Road Embankment Design Alternatives Over Permafrost

Total Page:16

File Type:pdf, Size:1020Kb

Road Embankment Design Alternatives Over Permafrost ROAD EMBANKMENT DESIGN ALTERNATIVES OVER PERMAFROST ' By David C. Esch,' , ABSTRACT The side slopes of roadway embankments in warm permafrost areas often cause particularly severe problems from long term thaw-related settle- ments. This situation results primarily from the snow plowed from the roadway, which thickens and increases the insulating cover on the side slopes. Soils underlying the slopes therefore often do not totally refreeze each winter, as normally occurs beneath the cleared portion - of the roadway. These annually deepening thaw zones beneath the slopes result in progressive settlements of the outer edges of the roadway and often cause longitudinal cracking of the roadway surface. Experimental installations of air convection ducts, in conjunction with insulation layers and embankment toe berms, were made during 1973 and 1974 on a newly constructed roadway embankment approximately 25 miles west of Fairbanks. Performance has been monitored since that time. Results through the thawing season of 1977 are presented, and demonstrate that satisfactory annual refreezing can be assured by this method, preventing long term thaw-settlements of snow covered embank- men t slopes. INTRODUCTION: Previous studies by the Alaska Department of Highways of roadways constructed over permafrost have shown that progressively deeper thaw- ing beneath the roadway side-slopes often still occurs, even in areas where the embankment thickness beneath the roadway centerline is ade- quate to prevent thawing into the underlying permafrost. Because the roadway side sl'ope areas are well drained and generally only sparsely vegetated, their mean surface temperature during a given thawing sea- son will generally be higher than that of a well vegetated surface overlying permafrost. This will result in deeper thawing beneath the side slopes, an increase in the thickness of the annual thaw layer, and consolidation and settlements if the underlying permafrost has a moisture content higher than it can retain in a thawed state. Since a considerable portion of a roadway embankment may be supported struc- turally by the soils beneath the side slopes, any settlement in these areas will be reflected by embankment slumping and lateral spreading and cracking (Fig. 1). Because the snow cover on the side slopes is increased by the snow plowed from the roadway surface, the side slopes will also not cool and freeze back as efficiently as either the adja- cent undisturbed ground or the travelled roadway surface areas. There- fore, annually deeper thawing of underlying permafrost often occurs beneath the roadway side slopes. 'Engineer of Tests, Alaska Department of Transportation, Fairbanks 1 *! J i Literature reviews indicate that very little study has been given to side slope effects of roadways over permafrost. The problems which result from side slope thaw are intensified by increased fill heights and probably by the steeper side slopes comonly used on high fills for economic reasons. To study the benefits of several alternate embankment slope designs in controlling thaw of permafrost beneath roadway side slopes, a research project was instituted in 1973 under funding of the Highway Planning and Research program of the Federal Highway Administration. Six different combinations of insulation layers, toe berms, and air ducting systems were installed on a newly constructed roadway and have been monitored since the completion of construition in 1974. Thaw and Consolidation Zones Fig. 1 .--Typical Roadway Distress from Thaw beneath Embankment Side Slopes. PROJECT LOCATION AND DESCRIPTION The site selected for the experimental embankment construction is located at Bonanza Creek, approximately 25 miles west of Fairbanks, on the "Parks Highway"; the primary trucking route between Fairbanks and Anchorage. In this area, a new roadway segment was to be routed across a generally undisturbed muskeg, underlain by ice-rich silt permafrost soils, with segregated ice. The variations in frozen water contents of the silt are shown by Figure 2. Overlaying the permafrost was a thin (1' to 2') peat layer, covered with a surface layer of sphagnum moss, with some areas of sedge covered tussocks also present. Vegetation consisted of scattered black spruce, tamarack, willow, and alder. In the interior of Alaska, such muskeg environments are ideal for the protection of permafrost at shallow depths. This site was selected because the new routing required a relatively high and uniform embankment height, ranging from 22 to 25 feet, over very poor soils. The critical nature of these soils was evidenced by the old roadway embankment crossing this muskeg approximately 500 feet to the north, which had exhibited distress similar to that depicted in Figure 1. On-site soil temperatures were monitored for one year prior to construction, and indicated that the permafrost in this area ranged from 28O to 30°F in mean annual temperature. 2 ' .\ (Frozen) Moisture Content Yo .. 0. .*. 0 . e .. .. e . m . -0 *-.. 0. Fig. 2--Frozen Moisture Contents of Silt FounZation Soils DESIGN OF EMBANKMENTS: Thermal analyses of the proposed embanknent, using the "Modified Berggren" calculations approach (l), indicated that thawing beneath the cleared roadway portion of the embanhent would reach to a depth of 12 to 15 feet, but that thaw beneath the lower portions of the side slopes would penetrate into the underlying permafrost. Three different basic types of modifications were considered for field evaluations to retard this side slope thawing. These included the use of rigid foam insulation layers, the construction of toe berms, and the installation of air convection ducts. Insulation layers have been utilized beneath roadways and airfields, to prevent thawing of underlying pernafrost, (2), (3), in addition to xuch more common usage beneath roadways in warmer regions for frost heave prevention. Both experience and thermal calculations have demonstrated that insulation layers are most beneficial when placed at or near the ground surface, and installed with a layer of thaw-stable soil between the insulation and the soil to be protected from thawing. An additional consideration made in ezbankiaent designs for this project xas that the insulation layers be nearly horizontal, both to simplify construction operations, and to preveat the insulation from creating a slippage plane, as might occur if it were installed parallel to the side slopes. Insulation layer widths were selected from one-dimensional thaw depth analyses and estimations of thaw depths within the embank- Zen t . Toe berms were designed with a thickness of six feet, the calculated thickness required to prevent the first year's thaw from penetrating beneath the berm. The berm width of twenty feet was selected to pro- vide a major contrast to the no-berm condition, with a 100 foot transition length to permit studies of the effect of berm width. Berms ;:ere designed for use of excess silt caste materials from an adjacent section. The air convection ducts were included in this study to determine their benefits in removing heat and thereby refreezing the soils be- 3 neath the insulative snow cover. Because of the many variables which affect the efficiency of convective flow air ducts, the ducting system was not fully analyzed in the design stage, but was selected, installed, and experimentally evaluated. A detailed discussion of air ducts as related to building foundations is presented in Reference 1. The ducts function in convection only in winter, as the adjacent soil warms the air in the duct and causesit to rise up the exhaust stack, at the same time drawing in cool air at the inlet. Two different layouts for the ducts were utilized on the north and south sides of the embankment, as shown by Figure 3. The ducts were constructed from 8 inch galvanized corrugated metal pipe, installed with the inlet ends above the depth of maximum snow cover, and with 10 foot high exhaust stacks. The 50 to 100 foot long buried portionsslopedslightly upward toward the exhaust stacks. Inlet end dampers were provided to permit positive summer air flow prevention, and rain and snow hoods were added. Fig. 3--Overall View of Embankment Details CONSTRUCTION OPERATIONS: Prior to construction, the embankment area was hand cleared, and all small trees and brush were placed in an even layer beneath the embank- ment. To provide a working pad for the experimental installations, and to assure a well frozen embankment foundation, the initial three feet of the embankment was constructed in September of 1973, and periodically cleared of snow during the subsequent winter. This resulted in lowering the soil temperatures to 25' to 26'F at a depth of 15 feet. In early April of 1974, prior to the start of seasonal thawing, the berms were constructed, and insulation layers and convection ducts were installed. The remainder of the embankment fill was conpleted by early June, 1974, followed by pavement pla e.ent in July of 1975. Insulation Was expanded polystyrene foam, HI-35CRy by DOW Chemical co. 4 INSTRUNENTATION DETAILS \ The thermal performance of the various design features is evaluated from temperatures measured with a system of 352 thermocouples and 20 thermistors installed both in horizontal strings and in 18 vertical borings made through the embankment. TherEocouples are of the copper- constantan type, and are connected through double pole rotary switches located on roadside posts. Readings of both thermocouples and thermi- stors are made monthly with a Hewlett-Packard >lode1 3465B Digital Volt- Ohm meter, using an ice-bath reference junction for the thermocouples. The combination of these two sensors was selected to take advantage of the accuracy of better than +. O5OF from calibrated thermistors, while avoiding the high cost of a Full thermistor installation. Accuracy of the thermocouples used has generally been better than +0.3'F, as judged by comparisons with adjacent thermistors and agreement between temper- ature indicated and probe measured thaw depths. Sit& air temperatures and wind velocities are obtained by battery operated recorders housed in a Weather Bureau type weather station.
Recommended publications
  • A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used As a Training Tool
    A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Item Type Report Authors Darrow, Margaret M.; Huang, Scott L.; Obermiller, Kyle Publisher Alaska University Transportation Center Download date 26/09/2021 04:55:55 Link to Item http://hdl.handle.net/11122/7546 A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Final Report December 2011 Prepared by PI: Margaret M. Darrow, Ph.D. Co-PI: Scott L. Huang, Ph.D. Co-author: Kyle Obermiller Institute of Northern Engineering for Alaska University Transportation Center REPORT CONTENTS TABLE OF CONTENTS 1.0 INTRODUCTION ................................................................................................................ 1 2.0 REVIEW OF UNSTABLE SOIL SLOPES IN PERMAFROST AREAS ............................... 1 3.0 THE NELCHINA SLIDE ..................................................................................................... 2 4.0 THE RICH113 SLIDE ......................................................................................................... 5 5.0 THE CHITINA DUMP SLIDE .............................................................................................. 6 6.0 SUMMARY ......................................................................................................................... 9 7.0 REFERENCES ................................................................................................................. 10 i A STUDY OF UNSTABLE SLOPES IN PERMAFROST AREAS 1.0 INTRODUCTION
    [Show full text]
  • Open Research Online Oro.Open.Ac.Uk
    Open Research Online The Open University’s repository of research publications and other research outputs Molards as an indicator of permafrost degradation and landslide processes Journal Item How to cite: Morino, Costanza; Conway, Susan J.; Sæmundsson, Þorsteinn; Kristinn Helgason, Jón; Hillier, John; Butcher, Frances E.G.; Balme, Matthew R.; Jordan, Colm and Argles, Tom (2019). Molards as an indicator of permafrost degradation and landslide processes. Earth and Planetary Science Letters, 516 pp. 136–147. For guidance on citations see FAQs. c 2019 Elsevier B.V. https://creativecommons.org/licenses/by/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1016/j.epsl.2019.03.040 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Earth and Planetary Science Letters 516 (2019) 136–147 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Molards as an indicator of permafrost degradation and landslide processes ∗ Costanza Morino a,b, , Susan J. Conway b, Þorsteinn Sæmundsson c, Jón Kristinn Helgason d, John Hillier e, Frances E.G. Butcher f, Matthew R. Balme f, Colm Jordan g, Tom Argles a a School of Environment, Earth & Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK b Laboratoire de Planétologie et Géodynamique
    [Show full text]
  • The Distribution of Silty Soils in the Grayling Fingers Region of Michigan: Evidence for Loess Deposition Onto Frozen Ground
    Geomorphology 102 (2008) 287–296 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph The distribution of silty soils in the Grayling Fingers region of Michigan: Evidence for loess deposition onto frozen ground Randall J. Schaetzl ⁎ Department of Geography, 128 Geography Building, Michigan State University, East Lansing, MI, 48824-1117, USA ARTICLE INFO ABSTRACT Article history: This paper presents textural, geochemical, mineralogical, soils, and geomorphic data on the sediments of the Received 12 September 2007 Grayling Fingers region of northern Lower Michigan. The Fingers are mainly comprised of glaciofluvial Received in revised form 25 March 2008 sediment, capped by sandy till. The focus of this research is a thin silty cap that overlies the till and outwash; Accepted 26 March 2008 data presented here suggest that it is local-source loess, derived from the Port Huron outwash plain and its Available online 10 April 2008 down-river extension, the Mainstee River valley. The silt is geochemically and texturally unlike the glacial fl Keywords: sediments that underlie it and is located only on the attest parts of the Finger uplands and in the bottoms of Glacial geomorphology upland, dry kettles. On sloping sites, the silty cap is absent. The silt was probably deposited on the Fingers Loess during the Port Huron meltwater event; a loess deposit roughly 90 km down the Manistee River valley has a Permafrost comparable origin. Data suggest that the loess was only able to persist on upland surfaces that were either Kettles closed depressions (currently, dry kettles) or flat because of erosion during and after loess deposition.
    [Show full text]
  • Virtual Reality Modeling of the CRREL Permafrost Tunnel, Alaska
    VIRTUAL REALITY MODELING OF THE CRREL PERMAFROST TUNNEL, ALASKA Conner Truskowski, Margaret Rudolf, and Cassidy Phillips [email protected] [email protected] [email protected] Background Discussion The main problem faced while taking photos was low and As of today, few real, small-scale locations have been modeled for variable light. While we did have smaller lights to add to what is Virtual Reality (VR). One location, perfect for modeling, is the currently in the tunnel, more would be needed in the future to Permafrost Tunnel between Fairbanks and Fox, Alaska. The improve upon the model. Nevertheless, the end product has Tunnel was originally made between 1963 and 1969 by the Army about 97% coverage with the remining 3% of the tunnel appearing Corps of Engineers as a bunker and storage experiment. Since as holes due to surfaces being too smooth or dark for Metashape then, the tunnel has been used extensively for permafrost, to recognize. A faster, more biology, geology, climate, mining, and engineering research. It is powerful computer would cut currently owned by the U.S. Army Cold Regions Research and down on processing time and Engineering Laboratory (CRREL). We set out to develop a useable could result in a higher VR model of the Permafrost Tunnel for educational use. We used resolution model. a 360-degree camera, Agisoft Metashape, and the Unity game engine to generate a Variable lighting, dust, and smooth Location of the useable model. Upon surfaces in the tunnel tunnel. (Modified completion, students Illustrated goggle view of the tunnel from Explore Fairbanks Photo: (Shelby Lum / Alaska Dispatch News) Aurora Tracker) from around the world and people with disabilities or illnesses Conclusion will have access to the Permafrost Tunnel.
    [Show full text]
  • Changes in Peat Chemistry Associated with Permafrost Thaw Increase Greenhouse Gas Production
    Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production Suzanne B. Hodgkinsa,1, Malak M. Tfailya, Carmody K. McCalleyb, Tyler A. Loganc, Patrick M. Crilld, Scott R. Saleskab, Virginia I. Riche, and Jeffrey P. Chantona,1 aDepartment of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306; bDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721; cAbisko Scientific Research Station, Swedish Polar Research Secretariat, SE-981 07 Abisko, Sweden; dDepartment of Geological Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; and eDepartment of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721 Edited by Nigel Roulet, McGill University, Montreal, Canada, and accepted by the Editorial Board March 7, 2014 (received for review August 1, 2013) 13 Carbon release due to permafrost thaw represents a potentially during CH4 production (10–12, 16, 17), δ CCH4 also depends on 13 major positive climate change feedback. The magnitude of carbon δ CCO2,soweusethemorerobustparameterαC (10) to repre- loss and the proportion lost as methane (CH4) vs. carbon dioxide sent the isotopic separation between CH4 and CO2.Despitethe ’ (CO2) depend on factors including temperature, mobilization of two production pathways stoichiometric equivalence (17), they previously frozen carbon, hydrology, and changes in organic mat- are governed by different environmental controls (18). Dis- ter chemistry associated with environmental responses to thaw. tinguishing these controls and further mapping them is therefore While the first three of these effects are relatively well under- essential for predicting future changes in CH4 formation under stood, the effect of organic matter chemistry remains largely un- changing environmental conditions.
    [Show full text]
  • The Modelling of Freezing Process in Saturated Soil Based on the Thermal-Hydro-Mechanical Multi-Physics Field Coupling Theory
    water Article The Modelling of Freezing Process in Saturated Soil Based on the Thermal-Hydro-Mechanical Multi-Physics Field Coupling Theory Dawei Lei 1,2, Yugui Yang 1,2,* , Chengzheng Cai 1,2, Yong Chen 3 and Songhe Wang 4 1 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221008, China; [email protected] (D.L.); [email protected] (C.C.) 2 School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China 3 State Key Laboratory of Coal Resource and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China; [email protected] 4 Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an 710048, China; [email protected] * Correspondence: [email protected] Received: 2 September 2020; Accepted: 22 September 2020; Published: 25 September 2020 Abstract: The freezing process of saturated soil is studied under the condition of water replenishment. The process of soil freezing was simulated based on the theory of the energy and mass conservation equations and the equation of mechanical equilibrium. The accuracy of the model was verified by comparison with the experimental results of soil freezing. One-side freezing of a saturated 10-cm-high soil column in an open system with different parameters was simulated, and the effects of the initial void ratio, hydraulic conductivity, and thermal conductivity of soil particles on soil frost heave, freezing depth, and ice lenses distribution during soil freezing were explored. During the freezing process, water migrates from the warm end to the frozen fringe under the actions of the temperature gradient and pore pressure.
    [Show full text]
  • Chapter 7 Seasonal Snow Cover, Ice and Permafrost
    I Chapter 7 Seasonal snow cover, ice and permafrost Co-Chairmen: R.B. Street, Canada P.I. Melnikov, USSR Expert contributors: D. Riseborough (Canada); O. Anisimov (USSR); Cheng Guodong (China); V.J. Lunardini (USA); M. Gavrilova (USSR); E.A. Köster (The Netherlands); R.M. Koerner (Canada); M.F. Meier (USA); M. Smith (Canada); H. Baker (Canada); N.A. Grave (USSR); CM. Clapperton (UK); M. Brugman (Canada); S.M. Hodge (USA); L. Menchaca (Mexico); A.S. Judge (Canada); P.G. Quilty (Australia); R.Hansson (Norway); J.A. Heginbottom (Canada); H. Keys (New Zealand); D.A. Etkin (Canada); F.E. Nelson (USA); D.M. Barnett (Canada); B. Fitzharris (New Zealand); I.M. Whillans (USA); A.A. Velichko (USSR); R. Haugen (USA); F. Sayles (USA); Contents 1 Introduction 7-1 2 Environmental impacts 7-2 2.1 Seasonal snow cover 7-2 2.2 Ice sheets and glaciers 7-4 2.3 Permafrost 7-7 2.3.1 Nature, extent and stability of permafrost 7-7 2.3.2 Responses of permafrost to climatic changes 7-10 2.3.2.1 Changes in permafrost distribution 7-12 2.3.2.2 Implications of permafrost degradation 7-14 2.3.3 Gas hydrates and methane 7-15 2.4 Seasonally frozen ground 7-16 3 Socioeconomic consequences 7-16 3.1 Seasonal snow cover 7-16 3.2 Glaciers and ice sheets 7-17 3.3 Permafrost 7-18 3.4 Seasonally frozen ground 7-22 4 Future deliberations 7-22 Tables Table 7.1 Relative extent of terrestrial areas of seasonal snow cover, ice and permafrost (after Washburn, 1980a and Rott, 1983) 7-2 Table 7.2 Characteristics of the Greenland and Antarctic ice sheets (based on Oerlemans and van der Veen, 1984) 7-5 Table 7.3 Effect of terrestrial ice sheets on sea-level, adapted from Workshop on Glaciers, Ice Sheets and Sea Level: Effect of a COylnduced Climatic Change.
    [Show full text]
  • DISSERTATION LANDSLIDE RESPONSE to CLIMATE CHANGE in DENALI NATIONAL PARK, ALASKA, and OTHER PERMAFROST REGIONS Submitted By
    DISSERTATION LANDSLIDE RESPONSE TO CLIMATE CHANGE IN DENALI NATIONAL PARK, ALASKA, AND OTHER PERMAFROST REGIONS Submitted by Annette Patton Department of Geosciences In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2019 Doctoral Committee: Advisor: Sara Rathburn Ellen Wohl John Singleton Jeffrey Niemann Copyright by Annette Patton 2019 All Rights Reserved ABSTRACT LANDSLIDE RESPONSE TO CLIMATE CHANGE IN DENALI NATIONAL PARK, ALASKA, AND OTHER PERMAFROST REGIONS Rapid permafrost thaw in the high-latitude and high-elevation areas increases hillslope susceptibility to landsliding by altering geotechnical properties of hillslope materials, including reduced cohesion and increased hydraulic connectivity. The overarching goal of this study is to improve the understanding of geomorphic controls on landslide initiation at high latitudes. In this dissertation, I present a literature review, surficial mapping and a landslide inventory, and site-specific landslide monitoring to evaluate landslide processes in permafrost regions. Following an introduction to landslides in permafrost regions (Chapter 1), the second chapter synthesizes the fundamental processes that will increase landslide frequency and magnitude in permafrost regions in the coming decades with observational and analytical studies that document landslide regimes in high latitudes and elevations. In Chapter 2, I synthesize the available literature to address five questions of practical importance,
    [Show full text]
  • A Combined Experimental and Numerical Study of Pore Water Pressure Variations in Sub -Permafrost Groundwater Agnès Rivière, Anne Jost, Julio Goncalvès
    A combined experimental and numerical study of pore water pressure variations in sub -permafrost groundwater Agnès Rivière, Anne Jost, Julio Goncalvès To cite this version: Agnès Rivière, Anne Jost, Julio Goncalvès. A combined experimental and numerical study of pore water pressure variations in sub -permafrost groundwater. AGU Fall Meeting 2013, Dec 2013, San Francisco, United States. pp.abstract C53A-0551. hal-01396681 HAL Id: hal-01396681 https://hal.archives-ouvertes.fr/hal-01396681 Submitted on 15 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A combined experimental and numerical study of pore water pressure variations in sub-permafrost groundwater. Agnès Rivière1 Anne Jost2, and Julio Goncalvès 3 1 Department of Geoscience, University of Calgary,T2N1N4, Calgary, Alberta, Canada 2 UPMC University Paris VI, UMR 7619, SISYPHE, F-75005, Paris, France, CNRS, UMR 7619, Sisyphe, F-75005, Paris, France. 3 CNRS, UMR 7330, CEREGE, F-13100, Aix-en-Provence, France. The past few decades have seen a rapid development and progress in research on past and current hydrologic impacts of permafrost evolution. In permafrost area, groundwater is subdivided into two zones: supra-permafrost and sub-permafrost which are separated by permafrost.
    [Show full text]
  • Permafrost Soils and Carbon Cycling
    SOIL, 1, 147–171, 2015 www.soil-journal.net/1/147/2015/ doi:10.5194/soil-1-147-2015 SOIL © Author(s) 2015. CC Attribution 3.0 License. Permafrost soils and carbon cycling C. L. Ping1, J. D. Jastrow2, M. T. Jorgenson3, G. J. Michaelson1, and Y. L. Shur4 1Agricultural and Forestry Experiment Station, Palmer Research Center, University of Alaska Fairbanks, 1509 South Georgeson Road, Palmer, AK 99645, USA 2Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA 3Alaska Ecoscience, Fairbanks, AK 99775, USA 4Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA Correspondence to: C. L. Ping ([email protected]) Received: 4 October 2014 – Published in SOIL Discuss.: 30 October 2014 Revised: – – Accepted: 24 December 2014 – Published: 5 February 2015 Abstract. Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environ- ment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enor- mous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region’s soil or- ganic carbon (SOC) stocks to changing climatic conditions. In this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile.
    [Show full text]
  • Peatland Permafrost Thaw and Landform Type Along a Climatic Gradient
    Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Peatland permafrost thaw and landform type along a climatic gradient D.W. Beilman* Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada S.D. Robinson Department of Geology, St. Lawrence University, Canton, USA ABSTRACT: Recent change in the areal extent of permafrost at the individual peatland scale was determined from aerial photographs and Ikonos satellite imagery. Nine peatland sites were mapped from across the Discontinuous Permafrost Zone (DPZ) of western Canada, from the southern limit of permafrost in the prairie provinces to the northern part of the DPZ in the Mackenzie Valley, NWT. Sites span a mean annual air tempera- ture (MAAT) gradient from 0.2 to Ϫ4.3°C. At five southern sites between 30 and 65% of localized permafrost has degraded over the last 100–150 years. Total thaw is significantly correlated to MAAT and stability appears positively related to the size of remaining permafrost landforms. At four northern sites as much as 50% of peat plateau permafrost has thawed over 50 years, and total thaw can be greater than in the south. Results suggest that localized permafrost at the southern limit of the DPZ respond more directly to climate, whereas response of peat plateaus in the north may be more complex. 1 INTRODUCTION mounds in the south (Vitt et al. 1994). Permafrost has been thawing and sometimes completely dissappear- Northern circumpolar air temperatures have warmed ing from many northern peatlands across western in the recent past, as evidenced by the instrument North America from Alaska (Jorgensen et al.
    [Show full text]
  • A Simplified Permafrost-Carbon Model for Long-Term Climate Studies
    Geosci. Model Dev., 7, 3111–3134, 2014 www.geosci-model-dev.net/7/3111/2014/ doi:10.5194/gmd-7-3111-2014 © Author(s) 2014. CC Attribution 3.0 License. A simplified permafrost-carbon model for long-term climate studies with the CLIMBER-2 coupled earth system model K. A. Crichton1,2, D. M. Roche3,4, G. Krinner1,2, and J. Chappellaz1,2 1CNRS, LGGE (UMR5183), 38041 Grenoble, France 2Univ. Grenoble Alpes, LGGE (UMR5183), 38041 Grenoble, France 3CEA/INSU-CNRS/UVSQ, LSCE (UMR8212), Centre d’Etudes de Saclay CEA-Orme des Merisiers, bat. 701 91191 Gif-sur-Yvette CEDEX, France 4Cluster Earth and Climate, Department of Earth Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands Correspondence to: K. A. Crichton ([email protected]) Received: 27 June 2014 – Published in Geosci. Model Dev. Discuss.: 30 July 2014 Revised: 7 November 2014 – Accepted: 24 November 2014 – Published: 18 December 2014 Abstract. We present the development and validation of a latitudes (Tarnocai et al., 2009) and its potential release on simplified permafrost-carbon mechanism for use with the thaw (Schuur et al., 2008; Harden et al., 2012) make per- land surface scheme operating in the CLIMBER-2 earth sys- mafrost and permafrost-related carbon an important area of tem model. The simplified model estimates the permafrost study. Thus far permafrost models that have been coupled fraction of each grid cell according to the balance between within land-surface schemes have relied on thermal heat dif- modelled cold (below 0 ◦C) and warm (above 0 ◦C) days in fusion calculations from air temperatures into the ground to a year.
    [Show full text]