An Improved Nicotiana Benthamiana Strain for Aphid and Whitefly Research

Total Page:16

File Type:pdf, Size:1020Kb

An Improved Nicotiana Benthamiana Strain for Aphid and Whitefly Research bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.237180; this version posted August 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Article Title 2 An improved Nicotiana benthamiana strain for aphid and whitefly research 3 4 Running title 5 Acylsugars protect Nicotiana benthamiana 6 7 8 Author names 9 Honglin Feng1, Lucia Acosta-Gamboa2, Lars H. Kruse3, Alba Ruth Nava Fereira4, Sara Shakir1†, 10 Hongxing Xu1‡, Garry Sunter4, Michael A. Gore2, Gaurav D. Moghe3, Georg Jander1* 11 12 13 Author Affiliations 14 1Boyce Thompson Institute, Ithaca NY, USA 15 2Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca NY, 16 14853, USA 17 3Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca NY, 14853, USA 18 4Department of Biology, University of Texas San Antonio, San Antonio TX, 78249, USA 19 †Present address: Gembloux Agro-Bio Tech Institute, the University of Liege, Gembloux, Belgium 20 ‡Present address: College of Life Science, the Shaanxi Normal University, Xi’an, China 21 22 *Correspondence: 23 Georg Jander 24 Boyce Thompson Institute 25 Ithaca, NY 14853 26 USA 27 Phone: 607-254-1365 28 Email: [email protected] 29 30 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.237180; this version posted August 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 31 Abstract 32 Nicotiana benthamiana is used extensively as a platform for transient gene expression and as a model 33 system for studying plant-virus interactions. However, many tobacco-feeding insects, e.g. Myzus persicae 34 (green peach aphids) and Bemisia tabaci (whiteflies), grow poorly on N. benthamiana, limiting its utility 35 for research on plant-insect interactions. Using CRISPR/Cas9, we generated knockout mutations in two 36 N. benthamiana acylsugar acyltransferase genes, ASAT1 and ASAT2, which contribute to the biosynthesis 37 of insect-deterrent acylsucroses. Whereas ASAT1 mutations reduced the abundance of two predominant 38 acylsucroses, ASAT2 mutations caused almost complete depletion of foliar acylsucroses. Both M. persicae 39 and B. tabaci survived and reproduced significantly better on asat2 mutant plants than on wildtype N. 40 benthamiana. Furthermore, ASAT1 and ASAT2 mutations reduced the water content and increased the 41 temperature of leaves, indicating that foliar acylsucroses can protect against desiccation. Improved aphid 42 and whitefly performance on ASAT2 mutants will make it possible to use the efficient transient 43 overexpression and gene expression silencing systems that are available for N. benthamiana to study 44 plant-insect interactions. Additionally, the absence of acylsugars in ASAT2 mutant lines will simplify 45 transient expression assays for the functional analysis of acylsugar biosynthesis genes from other 46 Solanaceae. 47 48 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.237180; this version posted August 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 49 Introduction 50 Nicotiana benthamiana, a species of wild tobacco that is native to Australia, is commonly used by plant 51 molecular biologists as model system for laboratory research. Susceptibility to a wide variety of plant 52 viruses has made N. benthamiana a popular model for fundamental studies of plant-virus interactions 53 (Goodin et al., 2008; Bally et al., 2018). Scientists have developed N. benthamiana as a transgene 54 expression powerhouse by engineering viral vectors to express heterologous genes, including fluorescent 55 reporter genes to visualize cell structures (Bally et al., 2018). Antibodies, biofuel compounds, and other 56 protein and metabolite products have been produced in N. benthamiana (Arntzen, 2015; Powell, 2015). 57 Virus-induced gene silencing (VIGS), which is employed to study gene function in a variety of plant 58 species, was originally developed in N. benthamiana (Hayward et al., 2011). Recently, high-efficiency 59 CRISPR/Cas9 germline gene editing using virus-encoded guide RNA (gRNA) was demonstrated for the 60 first time in N. benthamiana (Ellison et al., 2020). Although N. benthamiana is hyper-susceptible to many 61 plant viruses, it is not a good host for two virus-transmitting Hemiptera, Myzus persicae (green peach 62 aphid) (Thurston, 1961; Hagimori et al., 1993) and Bemisia tabaci (silverleaf whitefly) (Simon et al., 63 2003), that grow well on cultivated tobacco (Nicotiana tabacum). 64 The poor growth of aphids and whiteflies on N. benthamiana may be attributed in part to 65 glandular trichomes. These epidermal secretory structures on the leaf surface of ~30% of vascular plants 66 (Weinhold and Baldwin, 2011; Glas et al., 2012), have been found to play a crucial defensive role in 67 several ways: as a physical obstacle for insect movement on the plant surface (Cardoso, 2008), 68 entrapment (Simmons et al., 2004), production of volatiles and other defensive metabolites (Laue et al., 69 2000; Schilmiller et al., 2010; Glas et al., 2012), and production of proteins that repel herbivores 70 (phylloplane proteins, e.g. T-phylloplanin) (Shepherd and Wagner, 2007). In addition to their defensive 71 functions, glandular trichomes also protect plants from abiotic stresses such as transpiration water loss 72 and UV irradiation (Karabourniotis et al., 1995). 73 There are two main types of glandular trichomes on N. benthamiana leaves, large swollen-stalk 74 trichomes and small trichomes that are capped by a secretory head with one, two, or four cells (Slocombe 75 et al., 2008). The large trichomes have been shown to secrete phylloplane proteins in N. tabacum. The 76 small trichomes are the most abundant trichomes on tobacco leaf surfaces and secrete exudates, including 77 acylsugars (Wagner et al., 2004; Slocombe et al., 2008). Detached trichomes, a mixture of the large and 78 small trichomes, from N. benthamiana are able to synthesize acylsugars (Kroumova and Wagner, 2003), 79 and the secretory head cells alone are able to synthesize acylsugars in N. tabacum (Kandra and Wagner, 80 1988). 81 Acylsugars, generally sucrose or glucose esterified with aliphatic acids of different chain lengths, 82 are abundant insect-deterrent metabolites produced by Solanaceae glandular trichomes (Arrendale et al., 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.237180; this version posted August 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 83 1990; Slocombe et al., 2008; Moghe et al., 2017). Specific acylsugars are associated with aphid-resistant 84 Nicotiana species, while not being detected in more susceptible species in this genus (Hagimori et al., 85 1993). Furthermore, relative to cultivated tomatoes (Solanum lycopersicum), acylsugars provide wild 86 tomatoes (Solanum pennellii) greater resistance against M. persicae (Rodriguez et al., 1993). 87 Diacylsucrose protects crops against tobacco aphids (Myzus persicae nicotianae), B. tabaci, and two- 88 spotted spider mites (Tetranychus urticae) (Chortyk et al., 1996; Alba et al., 2009). The synthetic sucrose 89 octanoate (an analog of Nicotiana gossei sugar esters) is effective in the field against Asian citrus psyllids 90 (Diaphorina citri), citrus leafminer (Phyllocnistis citrella), and a mite complex (including Texas citrus 91 mite, red spider mite, and rust mite) (McKenzie and Puterka, 2004). Interestingly, acylsucroses in 92 Nicotiana attenuata are metabolized to volatile fatty acids by neonate Manduca sexta (tobacco 93 hornworm) larvae, thereby tagging these larvae and attracting predatory ants, Pogonomyrmex rugosus 94 (Weinhold and Baldwin, 2011). 95 Acylsugars and leaf surface lipids more generally may contribute to plant drought tolerance. 96 Transcriptomic studies of drought tolerant wild tomato (Solanum pennellii) populations showed that lipid 97 metabolism genes are among those that are most responsive to drought stress (Gong et al., 2010; Egea et 98 al., 2018). Additionally, acylsugars on the leaf surface in a native S. pennellii population contributed to 99 drought tolerance (Fobes et al., 1985). Acylsugars also are reported to provide protection against drought 100 stress conditions in Solanum chilense (O’ Connell et al., 2007). Similarly, abundant accumulation of 101 acylsugars with C7-C8 acyl groups the in the desert tobacco (Nicotiana obtusifolia) was suggested to 102 provide this species with high drought tolerance for its desert environment (Kroumova et al., 2016). 103 Although the mechanism is not completely understood, it has been proposed that the polar lipids reduce 104 the surface tension of adsorbed dew water, thereby allowing the leaves absorb more condensed water on 105 the surface (Fobes et al., 1985). 106 More recently, enzymes involved in the biosynthesis of acylsugars have been
Recommended publications
  • An Integrated Analytical Approach Reveals Trichome 3 Acylsugar Metabolite Diversity in the Wild Tomato 4 Solanum Pennellii
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2020 doi:10.20944/preprints202008.0702.v1 1 Article 2 An Integrated Analytical Approach Reveals Trichome 3 Acylsugar Metabolite Diversity in the Wild Tomato 4 Solanum Pennellii 5 Daniel B. Lybrand 1, Thilani M. Anthony 1, A. Daniel Jones 1 and Robert L. Last 1,2,* 6 1 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; 7 [email protected] (D.B.L); [email protected] (T.M.A); [email protected] (A.D.J) 8 2 Department of Plant Biology, Michigan State University, East Lansing, MI, USA 9 * Correspondence: [email protected] 10 Abstract: Acylsugars constitute an abundant class of pest- and pathogen-protective Solanaceae 11 family plant specialized metabolites produced in secretory glandular trichomes. Solanum pennellii 12 produces copious triacylated sucrose and glucose esters, and the core biosynthetic pathway 13 producing these compounds was previously characterized. We performed untargeted 14 metabolomic analysis of S. pennellii surface metabolites from accessions spanning the species range, 15 which indicated geographic trends in acylsugar profile and revealed two compound classes 16 previously undescribed from this species, tetraacylglucoses and flavonoid aglycones. A 17 combination of ultrahigh performance liquid chromatography high resolution mass spectrometry 18 (UHPLC-HR-MS) and NMR spectroscopy identified variations in number, length, and branching 19 pattern of acyl chains, and the proportion of sugar cores in acylsugars among accessions. The new 20 dimensions of acylsugar variation revealed by this analysis further indicate variation in the 21 biosynthetic and degradative pathways responsible for acylsugar accumulation.
    [Show full text]
  • Transcriptome Profiling of Agrobacterium‑Mediated Infiltration of Transcription Factors to Discover Gene Function and Expression Networks in Plants Donna M
    Bond et al. Plant Methods (2016) 12:41 DOI 10.1186/s13007-016-0141-7 Plant Methods RESEARCH Open Access Infiltration‑RNAseq: transcriptome profiling of Agrobacterium‑mediated infiltration of transcription factors to discover gene function and expression networks in plants Donna M. Bond1*, Nick W. Albert2, Robyn H. Lee1, Gareth B. Gillard1,4, Chris M. Brown1, Roger P. Hellens3 and Richard C. Macknight1,2* Abstract Background: Transcription factors (TFs) coordinate precise gene expression patterns that give rise to distinct pheno- typic outputs. The identification of genes and transcriptional networks regulated by a TF often requires stable trans- formation and expression changes in plant cells. However, the production of stable transformants can be slow and laborious with no guarantee of success. Furthermore, transgenic plants overexpressing a TF of interest can present pleiotropic phenotypes and/or result in a high number of indirect gene expression changes. Therefore, fast, efficient, high-throughput methods for assaying TF function are needed. Results: Agroinfiltration is a simple plant biology method that allows transient gene expression. It is a rapid and powerful tool for the functional characterisation of TF genes in planta. High throughput RNA sequencing is now a widely used method for analysing gene expression profiles (transcriptomes). By coupling TF agroinfiltration with RNA sequencing (named here as Infiltration-RNAseq), gene expression networks and gene function can be identified within a few weeks rather than many months. As a proof of concept, we agroinfiltrated Medicago truncatula leaves with M. truncatula LEGUME ANTHOCYANIN PRODUCITION 1 (MtLAP1), a MYB transcription factor involved in the regula- tion of the anthocyanin pathway, and assessed the resulting transcriptome.
    [Show full text]
  • Differential and Synergistic Functionality of Acylsugars in Suppressing Oviposition by Insect Herbivores
    RESEARCH ARTICLE Differential and Synergistic Functionality of Acylsugars in Suppressing Oviposition by Insect Herbivores Brian M. Leckie1☯¤, Damon A. D'Ambrosio2☯, Thomas M. Chappell2, Rayko Halitschke3, Darlene M. De Jong1, André Kessler3, George G. Kennedy2, Martha A. Mutschler1* 1 Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America, 2 Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America, 3 Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America a11111 ☯ These authors contributed equally to this work. ¤ Current address: School of Agriculture, Tennessee Technological University, Cookeville, Tennessee, United States of America * [email protected] OPEN ACCESS Abstract Citation: Leckie BM, D'Ambrosio DA, Chappell TM, Acylsugars are secondary metabolites exuded from type IV glandular trichomes that pro- Halitschke R, De Jong DM, Kessler A, et al. (2016) Differential and Synergistic Functionality of vide broad-spectrum insect suppression for Solanum pennellii Correll, a wild relative of culti- Acylsugars in Suppressing Oviposition by Insect vated tomato. Acylsugars produced by different S. pennellii accessions vary by sugar Herbivores. PLoS ONE 11(4): e0153345. moieties (glucose or sucrose) and fatty acid side chains (lengths and branching patterns). doi:10.1371/journal.pone.0153345 Our objective was to determine which acylsugar compositions more effectively suppressed Editor: Xiao-Wei Wang, Zhejiang University, CHINA oviposition of the whitefly Bemisia tabaci (Gennadius) (Middle East—Asia Minor 1 Group), Received: August 6, 2015 tobacco thrips, Frankliniella fusca (Hinds), and western flower thrips, Frankliniella occidenta- Accepted: March 28, 2016 lis (Pergande).
    [Show full text]
  • Efficient Infection of Nicotiana Benthamiana by Tomato Bushy
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Virology Papers Virology, Nebraska Center for 2002 Efficient Infection of Nicotiana benthamiana by Tomato bushy stunt virus Is Facilitated by the Coat Protein and Maintained by p19 Through Suppression of Gene Silencing Feng Qu University of Nebraska-Lincoln, [email protected] Thomas Jack Morris University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/virologypub Part of the Virology Commons Qu, Feng and Morris, Thomas Jack, "Efficient Infection of Nicotiana benthamiana by Tomato bushy stunt virus Is Facilitated by the Coat Protein and Maintained by p19 Through Suppression of Gene Silencing" (2002). Virology Papers. 196. https://digitalcommons.unl.edu/virologypub/196 This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Molecular Plant-Microbe Interactions 15:3 (Mar 2002), pp.193-202. Used by permission. MPMI Vol. 15, No. 3, 2002, pp. 193–202. Publication no. M-2002-0118-03R. © 2002 The American Phytopathological Society Efficient Infection of Nicotiana benthamiana by Tomato bushy stunt virus Is Facilitated by the Coat Protein and Maintained by p19 Through Suppression of Gene Silencing Feng Qu and T. Jack Morris School of Biological Sciences, University of Nebraska-Lincoln, 348 Manter Hall, Lincoln, Nebraska 68588-0118, U.S.A. Submitted 30 August 2001. Accepted 9 November 2001. Tomato bushy stunt virus (TBSV) is one of few RNA plant (TCV) (Heaton et al.
    [Show full text]
  • Acylsugars Protect Nicotiana Benthamiana Against Insect Herbivory and Desiccation
    Acylsugars Protect Nicotiana Benthamiana Against Insect Herbivory and Desiccation Honglin Feng Boyce Thompson Institute for Plant Research Lucia Acosta-Gamboa Cornell University Lars H Kruse Cornell University Jake D Tracy Cornell University Seung Ho Chung Boyce Thompson Institute for Plant Research Alba Ruth Nava Fereira The University of Texas at San Antonio Sara Shakir Boyce Thompson Institute for Plant Research Hongxing Xu Boyce Thompson Institute for Plant Research Garry Sunter The University of Texas at San Antonio Michael A Gore Cornell University Clare L Casteel Cornell University Gaurav D. Moghe Cornell University Georg Jander ( [email protected] ) Boyce Thompson Institute For Plant Research https://orcid.org/0000-0002-9675-934X Research Article Keywords: acylsugar, aphid, ASAT, desiccation, Nicotiana benthamiana, whitey Posted Date: June 15th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-596878/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Article Title 2 Acylsugars protect Nicotiana benthamiana against insect herbivory and desiccation 3 4 5 Author names 6 Honglin Fenga, Lucia Acosta-Gamboab, Lars H. Krusec,f, Jake D. Tracyd,g, Seung Ho Chunga, Alba Ruth 7 Nava Fereirae, Sara Shakira,h, Hongxing Xua,i, Garry Suntere, Michael A. Goreb, Clare L. Casteeld, Gaurav 8 D. Moghec, Georg Jandera* 9 10 11 Author Affiliations 12 aBoyce Thompson Institute, Ithaca NY, USA 13 bPlant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University,
    [Show full text]
  • The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis Thaliana and Nicotiana Benthamiana
    fpls-08-00814 May 19, 2017 Time: 16:23 # 1 ORIGINAL RESEARCH published: 23 May 2017 doi: 10.3389/fpls.2017.00814 The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis thaliana and Nicotiana benthamiana Africa Gomariz-Fernández, Verónica Sánchez-Gerschon, Chloé Fourquin and Cristina Ferrándiz* Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Valencia, Spain Carpels are a distinctive feature of angiosperms, the ovule-bearing female reproductive organs that endow them with multiple selective advantages likely linked to the evolutionary success of flowering plants. Gene regulatory networks directing the Edited by: Federico Valverde, development of carpel specialized tissues and patterning have been proposed based Consejo Superior de Investigaciones on genetic and molecular studies carried out in Arabidopsis thaliana. However, studies Científicas, Spain on the conservation/diversification of the elements and the topology of this network are Reviewed by: still scarce. In this work, we have studied the functional conservation of transcription Natalia Pabón-Mora, University of Antioquia, Colombia factors belonging to the SHI/STY/SRS family in two distant species within the eudicots, Charlie Scutt, Eschscholzia californica and Nicotiana benthamiana. We have found that the expression Centre National de la Recherche Scientifique, France patterns of EcSRS-L and NbSRS-L genes during flower development are similar to *Correspondence: each other and to those reported for Arabidopsis SHI/STY/SRS genes. We have also Cristina Ferrándiz characterized the phenotypic effects of NbSRS-L gene inactivation and overexpression [email protected] in Nicotiana.
    [Show full text]
  • Differential Requirement of the Ribosomal Protein S6 And
    Plant Pathology and Microbiology Publications Plant Pathology and Microbiology 5-2017 Differential Requirement of the Ribosomal Protein S6 and Ribosomal Protein S6 Kinase for Plant- Virus Accumulation and Interaction of S6 Kinase with Potyviral VPg Minna-Liisa Rajamäki University of Helsinki Dehui Xi Sichuan University Sidona Sikorskaite-Gudziuniene University of Helsinki Jari P. T. Valkonen University of Helsinki Follow this and additional works at: http://lib.dr.iastate.edu/plantpath_pubs StevePanr tA of. W thehithAgramicultural Science Commons, Agriculture Commons, Plant Breeding and Genetics CIowommona State Usn, iaverndsit they, swPhithlanatm@i Pathoastalote.geduy Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ plantpath_pubs/211. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Plant Pathology and Microbiology at Iowa State University Digital Repository. It has been accepted for inclusion in Plant Pathology and Microbiology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Differential Requirement of the Ribosomal Protein S6 and Ribosomal Protein S6 Kinase for Plant-Virus Accumulation and Interaction of S6 Kinase with Potyviral VPg Abstract Ribosomal protein S6 (RPS6) is an indispensable plant protein regulated, in part, by ribosomal protein S6 kinase (S6K) which, in turn, is a key regulator of plant responses to stresses and developmental cues. Increased expression of RPS6 was detected in Nicotiana benthamiana during infection by diverse plant viruses. Silencing of the RPS6and S6K genes in N.
    [Show full text]
  • A Novel Hairpin Library-Based Approach to Identify NBS-LRR Genes Required for Effector-Triggered Hypersensitive Response in Nicotiana Benthamiana C
    A novel hairpin library-based approach to identify NBS-LRR genes required for effector-triggered hypersensitive response in Nicotiana benthamiana C. Brendolise, M. Montefiori, Romain Dinis, Nemo Peeters, R. D. Storey, E. H. Rikkerink To cite this version: C. Brendolise, M. Montefiori, Romain Dinis, Nemo Peeters, R. D. Storey, et al.. A novel hairpin library- based approach to identify NBS-LRR genes required for effector-triggered hypersensitive response in Nicotiana benthamiana. Plant Methods, BioMed Central, 2017, 13, pp.1-10. 10.1186/s13007-017- 0181-7. hal-01608600 HAL Id: hal-01608600 https://hal.archives-ouvertes.fr/hal-01608600 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Brendolise et al. Plant Methods (2017) 13:32 DOI 10.1186/s13007-017-0181-7 Plant Methods METHODOLOGY Open Access A novel hairpin library‑based approach to identify NBS–LRR genes required for efector‑triggered hypersensitive response in Nicotiana benthamiana Cyril Brendolise1* , Mirco Montefori1, Romain Dinis2, Nemo Peeters2, Roy D. Storey3 and Erik H. Rikkerink1 Abstract Background: PTI and ETI are the two major defence mechanisms in plants.
    [Show full text]
  • Evolutionary Routes to Biochemical Innovation Revealed by Integrative
    RESEARCH ARTICLE Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway Gaurav D Moghe1†, Bryan J Leong1,2, Steven M Hurney1,3, A Daniel Jones1,3, Robert L Last1,2* 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States; 2Department of Plant Biology, Michigan State University, East Lansing, United States; 3Department of Chemistry, Michigan State University, East Lansing, United States Abstract The diversity of life on Earth is a result of continual innovations in molecular networks influencing morphology and physiology. Plant specialized metabolism produces hundreds of thousands of compounds, offering striking examples of these innovations. To understand how this novelty is generated, we investigated the evolution of the Solanaceae family-specific, trichome- localized acylsugar biosynthetic pathway using a combination of mass spectrometry, RNA-seq, enzyme assays, RNAi and phylogenomics in different non-model species. Our results reveal hundreds of acylsugars produced across the Solanaceae family and even within a single plant, built on simple sugar cores. The relatively short biosynthetic pathway experienced repeated cycles of *For correspondence: [email protected] innovation over the last 100 million years that include gene duplication and divergence, gene loss, evolution of substrate preference and promiscuity. This study provides mechanistic insights into the † Present address: Section of emergence of plant chemical novelty, and offers a template for investigating the ~300,000 non- Plant Biology, School of model plant species that remain underexplored. Integrative Plant Sciences, DOI: https://doi.org/10.7554/eLife.28468.001 Cornell University, Ithaca, United States Competing interests: The authors declare that no Introduction competing interests exist.
    [Show full text]
  • Construction of a Turnip Crinkle Virus Mutant
    CONSTRUCTION OF A TURNIP CRINKLE VIRUS MUTANT A Major Qualifying Report: Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science by Nathaniel Gordon Freedman Date: April 24, 2008 Approved: Professor Kristin Wobbe, Major Advisor Abstract: An important immune response to pathogens in A. thaliana and other plants is the hypersensitive response (HR). A HR is a form of programmed cell death that prevents the spread of an infection by necrosis of tissue at the site of infection. Turnip Crinkle Virus (TCV) is unique in the Carmovirus genus for its ability to suppress the HR in systemic infection of A. thaliana. It is hypothesized that the p8 viral movement protein of TCV is responsible for this ability, due to that protein’s nuclear localization. It should be possible to test if p8 suppresses the HR by replacing it with a homologous gene. Genetic modifications were made to an expression vector containing a dsDNA copy of the TCV ssRNA genome, pT1D1ΔL. The viral genome was altered to eliminate expression of p8. The inserted homologous gene was p7, from the related Carnation Mottle Virus. Single- nucleotide substitution was done with PCR to remove the start codon of p8.A DNA cassette based on the p7 gene was constructed from oligonucleotides. The cassette was the template for insertion of p7 into the vector. Recombination of the p7 gene and the expression vector was accomplished with PCR and New England Biolab’s USER enzyme. ii Acknowledgments: I would like to thank Professor Kristin Wobbe for giving me the opportunity to work on this project, and for her constant advice and encouragement.
    [Show full text]
  • Re-Annotated Nicotiana Benthamiana Gene Models for Enhanced
    bioRxiv preprint doi: https://doi.org/10.1101/373506; this version posted July 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Re-annotated Nicotiana benthamiana gene models for 2 enhanced proteomics and reverse genetics 3 4 Jiorgos Kourelis1, Farnusch Kaschani2, Friederike M. Grosse-Holz1, Felix Homma1, 5 Markus Kaiser2, Renier A. L. van der Hoorn1 6 1Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, 7 OX1 3RB Oxford, UK; 2Chemische Biologie, Zentrum fur Medizinische Biotechnologie, Fakultät für 8 Biologie, Universität Duisburg-Essen, Essen, Germany. 9 Nicotiana benthamiana is an important model organism and representative of the 10 Solanaceae (Nightshade) family. N. benthamiana has a complex ancient allopolyploid 11 genome with 19 chromosomes, and an estimated genome size of 3.1Gb. Several draft 12 assemblies of the N. benthamiana genome have been generated, however, many of the 13 gene-models in these draft assemblies appear incorrect. Here we present a nearly non- 14 redundant database of 42,855 improved N. benthamiana gene-models. With an 15 estimated 97.6% completeness, the new predicted proteome is more complete than the 16 previous proteomes. We show that the database is more sensitive and accurate in 17 proteomics applications, while maintaining a reasonable low gene number. As a proof- 18 of-concept we use this proteome to compare the leaf extracellular (apoplastic) 19 proteome to a total extract of leaves.
    [Show full text]
  • Variations of Secondary Metabolites Among Natural Populations of Sub
    Variations of Secondary Metabolites among Natural Populations of Sub-Antarctic Ranunculus Species Suggest Functional Redundancy and Versatility Bastien Labarrere, Andreas Prinzing, Thomas Dorey, Emeline Chesneau, Françoise Hennion To cite this version: Bastien Labarrere, Andreas Prinzing, Thomas Dorey, Emeline Chesneau, Françoise Hennion. Variations of Secondary Metabolites among Natural Populations of Sub-Antarctic Ranunculus Species Suggest Functional Redundancy and Versatility. Plants, MDPI, 2019, 8 (7), pp.234. 10.3390/plants8070234. hal-02192278v2 HAL Id: hal-02192278 https://hal.archives-ouvertes.fr/hal-02192278v2 Submitted on 24 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. plants Article Variations of Secondary Metabolites among Natural Populations of Sub-Antarctic Ranunculus Species Suggest Functional Redundancy and Versatility Bastien Labarrere 1, Andreas Prinzing 1, Thomas Dorey 2, Emeline Chesneau 1 and Françoise Hennion 1,* 1 UMR 6553 ECOBIO, Université de Rennes 1, OSUR, CNRS, Av du Général Leclerc, F-35042 Rennes, France 2 Institut für Systematische und Evolutionäre Botanik, Zollikerstrasse 107, 8008 Zürich, Switzerland * Correspondence: [email protected] Received: 24 May 2019; Accepted: 16 July 2019; Published: 19 July 2019 Abstract: Plants produce a high diversity of metabolites which help them sustain environmental stresses and are involved in local adaptation.
    [Show full text]