Development of Regulatory T Cells Capable of Maintaining Immune Homeostasis

Total Page:16

File Type:pdf, Size:1020Kb

Development of Regulatory T Cells Capable of Maintaining Immune Homeostasis DEVELOPMENT OF REGULATORY T CELLS CAPABLE OF MAINTAINING IMMUNE HOMEOSTASIS A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY David Lee Owen IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Michael A. Farrar, Advisor September 2020 © David Lee Owen 2020 Acknowledgements I would like to first thank my mentor, Dr. Michael Farrar. Mike has been a fantastic example of the passion, enthusiasm and persistent attitude a scientist must have to succeed. Mike has provided me with a combination of guidance and freedom that allowed me to begin developing my skills as an independent investigator. He has always championed my career and has done whatever possible to promote me throughout my training. I also want to thank my thesis committee, Dr. Yoji Shimizu (chair), Dr. Bruce Blazar, Dr. Scott Dehm, Dr. Kristin Hogquist, and Dr. Daniel Mueller, for contributing their time and effort to supporting my project and progress throughout my thesis. I would also like to thank the other members of the Farrar lab, both past and present, for contributing their time to help me develop the technical skills required in the lab and in theoretical discussion on various projects. The list of collaborators, both inside and outside the University of Minnesota, who contributed to this work is too long to list but I want to express my gratitude for their generosity both of time and resources. Finally, thank you to everyone in the Center for Immunology who create a fun, collaborative and productive environment to develop as a young scientist. i Dedication I want to dedicate this work to my family who have always supported me in any endeavor I have taken on. First, my parents, James and Kathy, and my brother Daniel who have all given me the utmost support throughout the long process of PhD training. I also want to thank the rest of my extended family who have also remained connected and interested in my thesis work. Finally, I want to thank my wife, Wendy, who I met and married during my thesis training in Minnesota. You have always been supportive and patient with me. Thank you to all my family and friends for their interest, support and love. ii Abstract The adaptive immune response, comprised of both T cells and B cells, is essential to control infections and eliminate transformed cancer cells. The success of the adaptive immune system relies on the ability to discriminate self from non-self-antigens. The thymus is the site of selection for T cells, where self-reactive T cells are eliminated, generating a non-self focused T cell compartment. However, this selection process is leaky and potentially pathogenic cells do escape thymic, or central, tolerance. Thus, a population of suppressor cells termed regulatory T cells (Treg cells) co-evolved in order to keep these self-reactive escapees in check. Treg cells that develop in the thymus as part of central tolerance induction are a critical population of T cells that are required to maintain immune homeostasis and prevent autoimmunity. Without intervention, mice or humans that lack the ability to generate Treg cells die shortly after birth from widespread autoimmune-mediated tissue destruction. Further, neonatal thymectomy in mice causes the development of an autoimmune wasting phenotype. These observations highlight the importance of thymic Treg cell selection in immune homeostasis. Thymic Treg cell development occurs via a two-step process. Step one involves developing CD4+ thymocytes receiving strong T cell receptor (TCR) stimulation via engagement of thymic self-antigens, leading to upregulation of CD25, the high affinity subunit of the IL-2 receptor, or FOXP3, the lineage defining transcription factor of Treg cells, generating either + lo CD25 or FOXP3 Treg cell progenitors (TregP). Step two is driven by encounters between TregP cell and intrathymic STAT5 activating cytokines, predominantly IL-2, leading to co- + + expression of CD25 and FOXP3. These CD25 FOXP3 cells represent fully mature Treg cells that disseminate from the thymus to mediate immune tolerance. iii While the framework of this two-step development process is understood, many details of each step remain incompletely understood. This thesis addresses several aspects of thymic Treg cell development. First, we identify that T cells are the critical source of IL-2 + lo required to drive Treg differentiation. Second, we provide evidence that CD25 and FOXP3 TregP arise via distinct selection programs and contribute functionally distinct TCRs to the mature Treg compartment. Third, using single-cell RNA-sequencing analysis of conventional and Treg lineage thymocytes we provide a more detailed analysis of transcriptional signatures and intermediates of thymic Treg development. Finally, we gathered preliminary data to better understand the heterogeneity and function of recirculating or resident thymic Treg cells. Developing a holistic understanding of Treg development is essential to discern the etiology of immune disorders and properly modulate Treg cells to treat autoimmune disease, infections and cancer. iv Table of Contents Section Page Acknowledgements i Dedication ii Abstract iii List of Tables vi List of Figures vii Chapter 1 – Introduction 1 Chapter 2 – Defining the important sources of IL-2 required 27 for regulatory T cell development and homeostasis Chapter 3 – Development of regulatory T cells in the thymus 48 from two distinct developmental pathways Chapter 4 – Visualizing thymic Treg cell differentiation using 90 single-cell sequencing Chapter 5 – Role of recirculating Treg cells in thymus function 120 Chapter 6 – Summary and Future Directions 139 Chapter 7 – Materials and Methods 157 References 166 v List of Tables Table Title Page + Table 3.1. List of genes differentially regulated between CD25 TregP 62 lo and FOXP3 TregP in both scRNAseq data sets. Table 4.1. Selected genes associated with immature or mature CD4SP 95 clusters. Table 4.2. Selection gene associated with the “Interferon Signature” 99 thymocyte subset. + Table 4.3. Selected genes differentially regulated between CD25 TregP 101 lo and FOXP3 TregP agonist selection clusters. + Table 4.4. Selected genes differentially regulated between CD25 TregP 107 agonist and post-agonist clusters. Table 4.5. Selected genes differentially regulated between post-agonist 109 and mature Treg cell clusters. lo Table 4.6. Selected genes differentially regulated between FOXP3 TregP 112 lo and FOXP3 TregP agonist clusters. Table 4.7. Genes differentially regulated between mature Treg cells and 114 lo FOXP3 TregP. Table 5.1. Table of selected differentially regulated genes in clusters from 129 + thymic CD73 Treg cell scRNAseq analysis. vi List of Figures Figure Title Page Figure 1.1 Model of thymic Treg cell development 6 Figure 1.2 Foxp3iDTR schematic 23 Figure 2.1 Thymocytes and thymic DCs produce IL-2. 30 Figure 2.2 T cell-derived IL-2 is important for Treg cell homeostasis 32 in IL-15 sufficient mice. Figure 2.3 Dendritic cell- and B cell-derived IL2 is dispensable for 33 Treg cell development and homeostasis. Figure 2.4 T cell-derived IL2 is critical for thymic Treg differentiation. 36 Figure 2.5 Cell intrinsic IL2 is not required for thymic Treg differentiation. 39 + Figure 2.6 CD25 TregP cells undergoing agonist selection are a 40 major source of T cell derived intrathymic IL-2. Figure 2.7 T cell-derived IL2 is critical for Treg cell homeostasis. 42 Figure 2.8 T cell-derived IL2 is important in maintaining resting Treg cells. 44 Figure 3.1. Two thymic Treg progenitor cell populations exist. 50 + lo Figure 3.2. CD25 TregP cells and FOXP3 TregP cells have distinct 53 TCR repertoires. Figure 3.3. Germ-free and NME mice show no defect in either thymic 56 TregP cell pathway. + lo Figure 3.4. CD25 TregP and FOXP3 TregP cells are distinct TregP 58 populations. Figure 3.5. Single-cell RNA-seq of thymic Treg cell lineage. 60 Figure 3.6. Maturation analysis of thymic Treg cell populations. 63 vii + lo Figure 3.7. CD25 and FOXP3 TregP cells are in discrete selection stages. 65 Figure 3.8. Frequency of contaminating recirculating cells in thymic Treg 67 cell lineage subsets. lo Figure 3.9. Treg cells and FOXP3 TregP cells show different localization 69 in the thymus. lo Figure 3.10. FOXP3 TregP cells are dependent on NFκB1 activation. 71 + lo Figure 3.11. CD25 TregP cell and FOXP3 TregP cell development is 73 regulated by distinct enhancers. Figure 3.12. Enhancer deletions do not cause reduced levels of FOXP3 75 or CD25. –/– Figure 3.13. Itk mice show increased Treg cell production from both 77 TregP cell pathways via distinct molecular mechanisms. lo + Figure 3.14. FOXP3 and CD25 TregP respond distinctly to IL-4 stimulation. 80 lo Figure 3.15. FOXP3 TregP cells depend on Tuft cells and iNKT cells. 83 + lo Figure 3.16. Treg cells derived from CD25 and FOXP3 TregP cells are 85 functionally distinct. + lo Figure 3.17. CD25 but not FOXP3 TregP cells react with the 87 self-antigen MOG. + Figure 4.1. Identification of CD4 thymocyte and Treg cell lineage 92 developmental stages. Figure 5.1. RT-Treg cells are activated. 124 Figure 5.2. scRNAseq identification of RT-Treg cell subsets. 126 Figure 5.3. Low dose intrathymic DT treatment in Foxp3DTR mice 132 preferentially depletes RT-Treg cells. viii + Figure 5.4. RT-Treg cell depletion causes an increase in AIRE mTEC 134 density. ix Chapter 1: Introduction *Portions of the introductory text are derived from a review article written by the author1 Adaptive immunity evolved as a powerful defense mechanism to eliminate foreign pathogens and eradicate transformed cells. This system relies on two chief capabilities- extensive repertoire diversity and the ability to discriminate “self” versus “non-self” 2.
Recommended publications
  • Activation of ATM Depends on Chromatin Interactions Occurring Before Induction of DNA Damage
    LETTERS Activation of ATM depends on chromatin interactions occurring before induction of DNA damage Yong-Chul Kim1,6, Gabi Gerlitz1,6, Takashi Furusawa1, Frédéric Catez1,5, Andre Nussenzweig2, Kyu-Seon Oh3, Kenneth H. Kraemer3, Yosef Shiloh4 and Michael Bustin1,7 Efficient and correct responses to double-stranded breaks the KAP-1 protein9. The local and global changes in chromatin organiza- (DSB) in chromosomal DNA are crucial for maintaining genomic tion facilitate recruitment of damage-response proteins and remodelling stability and preventing chromosomal alterations that lead to factors, which further modify chromatin in the vicinity of the DSB and cancer1,2. The generation of DSB is associated with structural propagate the DNA damage response. Given the extensive changes in chro- changes in chromatin and the activation of the protein kinase matin structure associated with the DSB response, it could be expected ataxia-telangiectasia mutated (ATM), a key regulator of the that architectural chromatin-binding proteins, such as the high mobility signalling network of the cellular response to DSB3,4. The group (HMG) proteins, would be involved in this process10–12. interrelationship between DSB-induced changes in chromatin HMG is a superfamily of nuclear proteins that bind to chromatin architecture and the activation of ATM is unclear4. Here we show without any obvious specificity for a particular DNA sequence and affect that the nucleosome-binding protein HMGN1 modulates the the structure and activity of the chromatin fibre10,12,13. We have previ- interaction of ATM with chromatin both before and after DSB ously reported that HMGN1, an HMG protein that binds specifically to formation, thereby optimizing its activation.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • HMGB1 in Health and Disease R
    Donald and Barbara Zucker School of Medicine Journal Articles Academic Works 2014 HMGB1 in health and disease R. Kang R. C. Chen Q. H. Zhang W. Hou S. Wu See next page for additional authors Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles Part of the Emergency Medicine Commons Recommended Citation Kang R, Chen R, Zhang Q, Hou W, Wu S, Fan X, Yan Z, Sun X, Wang H, Tang D, . HMGB1 in health and disease. 2014 Jan 01; 40():Article 533 [ p.]. Available from: https://academicworks.medicine.hofstra.edu/articles/533. Free full text article. This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. Authors R. Kang, R. C. Chen, Q. H. Zhang, W. Hou, S. Wu, X. G. Fan, Z. W. Yan, X. F. Sun, H. C. Wang, D. L. Tang, and +8 additional authors This article is available at Donald and Barbara Zucker School of Medicine Academic Works: https://academicworks.medicine.hofstra.edu/articles/533 NIH Public Access Author Manuscript Mol Aspects Med. Author manuscript; available in PMC 2015 December 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Mol Aspects Med. 2014 December ; 0: 1–116. doi:10.1016/j.mam.2014.05.001. HMGB1 in Health and Disease Rui Kang1,*, Ruochan Chen1, Qiuhong Zhang1, Wen Hou1, Sha Wu1, Lizhi Cao2, Jin Huang3, Yan Yu2, Xue-gong Fan4, Zhengwen Yan1,5, Xiaofang Sun6, Haichao Wang7, Qingde Wang1, Allan Tsung1, Timothy R.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • FOXN3 Inhibits Cell Proliferation Though Regulating E2F1 in Prostate Cancer
    Research Paper FOXN3 Inhibits Cell Proliferation though Regulating E2F1 in Prostate Cancer NING. ZHANG, HAIJUN. YANG* AND QINGQI. ZENG Department of Traditional Chinese Medicine, Jiangsu Health Vocational College, No. 69 Huangshanling Road, Nanjing, Jiangsu 211800, China Zhang et al.: FOXN3 Inhibits Cell Proliferation in Prostate Cancer In this study, it was demonstrated that forkhead box N3 was downregulated in prostate cancer tissues compared to the matched normal adjacent tissues. Prostate cancer patients with high forkhead box N3 expression more frequently had longer survival (P<0.05) than those with low forkhead box N3 expression. Forkhead box N3 inhibited prostate cancer cell proliferation in vitro and in vivo. In addition, forkhead box N3 repressed expression of E2F1, a reported potential oncogene at the messenger ribonucleic acid and protein levels. Taken together, these data delineate an unrecognized function of forkhead box N3 as a tumor suppressor in prostate cancer via repressing the expression of E2F1. Key words: Prostate cancer, FOXN3, E2F1, cell proliferation As a common urogenital system malignant tumor in could down-regulate E2F5 in human cells to control men, prostate cancer (PC) threatens men’s health and cell cycle or inhibit protein biosynthesis[6]. In addition, becomes an important cause of death in the elderly[1]. studies have shown that FOXN3 is significantly The incidence of PC has increased in most countries downregulated in several cancer tissues including oral and PC represents a major disease burden worldwide in laryngeal carcinoma hepatocellular carcinoma, the past decade[2,3]. Treatment options for PC depended squamous cell carcinoma and colon cancer[6,9,10].
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer.
    [Show full text]
  • Transcriptomic Sex Differences in Sensory Neuronal Populations of Mice
    www.nature.com/scientificreports OPEN Transcriptomic sex diferences in sensory neuronal populations of mice Jennifer Mecklenburg1, Yi Zou2, Andi Wangzhou4, Dawn Garcia2, Zhao Lai2,3, Alexei V. Tumanov5, Gregory Dussor4, Theodore J. Price 4 & Armen N. Akopian1,6* Many chronic pain conditions show sex diferences in their epidemiology. This could be attributed to sex-dependent diferential expression of genes (DEGs) involved in nociceptive pathways, including sensory neurons. This study aimed to identify sex-dependent DEGs in estrous female versus male sensory neurons, which were prepared by using diferent approaches and ganglion types. RNA-seq on non-purifed sensory neuronal preparations, such as whole dorsal root ganglion (DRG) and hindpaw tissues, revealed only a few sex-dependent DEGs. Sensory neuron purifcation increased numbers of sex-dependent DEGs. These DEG sets were substantially infuenced by preparation approaches and ganglion types [DRG vs trigeminal ganglia (TG)]. Percoll-gradient enriched DRG and TG neuronal fractions produced distinct sex-dependent DEG groups. We next isolated a subset of sensory neurons by sorting DRG neurons back-labeled from paw and thigh muscle. These neurons have a unique sex- dependent DEG set, yet there is similarity in biological processes linked to these diferent groups of sex-dependent DEGs. Female-predominant DEGs in sensory neurons relate to infammatory, synaptic transmission and extracellular matrix reorganization processes that could exacerbate neuro- infammation severity, especially in TG. Male-selective DEGs were linked to oxidative phosphorylation and protein/molecule metabolism and production. Our fndings catalog preparation-dependent sex diferences in neuronal gene expressions in sensory ganglia. Many infammatory, neuropathic and idiopathic chronic pain conditions, such as migraine, fbromyalgia, tem- poromandibular disorder (TMD/TMJ), irritable bowel syndrome (IBS), rheumatoid arthritis, neuropathies, have greater prevalence and/or symptom severity in women as compared to men 1–4.
    [Show full text]