrogen and no pyridine, N-benzylphthalimidine (1%%) and sym-dibenzylurea (8$) were produced. -
Chemical Intercalation of Zerovalent Metals Into 2D Layered Bi2se3 Nanoribbons † † ‡ † † † § Kristie J
Article pubs.acs.org/JACS Chemical Intercalation of Zerovalent Metals into 2D Layered Bi2Se3 Nanoribbons † † ‡ † † † § Kristie J. Koski, Colin D. Wessells, Bryan W. Reed, Judy J. Cha, Desheng Kong, and Yi Cui*, , † Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States ‡ Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States § SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, 2575 Sand Hill Road, Menlo Park, California 94025, United States *S Supporting Information ABSTRACT: We have developed a chemical method to intercalate a variety of zerovalent metal atoms into two-dimen- sional (2D) layered Bi2Se3 chalcogenide nanoribbons. We use a chemical reaction, such as a disproportionation redox reaction, to generate dilute zerovalent metal atoms in a refluxing solution, which intercalate into the layered Bi2Se3 structure. The zerovalent nature of the intercalant allows superstoichiometric intercalation of metal atoms such as Ag, Au, Co, Cu, Fe, In, Ni, and Sn. We foresee the impact of this methodology in establishing novel fundamental physical behaviors and in possible energy applications. 1. INTRODUCTION Ni, and Sn. Some interesting effects that could arise with − 7−10 intercalation are superconductivity, such as in Cu Bi2Se3, Intercalation is the insertion of a guest species into a host 6 lattice. Intercalation into layered materials is essential to battery enhanced conductivity, or possibly opening a surface state gap electrodes, electrochromics, detergents, and solid lubricants and in topological insulator Bi2Se3. This method of zerovalent metal is important in exotic fundamental two-dimensional (2D) intercalation may also be extended to other layered materials. -
Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging. -
Hydroformylation of Formaldehyde with Rhodium Catalyst
Patentamt O JEuropâischesEuropean Patent Office © Publication number: 002 908 Office européen des brevets Bl @ EUROPEAN PATENT SPECIFICATION (46) Date of publication of patent spécification: 12.05.82 © Int. Cl.3: C 07 C 47/19, 8 01 J 31/°2' C 07 C 45/50 © Application number: 78300820.4 @ Date of filing: 1 4.1 2.78 © Hydroformylation of formaldehyde with rhodium cataiyst. © Priority: 16.12.77 US 861474 @ Proprietor: MONSANTO COMPANY Patent Department 800 North Lindbergh Boulevard © Date of publication of application: St. Louis, Missouri 631 66 (US) 11.07.79 Bulletin 79/14 @ Inventor: Spencer, Alwyn © Publication of the grant of the patent: Johnson Matthey Research Centre Blount's Court 1 2.05.82 Bulletin 82/1 9 Jonning Common Reading R64-9NH (GB) @ Designated Contracting States: © Representative: Lunt, John Cooper etal, BECHDEFRGBLUNLSE Monsanto House 1 0-1 8 Victoria Street London, SW1H ONQ(GB) "© References cited: DE- A- 3 940 432 DE - A - 2 741 589 GB - A - 1 335 531 US - A - 3 940 432 Chemical Abstracts vol. 87, no. 19. 1977, Columbus, Ohio, USA T. MIZOROKI "Syntheses of oxygen-containing C2-compounds using carbon monoxide" page 541, column 1, abstract no. 151 634g Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. -
Hydroformylation of 1-Hexene Over Rh/Nano-Oxide Catalysts
Catalysts 2013, 3, 324-337; doi:10.3390/catal3010324 OPEN ACCESS catalysts ISSN 2073-4344 www.mdpi.com/journal/catalysts Article Hydroformylation of 1-Hexene over Rh/Nano-Oxide Catalysts Maija-Liisa Kontkanen 1, Matti Tuikka 1,2, Niko M. Kinnunen 1, Sari Suvanto 1 and Matti Haukka 1,2,* 1 Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland; E-Mails: [email protected] (M.-L.K.); [email protected] (M.T.); [email protected] (N.M.K.); [email protected] (S.S.) 2 Department of Chemistry, University of Jyväskylä, P.O. Box 35, University of Jyväskylä, Finland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +358-40-805-4666; Fax: +358-4-260-2501. Received: 26 January 2013; in revised form: 25 February 2013 / Accepted: 6 March 2013 / Published: 21 March 2013 Abstract: The effect of nanostructured supports on the activity of Rh catalysts was studied by comparing the catalytic performance of nano- and bulk-oxide supported Rh/ZnO, Rh/SiO2 and Rh/TiO2 systems in 1-hexene hydroformylation. The highest activity with 100% total conversion and 96% yield of aldehydes was obtained with the Rh/nano-ZnO catalyst. The Rh/nano-ZnO catalyst was found to be more stable and active than the corresponding rhodium catalyst supported on bulk ZnO. The favorable morphology of Rh/nano-ZnO particles led to an increased metal content and an increased number of weak acid sites compared to the bulk ZnO supported catalysts. Both these factors favored the improved catalytic performance. -
Hydroformylation of C3 and C8 Olefins in Hydrocarbon Gas-Expanded Solvents
HYDROFORMYLATION OF C3 AND C8 OLEFINS IN HYDROCARBON GAS-EXPANDED SOLVENTS By Dupeng Liu Submitted to the graduate degree program in Chemical & Petroleum Engineering and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chairperson: Bala Subramaniam Raghunath V. Chaudhari Jon Tunge Aaron Scurto Kevin Leonard Date Defended: April 30th, 2018 The dissertation committee for Dupeng Liu certifies that this is the approved version of the following dissertation: HYDROFORMYLATION OF C3 AND C8 OLEFINS IN HYDROCARBON GAS-EXPANDED SOLVENTS Chairperson: Bala Subramaniam Date Approved: May 8th, 2018 ii Abstract Hydroformylation involves the addition of syngas to the double bond of an alkene yielding aldehydes used to produce basic building blocks for myriad consumer goods. Resource-efficient technologies that conserve feedstock and energy continue to be of interest to industry. It has been shown previously by our group that the use of CO2-expanded liquids significantly enhances the Rh-catalyzed 1-octene hydroformylation rate and selectivity. This dissertation extends this concept by employing light alkanes such as propane and n-butane as compressed solvents in propylene and 1-octene hydroformylation, respectively. Phase behavior measurements demonstrate that at identical H2 or CO fugacities in the vapor phase, the H2 and CO solubilities in either propane- or propylene-expanded solvents (PXLs) are greater than those in the corresponding neat solvents by as high as 76% at 70 °C and 1.5 MPa. The H2/CO ratio in PXLs is enhanced by simply increasing the propane partial pressure. In contrast, the H2/CO in the neat solvent at a given temperature is constant at all syngas partial pressures. -
Metal Carbonyls
MODULE 1: METAL CARBONYLS Key words: Carbon monoxide; transition metal complexes; ligand substitution reactions; mononuclear carbonyls; dinuclear carbonyls; polynuclear carbonyls; catalytic activity; Monsanto process; Collman’s reagent; effective atomic number; 18-electron rule V. D. Bhatt / Selected topics in coordination chemistry / 2 MODULE 1: METAL CARBONYLS LECTURE #1 1. INTRODUCTION: Justus von Liebig attempted initial experiments on reaction of carbon monoxide with metals in 1834. However, it was demonstrated later that the compound he claimed to be potassium carbonyl was not a metal carbonyl at all. After the synthesis of [PtCl2(CO)2] and [PtCl2(CO)]2 reported by Schutzenberger (1868) followed by [Ni(CO)4] reported by Mond et al (1890), Hieber prepared numerous compounds containing metal and carbon monoxide. Compounds having at least one bond between carbon and metal are known as organometallic compounds. Metal carbonyls are the transition metal complexes of carbon monoxide containing metal-carbon bond. Lone pair of electrons are available on both carbon and oxygen atoms of carbon monoxide ligand. However, as the carbon atoms donate electrons to the metal, these complexes are named as carbonyls. A variety of such complexes such as mono nuclear, poly nuclear, homoleptic and mixed ligand are known. These compounds are widely studied due to industrial importance, catalytic properties and structural interest. V. D. Bhatt / Selected topics in coordination chemistry / 3 Carbon monoxide is one of the most important π- acceptor ligand. Because of its π- acidity, carbon monoxide can stabilize zero formal oxidation state of metals in carbonyl complexes. 2. SYNTHESIS OF METAL CARBONYLS Following are some of the general methods of preparation of metal carbonyls. -
(12) Patent Application Publication (10) Pub. No.: US 2003/0032845 A1 Han Et Al
US 20030032845A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0032845 A1 Han et al. (43) Pub. Date: Feb. 13, 2003 (54) HYDROFORMYLATION OF ETHYLENE Related U.S. Application Data OXIDE (63) Continuation-in-part of application No. 09/924,822, (76) Inventors: Yuan-Zhang Han, West Chester, PA filed on Aug. 8, 2001, now abandoned. (US); Krishnan Viswanathan, Houston, TX (US) Publication Classification Correspondence Address: (51) Int. Cl. ................................................ C07C 29/15 LYONDELL CHEMICAL COMPANY (52) U.S. Cl. ............................................ 568/862; 568/867 3801 WEST CHESTER PIKE NEWTOWN SQUARE, PA 19073 (US) (57) ABSTRACT (21) Appl. No.: 10/038,975 1,3-propanediol is formed from ethylene oxide containing formaldehyde and acetaldehyde impurities by hydroformy (22) Filed: Jan. 4, 2002 lation and hydrogenation. Patent Application Publication Feb. 13, 2003 US 2003/0032845 A1 N y so US 2003/0032845 A1 Feb. 13, 2003 HYDROFORMYLATION OF ETHYLENE OXDE wise, the procedures described in recently filed applications Ser. No. 09/882,346, 09/882,347 and 09/882,641 filed Jun. RELATED APPLICATION 15, 2001 can be employed and are incorporated herein by 0001. This application is a continuation-in-part of appli reference. cation Ser. No. 09/924,822 filed Aug. 8, 2001. 0010 Generally speaking, ethylene oxide which has been employed as feed in prior procedures is a commercial grade BACKGROUND OF THE INVENTION of ethylene oxide from which a predominance of the impu rities coproducted during ethylene oxide formation have 0002) 1. Field of the Invention been removed. Generally, the aldehyde Specifications for 0003. This invention relates to the catalytic hydroformy such commercial ethylene oxide are a maximum of 30-50 lation of ethylene oxide and especially to a process wherein ppm by weight of aldehyde expressed as acetaldehyde. -
The Action of Carbon Monoxide and Hydrogen on Deoxybenzoin Oxime and on 2-Acetonaphthone Oxime
THE ACTION OF CARBON MONOXIDE AND HYDROGEN ON DEOXYBENZOIN OXIME AND ON 2-ACETONAPHTHONE OXIME by Arthur Ronald Hubsoher A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS POR THE DEGREE OP MASTER OF SCIENCE in the Department of Chemistry We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA May, 1959 ABSTRACT When deoxybenzoin oxime was reacted with carbon monoxide and hydrogen in the presence of dicobalt ootacarbonyl at elevated temperatures and pressures 5-benzylphthalimidine and 3-phenyl-3,4- dihydroisocarbostyryl were produced. When 2-acetonaphthone oxime was reacted under similar conditions 2-(^-naphthyl)-4-methyl- benzo[h] quinoline, 2-methylbenzoff]phthalimidine and 1- (^-naphthyl)ethylurea were produced. Verification of the structure of 2-(^-naphthyl)-4-methylbenzo[h]- quinoline was attained in part through the hydro• chloride salt, the methiodide salt, the picrate derivative and the 2-(^-naphthyl)-4-formylbenzofh]- quinoline derivative. 2-(^-K.aphthyl )-4-methyl- benzofh] quinoline was also synthesized by reacting 2- acetonaphthone oxime with 2-acetonaphthone at elevated temperatures. The infrared spectra of the above compounds are described. In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.