RESEARCH ARTICLE Differential and Synergistic Functionality of Acylsugars in Suppressing Oviposition by Insect Herbivores Brian M. Leckie1☯¤, Damon A. D'Ambrosio2☯, Thomas M. Chappell2, Rayko Halitschke3, Darlene M. De Jong1, André Kessler3, George G. Kennedy2, Martha A. Mutschler1* 1 Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America, 2 Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America, 3 Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America a11111 ☯ These authors contributed equally to this work. ¤ Current address: School of Agriculture, Tennessee Technological University, Cookeville, Tennessee, United States of America *
[email protected] OPEN ACCESS Abstract Citation: Leckie BM, D'Ambrosio DA, Chappell TM, Acylsugars are secondary metabolites exuded from type IV glandular trichomes that pro- Halitschke R, De Jong DM, Kessler A, et al. (2016) Differential and Synergistic Functionality of vide broad-spectrum insect suppression for Solanum pennellii Correll, a wild relative of culti- Acylsugars in Suppressing Oviposition by Insect vated tomato. Acylsugars produced by different S. pennellii accessions vary by sugar Herbivores. PLoS ONE 11(4): e0153345. moieties (glucose or sucrose) and fatty acid side chains (lengths and branching patterns). doi:10.1371/journal.pone.0153345 Our objective was to determine which acylsugar compositions more effectively suppressed Editor: Xiao-Wei Wang, Zhejiang University, CHINA oviposition of the whitefly Bemisia tabaci (Gennadius) (Middle East—Asia Minor 1 Group), Received: August 6, 2015 tobacco thrips, Frankliniella fusca (Hinds), and western flower thrips, Frankliniella occidenta- Accepted: March 28, 2016 lis (Pergande).