PL101 Vitamin D and Photoprotection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UV-B Detected by the UVR8 Photoreceptor Antagonizes Auxin Signaling and Plant Shade Avoidance
UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance Scott Hayesa, Christos N. Velanisb, Gareth I. Jenkinsb, and Keara A. Franklina,1 aSchool of Biological Sciences, University of Bristol, Bristol BS8 1UG, United Kingdom and bInstitute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom Edited by Mark Estelle, University of California, San Diego, La Jolla, CA, and approved June 23, 2014 (received for review February 18, 2014) Plants detect different facets of their radiation environment via leaf expansion in the presence of UV-B in a UVR8-dependent specific photoreceptors to modulate growth and development. manner (Fig. S2A). Along with the architectural responses, UV-B is perceived by the photoreceptor UV RESISTANCE LOCUS 8 UV-B perceived by UVR8 also partially inhibited the low (UVR8). The molecular mechanisms linking UVR8 activation to R:FR-mediated acceleration of flowering characteristic of shade plant growth are not fully understood, however. When grown in avoidance (Fig. S2B). close proximity to neighboring vegetation, shade-intolerant plants Low R:FR induces striking stem (hypocotyl) elongation in initiate dramatic stem elongation to overtop competitors. Here we seedlings (Fig. 2 A and B). Thus, we investigated the effect of UV-B show that UV-B, detected by UVR8, provides an unambiguous on this response. UV-B strongly inhibited low R:FR-mediated sunlight signal that inhibits shade avoidance responses in Arabi- hypocotyl elongation in a UVR8-dependent manner (Fig. 2 A dopsis thaliana by antagonizing the phytohormones auxin and and B). -
O'hara, Andrew (2012) the Importance of Specific Tryptophans to UVR8 Function: an Intrinsic Chromophore for a UV-B Photoreceptor
O'Hara, Andrew (2012) The importance of specific tryptophans to UVR8 function: an intrinsic chromophore for a UV-B photoreceptor. PhD thesis. http://theses.gla.ac.uk/4012/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] THE IMPORTANCE OF SPECIFIC TRYPTOPHANS TO UVR8 STRUCTURE AND FUNCTION: AN INTRINSIC CHROMOPHORE FOR A UV-B PHOTORECEPTOR By Andrew O’Hara Thesis submitted for the degree of Doctor of Philosophy College of Medical, Veterinary & Life Sciences Institute of Molecular, Cell and Systems Biology University of Glasgow August, 2012 © Andrew O’Hara, 2012 I “This new power for the driving of the world’s machinery will be derived from the energy which operates the universe, the cosmic energy, whose central source for the earth is the sun and which is everywhere present in unlimited quantities” Nikola Tesla “What is a weed? A plant whose virtues have not yet been discovered” Ralph Waldo Emerson II To my Mum and Dad, Elizabeth and Thomas O’Hara and my son Ben III CONTENTS Title……………………………………………………………………………………… -
A Practical Comparison of Ipls and the Copper Bromide Laser for Photorejuvenation, Acne and the Treatment of Vascular & Pigmented Lesions
A practical comparison of IPLs and the Copper Bromide Laser for photorejuvenation, acne and the treatment of vascular & pigmented lesions. Authors: Peter Davis, Adelaide, Australia, Godfrey Town, Laser Protection Adviser, Haywards Heath, United Kingdom Abstract: The recent rapid growth in demand for non-invasive light-based cosmetic treatments such as removal of unwanted facial and body hair, skin rejuvenation, removal of age-related and sun induced blemishes including pigment and vascular lesions as well as lines and wrinkles has led to a boom in the sale of medical devices that claim to treat these conditions. The often onerous safety regulations governing the sale and use of Class 4 lasers has contributed disproportionately to the popularity of similarly powerful non-laser Intense Pulse Light sources (“IPL”), particularly in the salon and spa sector. The practical science-based comparisons made in this review and the well- documented case studies in peer reviewed literature show that single treatment success in eradicating vascular and pigmented lesions may only be achieved by high fluence, wavelength-specific laser treatment and without the need for skin cooling. Introduction: hair removal with IPL The recent success of IPL in delaying hair re-growth (“hair management”) and permanent hair reduction (“photo-waxing”) is dependant upon using high energy settings for the former and is thought to work primarily because melanin absorbs energy across a wide spectrum of wavelengths. Cumulatively enough energy is absorbed to damage the hair follicle. It is also suggested that the longer wavelengths absorbed by blood and tissue water may also collectively damage hair follicle support structures such as the blood supply to the hair bulb aided by the overall temperature rise in the adjacent tissue. -
Skin Rejuvenation Using Intense Pulsed Light a Randomized Controlled Split-Face Trial with Blinded Response Evaluation
STUDY Skin Rejuvenation Using Intense Pulsed Light A Randomized Controlled Split-Face Trial With Blinded Response Evaluation Lene Hedelund, MD; Eva Due, MD; Peter Bjerring, MD, DMSc; Hans Christian Wulf, MD, DMSc; Merete Haedersdal, MD, PhD, DMSc Objective: To evaluate efficacy and adverse effects of Results: Skin texture was significantly improved at all intense pulsed light rejuvenation in a homogeneous group clinical assessments except at the 6-month examination of patients. (PϽ.006). The improvements peaked at 1 month after treatment, at which time 23 (82%) of 28 patients had bet- Design: Randomized controlled split-face trial. ter appearances of treated vs untreated sides. Most pa- tients obtained mild or moderate improvements, and 16 Setting: University dermatology department. patients (58%) self-reported mild or moderate efficacy on skin texture. Rhytids were not significantly different Patients: Thirty-two female volunteers with Fitzpa- on treated vs untreated sides, and 19 patients (68%) re- trick skin type I through III and class I or II rhytids. ported uncertain or no efficacy on rhytids. Significant im- provements of telangiectasia (PϽ.001) and irregular pig- Interventions: Subjects were randomized to 3 intense Ͻ pulsed light treatments at 1-month intervals or to no treat- mentation (P .03) were found at all assessments. Three ment of right or left sides of the face. patients withdrew from the study because of pain re- lated to treatment. Main Outcome Measures: Primary end points were skin texture and rhytids. Secondary end points were tel- Conclusions: Three intense pulsed light treatments im- angiectasia, irregular pigmentation, and adverse effects. proved skin texture, telangiectasia, and irregular pig- Efficacy was evaluated by patient self-assessments and mentation but had no efficacy on rhytids. -
TREATMENTS Laser Hair Removal If Noticeable Hair Is Making You
TREATMENTS Laser Hair Removal If noticeable hair is making you self conscious – like on the face, neck, abdomen, back, bikini, legs, or anywhere – and if you are tired of wasting time and money on temporary remedies such as shaving, plucking, waxing, or chemical depilatories, Laser Hair Removal is an excellent alternative. Laser Hair Removal is the most effective solution in removing unwanted hair quickly and permanently for women and men. The LightSheer laser produces a beam of highly concentrated light that is well absorbed by the pigment located in hair follicles. The laser pulses just long enough to heat the hair, which impedes the follicle’s ability to re-grow. The length of a laser treatment may last anywhere from a few minutes to an hour or more depending on the areas treated. Even the largest body-areas can be treated quickly and effectively. We typically attain an 80-90% permanent reduction when the treatment is repeated 4 times and spaced 6-8 weeks apart. Topical anesthetic creams are recommended for pre-treatment to minimize pain and increase comfort. Sample Procedures Time 1 Visit Pkg. (4) female chin 15 min. $150 $450 upper lip 15 min. $150 $450 upper lip/chin combo 20 min. $200 $650 underarms 15 min. $150 $450 bikini 20 min. $200 $650 bikini/underarm combo 30 min. $250 $850 male neck (back) 15 min. $150 $450 chest only 30 min. $250 $850 chest/abdomen 60 min. $400 $1,350 shoulders 60 min. $400 $1,350 full back 2 hrs. $700 $2,500 Photorejuvenation – IPL (Intense Pulsed Light) Facial imperfections or abnormalities can detract from your well being and appearance, no matter how healthy and young you feel. -
Regulation of UVR8 Photoreceptor Dimer/Monomer Photo-Equilibrium
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Enlighten Plant, Cell & Environment (2016) 39,1706–1714 doi: 10.1111/pce.12724 Original Article Regulation of UVR8 photoreceptor dimer/monomer photo- equilibrium in Arabidopsis plants grown under photoperiodic conditions Kirsten M.W. Findlay & Gareth I. Jenkins Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK ABSTRACT 2009). Moreover, UV-B wavelengths in sunlight are important in regulating a wide range of plant processes, including meta- The UV RESISTANCE LOCUS 8 (UVR8) photoreceptor bolic activities, morphogenesis, photosynthetic competence specifically mediates photomorphogenic responses to UV-B. and defence against pests and pathogens (Jordan 1996; Jenkins Photoreception induces dissociation of dimeric UVR8 into 2009; Ballaré et al. 2012; Robson et al. 2014). It is therefore im- monomers to initiate responses. However, the regulation of portant to understand the cellular and molecular mechanisms dimer/monomer status in plants growing under photoperiodic that enable plants to detect and respond to UV-B. conditions has not been examined. Here we show that UVR8 UV-B exposure stimulates the differential expression of hun- establishes a dimer/monomer photo-equilibrium in plants dreds of plant genes (Casati & Walbot 2004; Ulm et al. 2004; growing in diurnal photoperiods in both controlled environ- Brown et al. 2005; Kilian et al. 2007; Favory et al. 2009). In many ments and natural daylight. The photo-equilibrium is cases these responses are initiated by activation of non-UV-B- determined by the relative rates of photoreception and specific signalling pathways, involving DNA damage or in- dark-reversion to the dimer. -
Laser-Based Treatment of the Aging Face for Skin Resurfacing: Ablative
PART 3 • Aesthetic Surgical Procedures Laser-based Treatment of the Aging Face for Skin Resurfacing: 34 Ablative and Non-ablative Lasers Omar A Ibrahimi MD PhD , Nazanin Saedi MD , and Suzanne L. Kilmer MD several years has shifted towards fractional resurfacing CHAPTER SUMMARY (both ablative and non-ablative) as described by Manstein • Many aspects of dermatoheliosis are amenable to and colleagues, 4 due to its faster recovery time and safer treatment with a variety of ablative and non-ablative side-effect profi le. Nonetheless, it provides an important lasers and light sources. • Ablative laser skin resurfacing offers the most substantial historical framework for understanding cutaneous resurfac- clinical improvement, but is associated with greater ing and in a few instances, may be preferable over fractional postoperative recovery. resurfacing for certain dermatological conditions. • Non-ablative laser skin remodeling is a good alternative for patients who desire modest improvement of Proper patient selection dermatoheliosis with a limited post-treatment recovery period. A focused history should be obtained prior to any resurfac- • Fractionated laser systems provide the benefi ts of higher ing procedure. In particular, it is important to document if energy treatments with fewer side-effects and faster the patient has had any previous procedures or any contra- recovery than traditional lasers. indications to resurfacing. Ablative laser resurfacing may • Continued developments in laser technology will lead to greater effi cacy with an improved safety profi le. unmask hypopigmentation or fi brosis produced by prior dermabrasion, cryosurgery, or phenol peels. In addition, the presence of fi brosis may limit the vaporization potential of ablative lasers, thereby decreasing clinical effi cacy. -
Phytochrome Diversity in Green Plants and the Origin of Canonical Plant Phytochromes
ARTICLE Received 25 Feb 2015 | Accepted 19 Jun 2015 | Published 28 Jul 2015 DOI: 10.1038/ncomms8852 OPEN Phytochrome diversity in green plants and the origin of canonical plant phytochromes Fay-Wei Li1, Michael Melkonian2, Carl J. Rothfels3, Juan Carlos Villarreal4, Dennis W. Stevenson5, Sean W. Graham6, Gane Ka-Shu Wong7,8,9, Kathleen M. Pryer1 & Sarah Mathews10,w Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives. 1 Department of Biology, Duke University, Durham, North Carolina 27708, USA. 2 Botany Department, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany. 3 University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720, USA. 4 Royal Botanic Gardens Edinburgh, Edinburgh EH3 5LR, UK. 5 New York Botanical Garden, Bronx, New York 10458, USA. -
Devices for Rejuvenation of the Aging Face P
Review Devices for Rejuvenation of the Aging Face P. Mark Neal, MD; Adrian Dobrescu, MD; John Chapman, MD; Mara Haseltine, MD Over the last 30 years, there has been a substantial increase in the number of ablative and nonablative devices that can be used to treat the signs of skin aging. Some devices have found new indications or new technology to refine older indications. In this article, we review the ablative and nonablative devices that are currently available for photorejuvenation of the aging face. Cosmet Dermatol. 2012;25:412-418. n the field of cosmetic dermatology, there are a vari- side effects, such as scarring and dyspigmentation. Patients ety of options to reverse the physical signs of aging. also experienced substantial downtime (approximately Many of these options include treatment with 2 weeks) following the procedure. Because of the need for devicesCOS that induce remodeling of the dermis andDERM more controlled ablation with less severe side effects, the epidermis, resulting in a more youthful appearance erbium:yttrium-aluminum-garnet (Er:YAG) laser as well I(Table). In the 1980s, the continuous wave CO2 laser was as the high-energy superpulsed and scanning CO2 lasers introduced with impressive results in reversing the signs were developed for cutaneous use. These newer devices of aging but also was associated with a high potential for help control the excess thermal injury that previously side effects and substantial downtime. Since then, many had led to unwanted side effects. The Er:YAG laser offers new devices have been made available to laser surgeons modes of variable long- and short-pulse durations to that Dooffer varying degrees of facial Notrejuvenation with fewer promote Copy more controlled ablation. -
PHOTOREJUVENATION of FACIAL SKIN with TOPICAL 20% 5,AMINOLEVULINIC ACID and INTENSE PULSED LIGHT TREATMENT: a SPLIT,FACE COMPARISON STUDY Tina S
35 COPYRIGHT © 2005 JOURNAL OF DRUGS IN DERMATOLOGY 'PHOTOREJUVENATION OF FACIAL SKIN WITH TOPICAL 20% 5,AMINOLEVULINIC ACID AND INTENSE PULSED LIGHT TREATMENT: A SPLIT,FACE COMPARISON STUDY Tina S. Alster MD," Elizabeth L. Tanzi MD,b Esperanza C. Welsh, MD,c a. Director, Washington Institute of Dermatologic Laser Surgery b. Co-Director, Washington Institute of Dermatologic Laser Surgery c. Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine Abstract Background: Photorejuvenation of facial skin has been reported after intense pulsed light (IPL) therapy alone and in conjunc- tion with topica15-aminolevulinic acid (5-ALA), but no comparative studies between these regimens have been performed. Objective: To evaluate the safety and effectiveness of combination topica15-ALA and IPL compared to IPL treatment alone. Methods: Ten patients with mild to moderate photodamage were randomly assigned treatment with 5-ALA + IPL on one facial half and IPL alone on the contralateral side. Two treatments were delivered at 4-week intervals. Clinical improvement scores were determined by masked evaluations of digital photographs obtained at baseline, prior to each treatment session, and at 1, 3, and 6 months after the final treatment. Results: High~r clinical improvement scores were noted on the combination 5-ALA + IPL treated areas. Mild edema, erythe- ma, and desquamation Wereobserved on the facial halves where 5-ALA was applied. No scarring or unwanted pigmentary alter- ation was seen. Conclusions: Photodynamic therapy with combination topica15-ALA + IPL is safe and more effective for facial rejuvenation than IPL treatment alone. Introduction PpIX has a large absorption peak in the Soret band (400- Photodynamic therapy (PDT) with topical 5-aminole- 430 nm) and smaller absorption peaks at longer wave- vulinic acid (5-ALA) is an evolving, non-invasive treat- lengths (509,544,584,630,690 nm), therefore, many dif- ment for a variety of dermatologic conditions. -
Photoepilation and Skin Photorejuvenation
Dermatology Reports 2017; volume 9:7116 Photoepilation and skin damage to pigmented structures, cells, and photorejuvenation: an update organelles in vivo with suitably brief pulses Correspondence: Mauro Raichi, of selectively absorbed radiation over- E-mail: [email protected] comes the need of precise aiming because 1 2 Alessandro Martella, Mauro Raichi inherent optical and thermal properties pro- Key words: Photoepilation; photorejuvena- 1Former Senior Consultant in vide target selectivity.1 tion; intense pulsed light; dermal remodeling. Dermatology, University of Modena and Proper selection of wavelength in the Sponsor: Novavision Group S.p.A., Misinto recommended visible to near-infrared Reggio Emilia Medical School, Tiggiano (MB), Italy. (LE); 2Clinical Pharmacology and region up to about 1100-1200 nanometers Biophysics Consultant, Milan, Italy (nm), pulse duration, and the energy density Conflict of interest: the authors declare no administered over the exposure time or flu- potential conflict of interest. ence are the three paramount parameters. Compromise among these three parameters Received for publication: 6 March 2017. is crucial to ensure deep dermal penetration, Accepted for publication: 2 May 2017. Abstract maximum thermal damage to the melanin This work is licensed under a Creative The effectiveness of intense pulsed light chromophore, and minimum absorption by oxyhemoglobin and water.2,3 Commons Attribution-NonCommercial 4.0 (IPL) and laser devices is widely accepted International License (CC BY-NC 4.0). in aesthetic dermatology for unwanted hair The second landmark date was 1996. In removal and treatment of a variety of cuta- that year the American Food and Drug ©Copyright A. Martella and M. Raichi 2017 neous conditions. -
Using Optical Imaging Methods to Assess Laser-Tissue Interactions
USING OPTICAL IMAGING METHODS TO ASSESS LASER-TISSUE INTERACTIONS By Gerald Joseph Wilmink Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Engineering December, 2007 Nashville, Tennessee Approved: Professor Eric Duco Jansen Professor Anita Mahadevan-Jansen Professor Jeffrey M. Davidson Professor Lillian B. Nanney Professor Susan R. Opalenik Professor Frederick R. Haselton Copyright © 2007 by Gerald Joseph Wilmink All Rights Reserved ACKNOWLEDGEMENTS I thank God for the gift of life and for all of the wonderful service opportunities that He has made available to me. I am very grateful for my supportive mother, my dad, Joe Gambino, my grandparents, and my lovely wife Kimberly. Without such a wonderful support system this dissertation would not have been possible. I am also grateful for my wonderful adviser, Dr. Eric Duco Jansen. For without his patience and support I would not be where I am today. I will never forget the trips we took together to ASLMS and the Jansen summer lab parties. I am also grateful for Dr. Jansen and Anita Mahadevan- Jansen for paving the way for my next research opportunity down in San Antonio. I feel honored to have the chance to work with Dr. Pat Roach, and I look forward to having the opportunity to use my laser skills in the area of Terahertz radiation research. I am also very grateful for each member of my Ph.D. committee. I doubt I will ever meet anyone quite like Dr. Susan Opalenik.