Fields and Galois Theory

Total Page:16

File Type:pdf, Size:1020Kb

Fields and Galois Theory Fields and Galois Theory J.S. Milne Version 4.21 September 28, 2008 These notes give a concise exposition of the theory of fields, including the Galois theory of finite and infinite extensions and the theory of transcendental extensions. They are an expansion of those handed out during a course taught to first-year graduate students. BibTeX information @misc{milneFT, author={Milne, James S.}, title={Fields and Galois Theory (v4.21)}, year={2008}, note={Available at www.jmilne.org/math/}, pages={107+iv} } v2.01 (August 21, 1996). First version on the web. v2.02 (May 27, 1998). Fixed about 40 minor errors; 57 pages. v3.00 (April 3, 2002). Revised notes; minor additions to text; added 82 exercises with solutions, an examination, and an index; 100 pages. v3.01 (August 31, 2003). Fixed many minor errors; no change to numbering; 99 pages. v4.00 (February 19, 2005). Minor corrections and improvements; added proofs to the section on infinite Galois theory; added material to the section on transcendental extensions; 107 pages. v4.10 (January 22, 2008). Minor corrections and improvements; added proofs for Kummer theory; 111 pages. v4.20 (February 11, 2008). Replaced Maple with PARI; 111 pages. v4.21 (September 28, 2008). Minor corrections; fixed problem with hyperlinks; 111 pages. Available at www.jmilne.org/math/ Please send comments and corrections to me at the address on my web page. The photograph is of Sabre Peak, Moraine Creek, New Zealand. Copyright c 1996, 1998, 2002, 2003, 2005, 2008, J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permis- sion from the copyright holder. Contents Notations. 3; References. 3 1 Basic definitions and results 1 Rings 1; Fields 1; The characteristic of a field 2; Review of polynomial rings 3; Factoring polynomials 4; Extension fields 7; Construction of some extension fields 8; Stem fields 9; The subring generated by a subset 9; The subfield generated by a subset 10; Algebraic and transcendental elements 11; Transcendental numbers 12; Constructions with straight-edge and compass. 14; Algebraically closed fields 17; Exercises 18 2 Splitting fields; multiple roots 19 Maps from simple extensions. 19; Splitting fields 20; Multiple roots 22; Exercises 24 3 The fundamental theorem of Galois theory 25 Groups of automorphisms of fields 25; Separable, normal, and Galois extensions 27; The fundamental theorem of Galois theory 29; Examples 31; Constructible numbers revisited 33; The Galois group of a polynomial 34; Solvability of equations 34; Exercises 34 4 Computing Galois groups. 36 When is G An? 36; When is G transitive? 37; Polynomials of degree at most three f f 37; Quartic polynomials 38; Examples of polynomials with Sp as Galois group over Q 40; Finite fields 41; Computing Galois groups over Q 43; Exercises 45 5 Applications of Galois theory 47 Primitive element theorem. 47; Fundamental Theorem of Algebra 49; Cyclotomic exten- sions 50; Dedekind’s theorem on the independence of characters 52; The normal basis theorem 53; Hilbert’s Theorem 90. 55; Cyclic extensions. 57; Kummer theory 58; Proof of Galois’s solvability theorem 60; The general polynomial of degree n 61; Norms and traces 64; Exercises 68 6 Algebraic closures 69 Zorn’s lemma 69; First proof of the existence of algebraic closures 70; Second proof of the existence of algebraic closures 70; Third proof of the existence of algebraic closures 70; (Non)uniqueness of algebraic closures 72; Separable closures 72 7 Infinite Galois extensions 74 Topological groups 74; The Krull topology on the Galois group 75; The fundamental the- orem of infinite Galois theory 77; Galois groups as inverse limits 80; Nonopen subgroups of finite index 81 8 Transcendental extensions 83 Algebraic independence 83; Transcendence bases 84;Luroth’s¨ theorem 87; Separating transcendence bases 87; Transcendental Galois theory 88 A Review exercises 90 B Two-hour Examination 95 C Solutions to the Exercises 96 Notations. We use the standard (Bourbaki) notations: N 0; 1; 2; : : : ; D f g Z ring of integers, D R field of real numbers, D C field of complex numbers, D Fp Z=pZ field with p elements, p a prime number. D D Given an equivalence relation, Œ denotes the equivalence class containing . The cardi- nality of a set S is denoted by S (so S is the number of elements in S when S is finite). j j j j Let I and A be sets. A family of elements of A indexed by I , denoted .ai /i I , is a function 2 i ai I A. Throughout the notes, p is a prime number: p 2; 3; 5; 7; 11; : : :. 7! X W YX! is a subset of Y (not necessarily proper). D X def YX is defined to be Y , or equals Y by definition. D X YX is isomorphic to Y . X YX and Y are canonically isomorphic (or there is a given or unique isomorphism). ' Prerequisites Group theory (for example, GT), basic linear algebra, and some elementary theory of rings. References. Dummit, D., and Foote, R.M., 1991, Abstract Algebra, Prentice Hall. Jacobson, N., 1964, Lectures in Abstract Algebra, Volume III — Theory of Fields and Galois Theory, van Nostrand. Also, the following of my notes (available at www.jmilne.org/math/). GT Group Theory, v3.00, 2007. ANT Algebraic Number Theory, v3.00, 2008. Acknowledgements I thank the following for providing corrections and comments for earlier versions of the notes: Mike Albert, Maren Baumann, Leendert Bleijenga, Tommaso Centeleghe, Deme- tres Christofides, Antoine Chambert-Loir, Dustin Clausen, Keith Conrad, Hardy Falk, Jens Hansen, Albrecht Hess, Philip Horowitz, Trevor Jarvis, Henry Kim, Martin Klazar, Jasper Loy Jiabao, Dmitry Lyubshin, John McKay, Courtney Mewton, Shuichi Otsuka, David G. Radcliffe, Dror Speiser, Mathieu Vienney, Martin Ward (and class), Xiande YANG, and others. PARI is an open source computer algebra system freely available from http://pari.math.u- bordeaux.fr/. 1 1 Basic definitions and results Rings A ring is a set R with two composition laws and such that C (a) .R; / is a commutative group; C 1 (b) is associative, and there exists an element 1R such that a 1R a 1R a for all D D a R 2 I (c) the distributive law holds: for all a; b; c R, 2 .a b/ c a c b c C D C a .b c/ a b a c. C D C We usually omit “ ” and write 1 for 1R when this causes no confusion. If 1R 0, then D R 0 . D f g A subring S of a ring R is a subset that contains 1R and is closed under addition, passage to the negative, and multiplication. It inherits the structure of a ring from that on R. A homomorphism of rings ˛ R R is a map with the properties W ! 0 ˛.a b/ ˛.a/ ˛.b/; ˛.ab/ ˛.a/˛.b/; ˛.1R/ 1R ; all a; b R: C D C D D 0 2 A ring R is said to be commutative if multiplication is commutative: ab ba for all a; b R: D 2 A commutative ring is said to be an integral domain if 1R 0 and the cancellation law ¤ holds for multiplication: ab ac, a 0, implies b c: D ¤ D An ideal I in a commutative ring R is a subgroup of .R; / that is closed under multipli- C cation by elements of R: r R, a I , implies ra I: 2 2 2 The ideal generated by elements a1; : : : ; an is denoted .a1; : : : ; an/. For example, .a/ is the principal ideal aR. We assume that the reader has some familiarity with the elementary theory of rings. For example, in Z (more generally, any Euclidean domain) an ideal I is generated by any “smallest” nonzero element of I . Fields DEFINITION 1.1. A field is a set F with two composition laws and such that C (a) .F; / is a commutative group; C (b) .F ; /, where F F r 0 , is a commutative group; D f g (c) the distributive law holds. 1We follow Bourbaki in requiring that rings have a 1, which entails that we require homomorphisms to preserve it. 2 1 BASIC DEFINITIONS AND RESULTS Thus, a field is a nonzero commutative ring such that every nonzero element has an inverse. In particular, it is an integral domain. A field contains at least two distinct elements, 0 and 1. The smallest, and one of the most important, fields is F2 Z=2Z 0; 1 . D D f g A subfield S of a field F is a subring that is closed under passage to the inverse. It inherits the structure of a field from that on F . LEMMA 1.2. A nonzero commutative ring R is a field if and only if it has no ideals other than .0/ and R. PROOF. Suppose R is a field, and let I be a nonzero ideal in R. If a is a nonzero element of I , then 1 a 1a I , and so I R. Conversely, suppose R is a commutative ring D 2 D with no nontrivial ideals. If a 0, then .a/ R, and so there exists a b in R such that ¤ D ab 1. 2 D EXAMPLE 1.3. The following are fields: Q, R, C, Fp Z=pZ (p prime): D A homomorphism of fields ˛ F F is simply a homomorphism of rings. Such a W ! 0 homomorphism is always injective, because its kernel is a proper ideal (it doesn’t contain 1), which must therefore be zero. The characteristic of a field One checks easily that the map Z F; n 1F 1F 1F .n copies/; ! 7! C C C is a homomorphism of rings, and so its kernel is an ideal in Z.
Recommended publications
  • Field Theory Pete L. Clark
    Field Theory Pete L. Clark Thanks to Asvin Gothandaraman and David Krumm for pointing out errors in these notes. Contents About These Notes 7 Some Conventions 9 Chapter 1. Introduction to Fields 11 Chapter 2. Some Examples of Fields 13 1. Examples From Undergraduate Mathematics 13 2. Fields of Fractions 14 3. Fields of Functions 17 4. Completion 18 Chapter 3. Field Extensions 23 1. Introduction 23 2. Some Impossible Constructions 26 3. Subfields of Algebraic Numbers 27 4. Distinguished Classes 29 Chapter 4. Normal Extensions 31 1. Algebraically closed fields 31 2. Existence of algebraic closures 32 3. The Magic Mapping Theorem 35 4. Conjugates 36 5. Splitting Fields 37 6. Normal Extensions 37 7. The Extension Theorem 40 8. Isaacs' Theorem 40 Chapter 5. Separable Algebraic Extensions 41 1. Separable Polynomials 41 2. Separable Algebraic Field Extensions 44 3. Purely Inseparable Extensions 46 4. Structural Results on Algebraic Extensions 47 Chapter 6. Norms, Traces and Discriminants 51 1. Dedekind's Lemma on Linear Independence of Characters 51 2. The Characteristic Polynomial, the Trace and the Norm 51 3. The Trace Form and the Discriminant 54 Chapter 7. The Primitive Element Theorem 57 1. The Alon-Tarsi Lemma 57 2. The Primitive Element Theorem and its Corollary 57 3 4 CONTENTS Chapter 8. Galois Extensions 61 1. Introduction 61 2. Finite Galois Extensions 63 3. An Abstract Galois Correspondence 65 4. The Finite Galois Correspondence 68 5. The Normal Basis Theorem 70 6. Hilbert's Theorem 90 72 7. Infinite Algebraic Galois Theory 74 8. A Characterization of Normal Extensions 75 Chapter 9.
    [Show full text]
  • APPLICATIONS of GALOIS THEORY 1. Finite Fields Let F Be a Finite Field
    CHAPTER IX APPLICATIONS OF GALOIS THEORY 1. Finite Fields Let F be a finite field. It is necessarily of nonzero characteristic p and its prime field is the field with p r elements Fp.SinceFis a vector space over Fp,itmusthaveq=p elements where r =[F :Fp]. More generally, if E ⊇ F are both finite, then E has qd elements where d =[E:F]. As we mentioned earlier, the multiplicative group F ∗ of F is cyclic (because it is a finite subgroup of the multiplicative group of a field), and clearly its order is q − 1. Hence each non-zero element of F is a root of the polynomial Xq−1 − 1. Since 0 is the only root of the polynomial X, it follows that the q elements of F are roots of the polynomial Xq − X = X(Xq−1 − 1). Hence, that polynomial is separable and F consists of the set of its roots. (You can also see that it must be separable by finding its derivative which is −1.) We q may now conclude that the finite field F is the splitting field over Fp of the separable polynomial X − X where q = |F |. In particular, it is unique up to isomorphism. We have proved the first part of the following result. Proposition. Let p be a prime. For each q = pr, there is a unique (up to isomorphism) finite field F with |F | = q. Proof. We have already proved the uniqueness. Suppose q = pr, and consider the polynomial Xq − X ∈ Fp[X]. As mentioned above Df(X)=−1sof(X) cannot have any repeated roots in any extension, i.e.
    [Show full text]
  • Determining the Galois Group of a Rational Polynomial
    Determining the Galois group of a rational polynomial Alexander Hulpke Department of Mathematics Colorado State University Fort Collins, CO, 80523 [email protected] http://www.math.colostate.edu/˜hulpke JAH 1 The Task Let f Q[x] be an irreducible polynomial of degree n. 2 Then G = Gal(f) = Gal(L; Q) with L the splitting field of f over Q. Problem: Given f, determine G. WLOG: f monic, integer coefficients. JAH 2 Field Automorphisms If we want to represent automorphims explicitly, we have to represent the splitting field L For example as splitting field of a polynomial g Q[x]. 2 The factors of g over L correspond to the elements of G. Note: If deg(f) = n then deg(g) n!. ≤ In practice this degree is too big. JAH 3 Permutation type of the Galois Group Gal(f) permutes the roots α1; : : : ; αn of f: faithfully (L = Spl(f) = Q(α ; α ; : : : ; α ). • 1 2 n transitively ( (x α ) is a factor of f). • Y − i i I 2 This action gives an embedding G S . The field Q(α ) corresponds ≤ n 1 to the subgroup StabG(1). Arrangement of roots corresponds to conjugacy in Sn. We want to determine the Sn-class of G. JAH 4 Assumption We can calculate “everything” about Sn. n is small (n 20) • ≤ Can use table of transitive groups (classified up to degree 30) • We can approximate the roots of f (numerically and p-adically) JAH 5 Reduction at a prime Let p be a prime that does not divide the discriminant of f (i.e.
    [Show full text]
  • Infinite Galois Theory
    Infinite Galois Theory Haoran Liu May 1, 2016 1 Introduction For an finite Galois extension E/F, the fundamental theorem of Galois Theory establishes an one-to-one correspondence between the intermediate fields of E/F and the subgroups of Gal(E/F), the Galois group of the extension. With this correspondence, we can examine the the finite field extension by using the well-established group theory. Naturally, we wonder if this correspondence still holds if the Galois extension E/F is infinite. It is very tempting to assume the one-to-one correspondence still exists. Unfortu- nately, there is not necessary a correspondence between the intermediate fields of E/F and the subgroups of Gal(E/F)whenE/F is a infinite Galois extension. It will be illustrated in the following example. Example 1.1. Let F be Q,andE be the splitting field of a set of polynomials in the form of x2 p, where p is a prime number in Z+. Since each automorphism of E that fixes F − is determined by the square root of a prime, thusAut(E/F)isainfinitedimensionalvector space over F2. Since the number of homomorphisms from Aut(E/F)toF2 is uncountable, which means that there are uncountably many subgroups of Aut(E/F)withindex2.while the number of subfields of E that have degree 2 over F is countable, thus there is no bijection between the set of all subfields of E containing F and the set of all subgroups of Gal(E/F). Since a infinite Galois group Gal(E/F)normally have ”too much” subgroups, there is no subfield of E containing F can correspond to most of its subgroups.
    [Show full text]
  • A Second Course in Algebraic Number Theory
    A second course in Algebraic Number Theory Vlad Dockchitser Prerequisites: • Galois Theory • Representation Theory Overview: ∗ 1. Number Fields (Review, K; OK ; O ; ClK ; etc) 2. Decomposition of primes (how primes behave in eld extensions and what does Galois's do) 3. L-series (Dirichlet's Theorem on primes in arithmetic progression, Artin L-functions, Cheboterev's density theorem) 1 Number Fields 1.1 Rings of integers Denition 1.1. A number eld is a nite extension of Q Denition 1.2. An algebraic integer α is an algebraic number that satises a monic polynomial with integer coecients Denition 1.3. Let K be a number eld. It's ring of integer OK consists of the elements of K which are algebraic integers Proposition 1.4. 1. OK is a (Noetherian) Ring 2. , i.e., ∼ [K:Q] as an abelian group rkZ OK = [K : Q] OK = Z 3. Each can be written as with and α 2 K α = β=n β 2 OK n 2 Z Example. K OK Q Z ( p p [ a] a ≡ 2; 3 mod 4 ( , square free) Z p Q( a) a 2 Z n f0; 1g a 1+ a Z[ 2 ] a ≡ 1 mod 4 where is a primitive th root of unity Q(ζn) ζn n Z[ζn] Proposition 1.5. 1. OK is the maximal subring of K which is nitely generated as an abelian group 2. O`K is integrally closed - if f 2 OK [x] is monic and f(α) = 0 for some α 2 K, then α 2 OK . Example (Of Factorisation).
    [Show full text]
  • Växjö University
    School of Mathematics and System Engineering Reports from MSI - Rapporter från MSI Växjö University Geometrical Constructions Tanveer Sabir Aamir Muneer June MSI Report 09021 2009 Växjö University ISSN 1650-2647 SE-351 95 VÄXJÖ ISRN VXU/MSI/MA/E/--09021/--SE Tanveer Sabir Aamir Muneer Trisecting the Angle, Doubling the Cube, Squaring the Circle and Construction of n-gons Master thesis Mathematics 2009 Växjö University Abstract In this thesis, we are dealing with following four problems (i) Trisecting the angle; (ii) Doubling the cube; (iii) Squaring the circle; (iv) Construction of all regular polygons; With the help of field extensions, a part of the theory of abstract algebra, these problems seems to be impossible by using unmarked ruler and compass. First two problems, trisecting the angle and doubling the cube are solved by using marked ruler and compass, because when we use marked ruler more points are possible to con- struct and with the help of these points more figures are possible to construct. The problems, squaring the circle and Construction of all regular polygons are still im- possible to solve. iii Key-words: iv Acknowledgments We are obliged to our supervisor Per-Anders Svensson for accepting and giving us chance to do our thesis under his kind supervision. We are also thankful to our Programme Man- ager Marcus Nilsson for his work that set up a road map for us. We wish to thank Astrid Hilbert for being in Växjö and teaching us, She is really a cool, calm and knowledgeable, as an educator should. We also want to thank of our head of department and teachers who time to time supported in different subjects.
    [Show full text]
  • GALOIS THEORY for ARBITRARY FIELD EXTENSIONS Contents 1
    GALOIS THEORY FOR ARBITRARY FIELD EXTENSIONS PETE L. CLARK Contents 1. Introduction 1 1.1. Kaplansky's Galois Connection and Correspondence 1 1.2. Three flavors of Galois extensions 2 1.3. Galois theory for algebraic extensions 3 1.4. Transcendental Extensions 3 2. Galois Connections 4 2.1. The basic formalism 4 2.2. Lattice Properties 5 2.3. Examples 6 2.4. Galois Connections Decorticated (Relations) 8 2.5. Indexed Galois Connections 9 3. Galois Theory of Group Actions 11 3.1. Basic Setup 11 3.2. Normality and Stability 11 3.3. The J -topology and the K-topology 12 4. Return to the Galois Correspondence for Field Extensions 15 4.1. The Artinian Perspective 15 4.2. The Index Calculus 17 4.3. Normality and Stability:::and Normality 18 4.4. Finite Galois Extensions 18 4.5. Algebraic Galois Extensions 19 4.6. The J -topology 22 4.7. The K-topology 22 4.8. When K is algebraically closed 22 5. Three Flavors Revisited 24 5.1. Galois Extensions 24 5.2. Dedekind Extensions 26 5.3. Perfectly Galois Extensions 27 6. Notes 28 References 29 Abstract. 1. Introduction 1.1. Kaplansky's Galois Connection and Correspondence. For an arbitrary field extension K=F , define L = L(K=F ) to be the lattice of 1 2 PETE L. CLARK subextensions L of K=F and H = H(K=F ) to be the lattice of all subgroups H of G = Aut(K=F ). Then we have Φ: L!H;L 7! Aut(K=L) and Ψ: H!F;H 7! KH : For L 2 L, we write c(L) := Ψ(Φ(L)) = KAut(K=L): One immediately verifies: L ⊂ L0 =) c(L) ⊂ c(L0);L ⊂ c(L); c(c(L)) = c(L); these properties assert that L 7! c(L) is a closure operator on the lattice L in the sense of order theory.
    [Show full text]
  • ON R-EXTENSIONS of ALGEBRAIC NUMBER FIELDS Let P Be a Prime
    ON r-EXTENSIONS OF ALGEBRAIC NUMBER FIELDS KENKICHI IWASAWA1 Let p be a prime number. We call a Galois extension L of a field K a T-extension when its Galois group is topologically isomorphic with the additive group of £-adic integers. The purpose of the present paper is to study arithmetic properties of such a T-extension L over a finite algebraic number field K. We consider, namely, the maximal unramified abelian ^-extension M over L and study the structure of the Galois group G(M/L) of the extension M/L. Using the result thus obtained for the group G(M/L)> we then define two invariants l(L/K) and m(L/K)} and show that these invariants can be also de­ termined from a simple formula which gives the exponents of the ^-powers in the class numbers of the intermediate fields of K and L. Thus, giving a relation between the structure of the Galois group of M/L and the class numbers of the subfields of L, our result may be regarded, in a sense, as an analogue, for L, of the well-known theorem in classical class field theory which states that the class number of a finite algebraic number field is equal to the degree of the maximal unramified abelian extension over that field. An outline of the paper is as follows: in §1—§5, we study the struc­ ture of what we call T-finite modules and find, in particular, invari­ ants of such modules which are similar to the invariants of finite abelian groups.
    [Show full text]
  • Pseudo Real Closed Field, Pseudo P-Adically Closed Fields and NTP2
    Pseudo real closed fields, pseudo p-adically closed fields and NTP2 Samaria Montenegro∗ Université Paris Diderot-Paris 7† Abstract The main result of this paper is a positive answer to the Conjecture 5.1 of [15] by A. Chernikov, I. Kaplan and P. Simon: If M is a PRC field, then T h(M) is NTP2 if and only if M is bounded. In the case of PpC fields, we prove that if M is a bounded PpC field, then T h(M) is NTP2. We also generalize this result to obtain that, if M is a bounded PRC or PpC field with exactly n orders or p-adic valuations respectively, then T h(M) is strong of burden n. This also allows us to explicitly compute the burden of types, and to describe forking. Keywords: Model theory, ordered fields, p-adic valuation, real closed fields, p-adically closed fields, PRC, PpC, NIP, NTP2. Mathematics Subject Classification: Primary 03C45, 03C60; Secondary 03C64, 12L12. Contents 1 Introduction 2 2 Preliminaries on pseudo real closed fields 4 2.1 Orderedfields .................................... 5 2.2 Pseudorealclosedfields . .. .. .... 5 2.3 The theory of PRC fields with n orderings ..................... 6 arXiv:1411.7654v2 [math.LO] 27 Sep 2016 3 Bounded pseudo real closed fields 7 3.1 Density theorem for PRC bounded fields . ...... 8 3.1.1 Density theorem for one variable definable sets . ......... 9 3.1.2 Density theorem for several variable definable sets. ........... 12 3.2 Amalgamation theorems for PRC bounded fields . ........ 14 ∗[email protected]; present address: Universidad de los Andes †Partially supported by ValCoMo (ANR-13-BS01-0006) and the Universidad de Costa Rica.
    [Show full text]
  • Galois Theory on the Line in Nonzero Characteristic
    BULLETIN (New Series) OF THE AMERICANMATHEMATICAL SOCIETY Volume 27, Number I, July 1992 GALOIS THEORY ON THE LINE IN NONZERO CHARACTERISTIC SHREERAM S. ABHYANKAR Dedicated to Walter Feit, J-P. Serre, and e-mail 1. What is Galois theory? Originally, the equation Y2 + 1 = 0 had no solution. Then the two solutions i and —i were created. But there is absolutely no way to tell who is / and who is —i.' That is Galois Theory. Thus, Galois Theory tells you how far we cannot distinguish between the roots of an equation. This is codified in the Galois Group. 2. Galois groups More precisely, consider an equation Yn + axY"-x +... + an=0 and let ai , ... , a„ be its roots, which are assumed to be distinct. By definition, the Galois Group G of this equation consists of those permutations of the roots which preserve all relations between them. Equivalently, G is the set of all those permutations a of the symbols {1,2,...,«} such that (t>(aa^, ... , a.a(n)) = 0 for every «-variable polynomial (j>for which (j>(a\, ... , an) — 0. The co- efficients of <f>are supposed to be in a field K which contains the coefficients a\, ... ,an of the given polynomial f = f(Y) = Y" + alY"-l+--- + an. We call G the Galois Group of / over K and denote it by Galy(/, K) or Gal(/, K). This is Galois' original concrete definition. According to the modern abstract definition, the Galois Group of a normal extension L of a field K is defined to be the group of all AT-automorphisms of L and is denoted by Gal(L, K).
    [Show full text]
  • Techniques for the Computation of Galois Groups
    Techniques for the Computation of Galois Groups Alexander Hulpke School of Mathematical and Computational Sciences, The University of St. Andrews, The North Haugh, St. Andrews, Fife KY16 9SS, United Kingdom [email protected] Abstract. This note surveys recent developments in the problem of computing Galois groups. Galois theory stands at the cradle of modern algebra and interacts with many areas of mathematics. The problem of determining Galois groups therefore is of interest not only from the point of view of number theory (for example see the article [39] in this volume), but leads to many questions in other areas of mathematics. An example is its application in computer algebra when simplifying radical expressions [32]. Not surprisingly, this task has been considered in works from number theory, group theory and algebraic geometry. In this note I shall give an overview of methods currently used. While the techniques used for the identification of Galois groups were known already in the last century [26], the involved calculations made it almost imprac- tical to do computations beyond trivial examples. Thus the problem was only taken up again in the last 25 years with the advent of computers. In this note we will restrict ourselves to the case of the base field Q. Most methods generalize to other fields like Q(t), Qp, IFp(t) or number fields. The results presented here are the work of many mathematicians. I tried to give credit by references wherever possible. 1 Introduction We are given an irreducible polynomial f Q[x] of degree n and asked to determine the Galois group of its splitting field2 L = Spl(f).
    [Show full text]
  • The Art of the Intelligible
    JOHN L. BELL Department of Philosophy, University of Western Ontario THE ART OF THE INTELLIGIBLE An Elementary Survey of Mathematics in its Conceptual Development To my dear wife Mimi The purpose of geometry is to draw us away from the sensible and the perishable to the intelligible and eternal. Plutarch TABLE OF CONTENTS FOREWORD page xi ACKNOWLEDGEMENTS xiii CHAPTER 1 NUMERALS AND NOTATION 1 CHAPTER 2 THE MATHEMATICS OF ANCIENT GREECE 9 CHAPTER 3 THE DEVELOPMENT OF THE NUMBER CONCEPT 28 THE THEORY OF NUMBERS Perfect Numbers. Prime Numbers. Sums of Powers. Fermat’s Last Theorem. The Number π . WHAT ARE NUMBERS? CHAPTER 4 THE EVOLUTION OF ALGEBRA, I 53 Greek Algebra Chinese Algebra Hindu Algebra Arabic Algebra Algebra in Europe The Solution of the General Equation of Degrees 3 and 4 The Algebraic Insolubility of the General Equation of Degree Greater than 4 Early Abstract Algebra 70 CHAPTER 5 THE EVOLUTION OF ALGEBRA, II 72 Hamilton and Quaternions. Grassmann’s “Calculus of Extension”. Finite Dimensional Linear Algebras. Matrices. Lie Algebras. CHAPTER 6 THE EVOLUTION OF ALGEBRA, III 89 Algebraic Numbers and Ideals. ABSTRACT ALGEBRA Groups. Rings and Fields. Ordered Sets. Lattices and Boolean Algebras. Category Theory. CHAPTER 7 THE DEVELOPMENT OF GEOMETRY, I 111 COORDINATE/ALGEBRAIC/ANALYTIC GEOMETRY Algebraic Curves. Cubic Curves. Geometric Construction Problems. Higher Dimensional Spaces. NONEUCLIDEAN GEOMETRY CHAPTER 8 THE DEVELOPMENT OF GEOMETRY, II 129 PROJECTIVE GEOMETRY DIFFERENTIAL GEOMETRY The Theory of Surfaces. Riemann’s Conception of Geometry. TOPOLOGY Combinatorial Topology. Point-set topology. CHAPTER 9 THE CALCULUS AND MATHEMATICAL ANALYSIS 151 THE ORIGINS AND BASIC NOTIONS OF THE CALCULUS MATHEMATICAL ANALYSIS Infinite Series.
    [Show full text]