fphys-09-01234 September 1, 2018 Time: 10:24 # 1 ORIGINAL RESEARCH published: 04 September 2018 doi: 10.3389/fphys.2018.01234 RXFP1 Receptor Activation by Relaxin-2 Induces Vascular Relaxation in Mice via a Gai2-Protein/PI3Kß/g/Nitric Oxide-Coupled Pathway Xiaoming Lian1, Sandra Beer-Hammer2, Gabriele M. König3, Evi Kostenis3, Bernd Nürnberg2 and Maik Gollasch1,4* 1 Experimental and Clinical Research Center (ECRC), Charité – University Medicine Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany, 2 Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Tübingen, Germany, 3 Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany, 4 Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Berlin, Germany Edited by: Camille M. Balarini, Background: Relaxins are small peptide hormones, which are novel candidate Federal University of Paraíba, Brazil molecules that play important roles in cardiometablic syndrome. Relaxins are Reviewed by: structurally related to the insulin hormone superfamily, which provide vasodilatory Ulf Simonsen, effects by activation of G-protein-coupled relaxin receptors (RXFPs) and stimulation Aarhus University, Denmark Anna M. D. Watson, of endogenous nitric oxide (NO) generation. Recently, relaxin could be demonstrated Monash University, Australia to activate Gi proteins and phosphoinositide 3-kinase (PI3K) pathways in cultured *Correspondence: endothelial cells in vitro. However, the contribution of the Gi-PI3K pathway and their Maik Gollasch
[email protected] individual components in relaxin-dependent relaxation of intact arteries remains elusive.