Pseudo Real Closed Field, Pseudo P-Adically Closed Fields and NTP2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bounded Pregeometries and Pairs of Fields
BOUNDED PREGEOMETRIES AND PAIRS OF FIELDS ∗ LEONARDO ANGEL´ and LOU VAN DEN DRIES For Francisco Miraglia, on his 70th birthday Abstract A definable set in a pair (K, k) of algebraically closed fields is co-analyzable relative to the subfield k of the pair if and only if it is almost internal to k. To prove this and some related results for tame pairs of real closed fields we introduce a certain kind of “bounded” pregeometry for such pairs. 1 Introduction The dimension of an algebraic variety equals the transcendence degree of its function field over the field of constants. We can use transcendence degree in a similar way to assign to definable sets in algebraically closed fields a dimension with good properties such as definable dependence on parameters. Section 1 contains a general setting for model-theoretic pregeometries and proves basic facts about the dimension function associated to such a pregeometry, including definable dependence on parameters if the pregeometry is bounded. One motivation for this came from the following issue concerning pairs (K, k) where K is an algebraically closed field and k is a proper algebraically closed subfield; we refer to such a pair (K, k)asa pair of algebraically closed fields, and we consider it in the usual way as an LU -structure, where LU is the language L of rings augmented by a unary relation symbol U. Let (K, k) be a pair of algebraically closed fields, and let S Kn be definable in (K, k). Then we have several notions of S being controlled⊆ by k, namely: S is internal to k, S is almost internal to k, and S is co-analyzable relative to k. -
Formal Power Series - Wikipedia, the Free Encyclopedia
Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series -
Sturm's Theorem
Sturm's Theorem: determining the number of zeroes of polynomials in an open interval. Bachelor's thesis Eric Spreen University of Groningen [email protected] July 12, 2014 Supervisors: Prof. Dr. J. Top University of Groningen Dr. R. Dyer University of Groningen Abstract A review of the theory of polynomial rings and extension fields is presented, followed by an introduction on ordered, formally real, and real closed fields. This theory is then used to prove Sturm's Theorem, a classical result that enables one to find the number of roots of a polynomial that are contained within an open interval, simply by counting the number of sign changes in two sequences. This result can be extended to decide the existence of a root of a family of polynomials, by evaluating a set of polynomial equations, inequations and inequalities with integer coefficients. Contents 1 Introduction 2 2 Polynomials and Extensions 4 2.1 Polynomial rings . .4 2.2 Degree arithmetic . .6 2.3 Euclidean division algorithm . .6 2.3.1 Polynomial factors . .8 2.4 Field extensions . .9 2.4.1 Simple Field Extensions . 10 2.4.2 Dimensionality of an Extension . 12 2.4.3 Splitting Fields . 13 2.4.4 Galois Theory . 15 3 Real Closed Fields 17 3.1 Ordered and Formally Real Fields . 17 3.2 Real Closed Fields . 22 3.3 The Intermediate Value Theorem . 26 4 Sturm's Theorem 27 4.1 Variations in sign . 27 4.2 Systems of equations, inequations and inequalities . 32 4.3 Sturm's Theorem Parametrized . 33 4.3.1 Tarski's Principle . -
The Axiom of Choice, Zorn's Lemma, and the Well
THE AXIOM OF CHOICE, ZORN'S LEMMA, AND THE WELL ORDERING PRINCIPLE The Axiom of Choice is a foundational statement of set theory: Given any collection fSi : i 2 Ig of nonempty sets, there exists a choice function [ f : I −! Si; f(i) 2 Si for all i 2 I: i In the 1930's, Kurt G¨odelproved that the Axiom of Choice is consistent (in the Zermelo-Frankel first-order axiomatization) with the other axioms of set theory. In the 1960's, Paul Cohen proved that the Axiom of Choice is independent of the other axioms. Closely following Van der Waerden, this writeup explains how the Axiom of Choice implies two other statements, Zorn's Lemma and the Well Ordering Prin- ciple. In fact, all three statements are equivalent, as is a fourth statement called the Hausdorff Maximality Principle. 1. Partial Order Let S be any set, and let P(S) be its power set, the set whose elements are the subsets of S, P(S) = fS : S is a subset of Sg: The proper subset relation \(" in P(S) satisfies two conditions: • (Partial Trichotomy) For any S; T 2 P(S), at most one of the conditions S ( T;S = T;T ( S holds, and possibly none of them holds. • (Transitivity) For any S; T; U 2 P(S), if S ( T and T ( U then also S ( U. The two conditions are the motivating example of a partial order. Definition 1.1. Let T be a set. Let ≺ be a relation that may stand between some pairs of elements of T . -
Section V.1. Field Extensions
V.1. Field Extensions 1 Section V.1. Field Extensions Note. In this section, we define extension fields, algebraic extensions, and tran- scendental extensions. We treat an extension field F as a vector space over the subfield K. This requires a brief review of the material in Sections IV.1 and IV.2 (though if time is limited, we may try to skip these sections). We start with the definition of vector space from Section IV.1. Definition IV.1.1. Let R be a ring. A (left) R-module is an additive abelian group A together with a function mapping R A A (the image of (r, a) being × → denoted ra) such that for all r, a R and a,b A: ∈ ∈ (i) r(a + b)= ra + rb; (ii) (r + s)a = ra + sa; (iii) r(sa)=(rs)a. If R has an identity 1R and (iv) 1Ra = a for all a A, ∈ then A is a unitary R-module. If R is a division ring, then a unitary R-module is called a (left) vector space. Note. A right R-module and vector space is similarly defined using a function mapping A R A. × → Definition V.1.1. A field F is an extension field of field K provided that K is a subfield of F . V.1. Field Extensions 2 Note. With R = K (the ring [or field] of “scalars”) and A = F (the additive abelian group of “vectors”), we see that F is a vector space over K. Definition. Let field F be an extension field of field K. -
Infinite Galois Theory
Infinite Galois Theory Haoran Liu May 1, 2016 1 Introduction For an finite Galois extension E/F, the fundamental theorem of Galois Theory establishes an one-to-one correspondence between the intermediate fields of E/F and the subgroups of Gal(E/F), the Galois group of the extension. With this correspondence, we can examine the the finite field extension by using the well-established group theory. Naturally, we wonder if this correspondence still holds if the Galois extension E/F is infinite. It is very tempting to assume the one-to-one correspondence still exists. Unfortu- nately, there is not necessary a correspondence between the intermediate fields of E/F and the subgroups of Gal(E/F)whenE/F is a infinite Galois extension. It will be illustrated in the following example. Example 1.1. Let F be Q,andE be the splitting field of a set of polynomials in the form of x2 p, where p is a prime number in Z+. Since each automorphism of E that fixes F − is determined by the square root of a prime, thusAut(E/F)isainfinitedimensionalvector space over F2. Since the number of homomorphisms from Aut(E/F)toF2 is uncountable, which means that there are uncountably many subgroups of Aut(E/F)withindex2.while the number of subfields of E that have degree 2 over F is countable, thus there is no bijection between the set of all subfields of E containing F and the set of all subgroups of Gal(E/F). Since a infinite Galois group Gal(E/F)normally have ”too much” subgroups, there is no subfield of E containing F can correspond to most of its subgroups. -
Super-Real Fields—Totally Ordered Fields with Additional Structure, by H. Garth Dales and W. Hugh Woodin, Clarendon Press
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 35, Number 1, January 1998, Pages 91{98 S 0273-0979(98)00740-X Super-real fields|Totally ordered fields with additional structure, by H. Garth Dales and W. Hugh Woodin, Clarendon Press, Oxford, 1996, 357+xiii pp., $75.00, ISBN 0-19-853643-7 1. Automatic continuity The structure of the prime ideals in the ring C(X) of real-valued continuous functions on a topological space X has been studied intensively, notably in the early work of Kohls [6] and in the classic monograph by Gilman and Jerison [4]. One can come to this in any number of ways, but one of the more striking motiva- tions for this type of investigation comes from Kaplansky’s study of algebra norms on C(X), which he rephrased as the problem of “automatic continuity” of homo- morphisms; this will be recalled below. The present book is concerned with some new and very substantial ideas relating to the classification of these prime ideals and the associated rings, which bear on Kaplansky’s problem, though the precise connection of this work with Kaplansky’s problem remains largely at the level of conjecture, and as a result it may appeal more to those already in possession of some of the technology to make further progress – notably, set theorists and set theoretic topologists and perhaps a certain breed of model theorist – than to the audience of analysts toward whom it appears to be aimed. This book does not supplant either [4] or [2] (etc.); it follows up on them. -
A Second Course in Algebraic Number Theory
A second course in Algebraic Number Theory Vlad Dockchitser Prerequisites: • Galois Theory • Representation Theory Overview: ∗ 1. Number Fields (Review, K; OK ; O ; ClK ; etc) 2. Decomposition of primes (how primes behave in eld extensions and what does Galois's do) 3. L-series (Dirichlet's Theorem on primes in arithmetic progression, Artin L-functions, Cheboterev's density theorem) 1 Number Fields 1.1 Rings of integers Denition 1.1. A number eld is a nite extension of Q Denition 1.2. An algebraic integer α is an algebraic number that satises a monic polynomial with integer coecients Denition 1.3. Let K be a number eld. It's ring of integer OK consists of the elements of K which are algebraic integers Proposition 1.4. 1. OK is a (Noetherian) Ring 2. , i.e., ∼ [K:Q] as an abelian group rkZ OK = [K : Q] OK = Z 3. Each can be written as with and α 2 K α = β=n β 2 OK n 2 Z Example. K OK Q Z ( p p [ a] a ≡ 2; 3 mod 4 ( , square free) Z p Q( a) a 2 Z n f0; 1g a 1+ a Z[ 2 ] a ≡ 1 mod 4 where is a primitive th root of unity Q(ζn) ζn n Z[ζn] Proposition 1.5. 1. OK is the maximal subring of K which is nitely generated as an abelian group 2. O`K is integrally closed - if f 2 OK [x] is monic and f(α) = 0 for some α 2 K, then α 2 OK . Example (Of Factorisation). -
Math 121. Uniqueness of Algebraic Closure Let K Be a Field, and K/K A
Math 121. Uniqueness of algebraic closure Let k be a field, and k=k a choice of algebraic closure. As a first step in the direction of proving that k is \unique up to (non-unique) isomorphism", we prove: Lemma 0.1. Let L=k be an algebraic extension, and L0=L another algebraic extension. There is a k-embedding i : L,! k, and once i is picked there exists a k-embedding L0 ,! k extending i. Proof. Since an embedding i : L,! k realizes the algebraically closed k as an algebraic extension of L (and hence as an algebraic closure of L), by renaming the base field as L it suffices to just prove the first part: any algebraic extension admits an embedding into a specified algebraic closure. Define Σ to be the set of pairs (k0; i) where k0 ⊆ L is an intermediate extension over k and 0 i : k ,! k is a k-embedding. Using the inclusion i0 : k ,! k that comes along with the data of how k is realized as an algebraic closure of k, we see that (k; i0) 2 Σ, so Σ is non-empty. We wish to apply Zorn's Lemma, where we define a partial ordering on Σ by the condition that (k0; i0) ≤ (k00; i00) if 0 00 00 0 k ⊆ k inside of L and i jk0 = i . It is a simple exercise in gluing set maps to see that the hypothesis of Zorn's Lemma is satisfied, so there exists a maximal element (K; i) 2 Σ. We just have to show K = L. -
GALOIS THEORY for ARBITRARY FIELD EXTENSIONS Contents 1
GALOIS THEORY FOR ARBITRARY FIELD EXTENSIONS PETE L. CLARK Contents 1. Introduction 1 1.1. Kaplansky's Galois Connection and Correspondence 1 1.2. Three flavors of Galois extensions 2 1.3. Galois theory for algebraic extensions 3 1.4. Transcendental Extensions 3 2. Galois Connections 4 2.1. The basic formalism 4 2.2. Lattice Properties 5 2.3. Examples 6 2.4. Galois Connections Decorticated (Relations) 8 2.5. Indexed Galois Connections 9 3. Galois Theory of Group Actions 11 3.1. Basic Setup 11 3.2. Normality and Stability 11 3.3. The J -topology and the K-topology 12 4. Return to the Galois Correspondence for Field Extensions 15 4.1. The Artinian Perspective 15 4.2. The Index Calculus 17 4.3. Normality and Stability:::and Normality 18 4.4. Finite Galois Extensions 18 4.5. Algebraic Galois Extensions 19 4.6. The J -topology 22 4.7. The K-topology 22 4.8. When K is algebraically closed 22 5. Three Flavors Revisited 24 5.1. Galois Extensions 24 5.2. Dedekind Extensions 26 5.3. Perfectly Galois Extensions 27 6. Notes 28 References 29 Abstract. 1. Introduction 1.1. Kaplansky's Galois Connection and Correspondence. For an arbitrary field extension K=F , define L = L(K=F ) to be the lattice of 1 2 PETE L. CLARK subextensions L of K=F and H = H(K=F ) to be the lattice of all subgroups H of G = Aut(K=F ). Then we have Φ: L!H;L 7! Aut(K=L) and Ψ: H!F;H 7! KH : For L 2 L, we write c(L) := Ψ(Φ(L)) = KAut(K=L): One immediately verifies: L ⊂ L0 =) c(L) ⊂ c(L0);L ⊂ c(L); c(c(L)) = c(L); these properties assert that L 7! c(L) is a closure operator on the lattice L in the sense of order theory. -
Galois Theory on the Line in Nonzero Characteristic
BULLETIN (New Series) OF THE AMERICANMATHEMATICAL SOCIETY Volume 27, Number I, July 1992 GALOIS THEORY ON THE LINE IN NONZERO CHARACTERISTIC SHREERAM S. ABHYANKAR Dedicated to Walter Feit, J-P. Serre, and e-mail 1. What is Galois theory? Originally, the equation Y2 + 1 = 0 had no solution. Then the two solutions i and —i were created. But there is absolutely no way to tell who is / and who is —i.' That is Galois Theory. Thus, Galois Theory tells you how far we cannot distinguish between the roots of an equation. This is codified in the Galois Group. 2. Galois groups More precisely, consider an equation Yn + axY"-x +... + an=0 and let ai , ... , a„ be its roots, which are assumed to be distinct. By definition, the Galois Group G of this equation consists of those permutations of the roots which preserve all relations between them. Equivalently, G is the set of all those permutations a of the symbols {1,2,...,«} such that (t>(aa^, ... , a.a(n)) = 0 for every «-variable polynomial (j>for which (j>(a\, ... , an) — 0. The co- efficients of <f>are supposed to be in a field K which contains the coefficients a\, ... ,an of the given polynomial f = f(Y) = Y" + alY"-l+--- + an. We call G the Galois Group of / over K and denote it by Galy(/, K) or Gal(/, K). This is Galois' original concrete definition. According to the modern abstract definition, the Galois Group of a normal extension L of a field K is defined to be the group of all AT-automorphisms of L and is denoted by Gal(L, K). -
Factorization in Generalized Power Series
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 352, Number 2, Pages 553{577 S 0002-9947(99)02172-8 Article electronically published on May 20, 1999 FACTORIZATION IN GENERALIZED POWER SERIES ALESSANDRO BERARDUCCI Abstract. The field of generalized power series with real coefficients and ex- ponents in an ordered abelian divisible group G is a classical tool in the study of real closed fields. We prove the existence of irreducible elements in the 0 ring R((G≤ )) consisting of the generalized power series with non-positive exponents. The following candidate for such an irreducible series was given 1=n by Conway (1976): n t− + 1. Gonshor (1986) studied the question of the existence of irreducible elements and obtained necessary conditions for a series to be irreducible.P We show that Conway’s series is indeed irreducible. Our results are based on a new kind of valuation taking ordinal numbers as values. If G =(R;+;0; ) we can give the following test for irreducibility based only on the order type≤ of the support of the series: if the order type α is either ! or of the form !! and the series is not divisible by any mono- mial, then it is irreducible. To handle the general case we use a suggestion of M.-H. Mourgues, based on an idea of Gonshor, which allows us to reduce to the special case G = R. In the final part of the paper we study the irreducibility of series with finite support. 1. Introduction 1.1. Fields of generalized power series. Generalized power series with expo- nents in an arbitrary abelian ordered group are a classical tool in the study of valued fields and ordered fields [Hahn 07, MacLane 39, Kaplansky 42, Fuchs 63, Ribenboim 68, Ribenboim 92].