Tree Ring Effects and Ice Core Acidities Clarify the Volcanic Record of the First Millennium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conversion of GISP2-Based Sediment Core Age Models to the GICC05 Extended Chronology
Quaternary Geochronology 20 (2014) 1e7 Contents lists available at ScienceDirect Quaternary Geochronology journal homepage: www.elsevier.com/locate/quageo Short communication Conversion of GISP2-based sediment core age models to the GICC05 extended chronology Stephen P. Obrochta a, *, Yusuke Yokoyama a, Jan Morén b, Thomas J. Crowley c a University of Tokyo Atmosphere and Ocean Research Institute, 227-8564, Japan b Neural Computation Unit, Okinawa Institute of Science and Technology, 904-0495, Japan c Braeheads Institute, Maryfield, Braeheads, East Linton, East Lothian, Scotland EH40 3DH, UK article info abstract Article history: Marine and lacustrine sediment-based paleoclimate records are often not comparable within the early to Received 14 March 2013 middle portion of the last glacial cycle. This is due in part to significant revisions over the past 15 years to Received in revised form the Greenland ice core chronologies commonly used to assign ages outside of the range of radiocarbon 29 August 2013 dating. Therefore, creation of a compatible chronology is required prior to analysis of the spatial and Accepted 1 September 2013 temporal nature of climate variability at multiple locations. Here we present an automated mathematical Available online 19 September 2013 function that updates GISP2-based chronologies to the newer, NGRIP GICC05 age scale between 8.24 and 103.74 ka b2k. The script uses, to the extent currently available, climate-independent volcanic syn- Keywords: Chronology chronization of these two ice cores, supplemented by oxygen isotope alignment. The modular design of Ice core the script allows substitution for a more comprehensive volcanic matching, once it becomes available. Sediment core Usage of this function highlights on the GICC05 chronology, for the first time for the entire last glaciation, GICC05 the proposed global climate relationships during the series of large and rapid millennial stadial- interstadial events. -
Ice Core Science 21
Science Highlights: Ice Core Science 21 Dating ice cores JAKOB SCHWANDER Climate and Environmental Physics, Physics Institute, University of Bern, Switzerland; [email protected] Introduction 200 [ppb An accurate chronology is the ba- NO 100 3 ] sis for a meaningful interpretation - 80 ] of any climate archive, including ice 2 0 O 2 40 [ppb cores. Until now, the oldest ice re- H 0 200 Dust covered from a continuous core is [ppb 100 that from Dome Concordia, Antarc- 2 ] ] tica, with an estimated age of over -1 1.6 0 Sm 1.2 µ 800,000 years (EPICA Community [ Conduct. 0.8 160 [ppb Members, 2004). But the recently SO 80 4 2 recovered cores from near bedrock ] 60 - ] at Kohnen Station (Dronning Maud + 40 0 Na Land, Antarctica) and Dome Fuji [ppb 20 40 [ 0 Ca (Antarctica) compete for the longest ppb 2 20 + climatic record. With the recovery of ] 80 0 + more and more ice cores, the task of ] 4 establishing a good common chro- 40 [ppb NH nology has become increasingly im- 0 portant for linking the fi ndings from 1425 1425 .5 1426 1426 .5 1427 the different records. Moreover, in Depth [m] order to create a comprehensive Fig. 1: Seasonal variations of impurities in early Holocene ice from the North GRIP ice core. picture of past climate dynamics, it Summer layers are indicated by grey lines. is crucial to aim at a common chro- al., 1993, Rasmussen et al., 2006). is assessed with such a model, then nology for all paleo-records. Here Ideally the counting uncertainty is one can construct a chronology of the different methods for dating ice on the order of 1%. -
Scientific Dating of Pleistocene Sites: Guidelines for Best Practice Contents
Consultation Draft Scientific Dating of Pleistocene Sites: Guidelines for Best Practice Contents Foreword............................................................................................................................. 3 PART 1 - OVERVIEW .............................................................................................................. 3 1. Introduction .............................................................................................................. 3 The Quaternary stratigraphical framework ........................................................................ 4 Palaeogeography ........................................................................................................... 6 Fitting the archaeological record into this dynamic landscape .............................................. 6 Shorter-timescale division of the Late Pleistocene .............................................................. 7 2. Scientific Dating methods for the Pleistocene ................................................................. 8 Radiometric methods ..................................................................................................... 8 Trapped Charge Methods................................................................................................ 9 Other scientific dating methods ......................................................................................10 Relative dating methods ................................................................................................10 -
A New Mass Spectrometric Tool for Modelling Protein Diagenesis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Research Information System University of Turin 114 Abstracts / Quaternary International 279-280 (2012) 9–120 budgets, preferably spanning an entire glacial cycle, remain the most by chiral amino acid analysis. However, this knowledge has not yet been accurate for extrapolating glacial erosion rates to the entire Pleistocene able to produce a model which is fully able to explain the patterns of and for assessing their impact on crustal uplift. In the Carlit massif, where breakdown at low (burial) temperatures. By performing high temperature topographic conditions have allowed the majority of Würmian sediments experiments on a range of biominerals (e.g. corals and marine gastropods) to remain trapped within the catchment, clastic volumes preserved and and comparing the racemisation patterns with those obtained in fossil widespread 10Be nuclide inheritance on ice-scoured bedrock steps in the samples of known age, some of our studies have highlighted a range of path of major iceways reveal that mean catchment-scale glacial denuda- discrepancies in the datasets which we attribute to the interplay of tion depths were low (5 m in w100 ka), non-uniform across the landscape, a network of diagenesis reactions which are not yet fully understood. In and unsteady through time. Extrapolating to the Pleistocene, the trans- particular, an accurate knowledge of the temperature sensitivity of the two formation of Cenozoic landscapes by glaciers has thus been limited, many main observable diagenetic reactions (hydrolysis and racemisation) is still cirques and valleys being pre-glacial landforms merely modified by glacial elusive. -
The WAIS Divide Deep Ice Core WD2014 Chronology – Part 2: Annual-Layer Counting (0–31 Ka BP)
Clim. Past, 12, 769–786, 2016 www.clim-past.net/12/769/2016/ doi:10.5194/cp-12-769-2016 © Author(s) 2016. CC Attribution 3.0 License. The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP) Michael Sigl1,2, Tyler J. Fudge3, Mai Winstrup3,a, Jihong Cole-Dai4, David Ferris5, Joseph R. McConnell1, Ken C. Taylor1, Kees C. Welten6, Thomas E. Woodruff7, Florian Adolphi8, Marion Bisiaux1, Edward J. Brook9, Christo Buizert9, Marc W. Caffee7,10, Nelia W. Dunbar11, Ross Edwards1,b, Lei Geng4,5,12,d, Nels Iverson11, Bess Koffman13, Lawrence Layman1, Olivia J. Maselli1, Kenneth McGwire1, Raimund Muscheler8, Kunihiko Nishiizumi6, Daniel R. Pasteris1, Rachael H. Rhodes9,c, and Todd A. Sowers14 1Desert Research Institute, Nevada System of Higher Education, Reno, NV 89512, USA 2Laboratory for Radiochemistry and Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland 3Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA 4Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA 5Dartmouth College Department of Earth Sciences, Hanover, NH 03755, USA 6Space Science Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA 7Department of Physics and Astronomy, PRIME Laboratory, Purdue University, West Lafayette, IN 47907, USA 8Department of Geology, Lund University, 223 62 Lund, Sweden 9College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA 10Department of Earth, Atmospheric, -
Did Comet HEINRICH-Swift-Tuttle Terminate Roman and Global Civilization? [ROME’S POPULATION CATASTROPHE: G
1 Did Comet HEINRICH-Swift-Tuttle Terminate Roman and Global Civilization? [ROME’S POPULATION CATASTROPHE: https://it.wikipedia.org/wiki/Demografia_di_Roma] G. Heinsohn, January 2021 In the first millennium CE, the people of ROME built residential quarters, latrines, water pipes, sewage systems, streets, ports, bakeries etc., but only during Imperial Antiquity (1- 230s CE). No such structures were built during Late Antiquity (4th-6th/7th c.) or the Early Middle Ages (8th-930s CE). [See already https://q-mag.org/gunnar-heinsohn-the-stratigraphy- of-rome-benchmark-for-the-chronology-of-the-first-millennium-ce.html] Since the ruins of the 3rd c. CE lie directly beneath the primitive new structures that were built after the 930s CE (i.e., BEGINNING OF THE HIGH MIDDLE AGES), Imperial Antiquity belongs stratigraphically to the period from 700 to 930s CE. The steep decline in the population of Rome from 1.5 million to 650,000, dated in the diagram to "450" CE, must be accommodated archaeologically within Imperial Antiquity. This decline is due to the crisis caused by the Antonine Plague and Fires, the burning of Rome's State Archives (Tabularium), the Comet of Commodus before the rise of the Severan Emperors (190s-230s CE), and the invasion of Italy by proto-Hunnic Iazyges and proto-Gothic Quadi from the 160s to the 190s. The 160s ff. are stratigraphically parallel with the 450s ff. CE and its invasion of Italy by Huns and Goths. Stratigraphically, we are in the 860s ff. CE, with Hungarians and Vikings. The demographic collapse in the CRISIS OF THE 6th CENTURY (“553” CE in the diagram) is identical with the CRISIS OF THE 3rd C., as well as with the COLLAPSE OF THE 10th C., when Comet HEINRICH-Swift-Tuttle (after King Heinrich I of Saxony; 876/919-936 CE) with ensuing volcanos and floods of the 930s CE ) damaged the globe and Henry’s Roman style city of Magdeburg). -
On the Origin and Timing of Rapid Changes in Atmospheric
GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 14, NO. 2, PAGES 559-572, JUNE 2000 On the origin and timing of rapid changesin atmospheric methane during the last glacial period EdwardJ. Brook,• SusanHarder, • Jeff Sevennghaus, ' • Eric J. Ste•g,. 3and Cara M. Sucher•'5 Abstract. We presenthigh resolution records of atmosphericmethane from the GISP2 (GreenlandIce SheetProject 2) ice corefor fourrapid climate transitions that occurred during the past50 ka: theend of theYounger Dryas at 11.8ka, thebeginning of theBolling-Aller0d period at 14.8ka, thebeginning of interstadial8 at 38.2 ka, andthe beginning of intersradial12 at 45.5 ka. Duringthese events, atmospheric methane concentrations increased by 200-300ppb over time periodsof 100-300years, significantly more slowly than associated temperature and snow accumulationchanges recorded in the ice corerecord. We suggestthat the slowerrise in methane concentrationmay reflect the timescale of terrestrialecosystem response to rapidclimate change. We find noevidence for rapid,massive methane emissions that might be associatedwith large- scaledecomposition of methanehydrates in sediments.With additionalresults from the Taylor DomeIce Core(Antarctica) we alsoreconstruct changes in the interpolarmethane gradient (an indicatorof thegeographical distribution of methanesources) associated with someof therapid changesin atmosphericmethane. The resultsindicate that the rise in methaneat thebeginning of theB011ing-Aller0d period and the laterrise at theend of theYounger Dryas were driven by increasesin bothtropical -
“Year Zero” in Interdisciplinary Studies of Climate and History
PERSPECTIVE Theimportanceof“year zero” in interdisciplinary studies of climate and history PERSPECTIVE Ulf Büntgena,b,c,d,1,2 and Clive Oppenheimera,e,1,2 Edited by Jean Jouzel, Laboratoire des Sciences du Climat et de L’Environ, Orme des Merisiers, France, and approved October 21, 2020 (received for review August 28, 2020) The mathematical aberration of the Gregorian chronology’s missing “year zero” retains enduring potential to sow confusion in studies of paleoclimatology and environmental ancient history. The possibility of dating error is especially high when pre-Common Era proxy evidence from tree rings, ice cores, radiocar- bon dates, and documentary sources is integrated. This calls for renewed vigilance, with systematic ref- erence to astronomical time (including year zero) or, at the very least, clarification of the dating scheme(s) employed in individual studies. paleoclimate | year zero | climate reconstructions | dating precision | geoscience The harmonization of astronomical and civil calendars have still not collectively agreed on a calendrical in the depths of human history likely emerged from convention, nor, more generally, is there standardi- the significance of the seasonal cycle for hunting and zation of epochs within and between communities and gathering, agriculture, and navigation. But difficulties disciplines. Ice core specialists and astronomers use arose from the noninteger number of days it takes 2000 CE, while, in dendrochronology, some labora- Earth to complete an orbit of the Sun. In revising their tories develop multimillennial-long tree-ring chronol- 360-d calendar by adding 5 d, the ancient Egyptians ogies with year zero but others do not. Further were able to slow, but not halt, the divergence of confusion emerges from phasing of the extratropical civil and seasonal calendars (1). -
TBM NEWSLETTER N°12 Your New TBM Newsletter !
If this message is not correctly displayed please click here TBM NEWSLETTER N°12 www.tbm.aero Your new TBM Newsletter ! EDITO "With the very fast turboprop aircraft, “connection” means that TBM owners and operators become more closely linked with their travel requirements – flying rapidly and efficiently to airports that are nearer to their final destinations. At Daher, our goal is to build on this cornerstone benefit of the TBM family, with continual enhancements to the aircraft itself and the service we provide. " Read more Nicolas CHABBERT NEWS A new Service Center for Croatia "Brings on the heat" on Model Year 2018 . Daher has selected Aero Standard, an EASA New features for 2018 production TBM 910s and Part 145 maintenance organization based at TBM 930s include the first electrically-heated Zadar International Airport, as the Croatia seats for an aircraft in its single-engine turboprop Service Center for the TBM aircraft (...) category (...) . PILOT PROFILE NETWORK PROFILE Ron Guynn Jim and Laura Penn AVEX TBM 910 SN1213 . The TBM Network is one of Daher’s strongest Jim and Laura Penn are husband and wife assets in ensuring world-class support for owners certified public accountants from Fort Worth, and operators of its very fast turboprop (...) Texas, USA. Jim is a founding partner of (...) 885 1,5M 54 TBM FLIGHT HOURS SERVICE CENTERS SUPPORT TECHNICAL DOCUMENTATION SUPPORT NEWS The value of our Network What's new ? Our Network of authorized TBM Service Centers Get the latest documentation update and TBM Distributors brings added value to Daher’s family of very fast aircraft: a fact that is SUPPORT CORNER recognized and highly appreciated every day by the worldwide TBM owner/operator The first G1000 NXi upgrade community. -
1 Making a Difference in Tenth-Century Politics: King
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by St Andrews Research Repository 1 Making a Difference in Tenth-Century Politics: King Athelstan’s Sisters and Frankish Queenship Simon MacLean (University of St Andrews) ‘The holy laws of kinship have purposed to take root among monarchs for this reason: that their tranquil spirit may bring the peace which peoples long for.’ Thus in the year 507 wrote Theoderic, king of the Ostrogoths, to Clovis, king of the Franks.1 His appeal to the ideals of peace between kin was designed to avert hostilities between the Franks and the Visigoths, and drew meaning from the web of marital ties which bound together the royal dynasties of the early-sixth-century west. Theoderic himself sat at the centre of this web: he was married to Clovis’s sister, and his daughter was married to Alaric, king of the Visigoths.2 The present article is concerned with a much later period of European history, but the Ostrogothic ruler’s words nevertheless serve to introduce us to one of its central themes, namely the significance of marital alliances between dynasties. Unfortunately the tenth-century west, our present concern, had no Cassiodorus (the recorder of the king’s letter) to methodically enlighten the intricacies of its politics, but Theoderic’s sentiments were doubtless not unlike those that crossed the minds of the Anglo-Saxon and Frankish elite families who engineered an equally striking series of marital relationships among themselves just over 400 years later. In the early years of the tenth century several Anglo-Saxon royal women, all daughters of King Edward the Elder of Wessex (899-924) and sisters (or half-sisters) of his son King Athelstan (924-39), were despatched across the Channel as brides for Frankish and Saxon rulers and aristocrats. -
Resolving Milankovitch: Consideration of Signal and Noise Stephen R
[American Journal of Science, Vol. 308, June, 2008,P.770–786, DOI 10.2475/06.2008.02] RESOLVING MILANKOVITCH: CONSIDERATION OF SIGNAL AND NOISE STEPHEN R. MEYERS*,†, BRADLEY B. SAGEMAN**, and MARK PAGANI*** ABSTRACT. Milankovitch-climate theory provides a fundamental framework for the study of ancient climates. Although the identification and quantification of orbital rhythms are commonplace in paleoclimate research, criticisms have been advanced that dispute the importance of an astronomical climate driver. If these criticisms are valid, major revisions in our understanding of the climate system and past climates are required. Resolution of this issue is hindered by numerous factors that challenge accurate quantification of orbital cyclicity in paleoclimate archives. In this study, we delineate sources of noise that distort the primary orbital signal in proxy climate records, and utilize this template in tandem with advanced spectral methods to quantify Milankovitch-forced/paced climate variability in a temperature proxy record from the Vostok ice core (Vimeux and others, 2002). Our analysis indicates that Vostok temperature variance is almost equally apportioned between three components: the precession and obliquity periods (28%), a periodic “100,000” year cycle (41%), and the background continuum (31%). A range of analyses accounting for various frequency bands of interest, and potential bias introduced by the “saw-tooth” shape of the glacial/interglacial cycle, establish that precession and obliquity periods account for between 25 percent to 41 percent of the variance in the 1/10 kyr – 1/100 kyr band, and between 39 percent to 66 percent of the variance in the 1/10 kyr – 1/64 kyr band. -
New Glacier Evidence for Ice-Free Summits During the Life of The
www.nature.com/scientificreports OPEN New glacier evidence for ice‑free summits during the life of the Tyrolean Iceman Pascal Bohleber1,2*, Margit Schwikowski3,4,5, Martin Stocker‑Waldhuber1, Ling Fang3,5 & Andrea Fischer1 Detailed knowledge of Holocene climate and glaciers dynamics is essential for sustainable development in warming mountain regions. Yet information about Holocene glacier coverage in the Alps before the Little Ice Age stems mostly from studying advances of glacier tongues at lower elevations. Here we present a new approach to reconstructing past glacier low stands and ice‑ free conditions by assessing and dating the oldest ice preserved at high elevations. A previously unexplored ice dome at Weißseespitze summit (3500 m), near where the “Tyrolean Iceman” was found, ofers almost ideal conditions for preserving the original ice formed at the site. The glaciological settings and state‑of‑the‑art micro‑radiocarbon age constraints indicate that the summit has been glaciated for about 5900 years. In combination with known maximum ages of other high Alpine glaciers, we present evidence for an elevation gradient of neoglaciation onset. It reveals that in the Alps only the highest elevation sites remained ice‑covered throughout the Holocene. Just before the life of the Iceman, high Alpine summits were emerging from nearly ice‑free conditions, during the start of a Mid‑Holocene neoglaciation. We demonstrate that, under specifc circumstances, the old ice at the base of high Alpine glaciers is a sensitive archive of glacier change. However, under current melt rates the archive at Weißseespitze and at similar locations will be lost within the next two decades.