Managing the Water Resources of the Oswego River Basin in Central New

Total Page:16

File Type:pdf, Size:1020Kb

Managing the Water Resources of the Oswego River Basin in Central New USGS science for a changing world FL-LOWPA Managing the Water Resources of the Finger Lakes - Lake Ontario Oswego River Basin in Central New York Watershed Protection Alliance INTRODUCTION PHYSIOGRAPHY OF THE geographic area that plays a vital OSWEGO RIVER BASIN role in the flow regime of the Basin The Oswego River Basin in is the Clyde/Seneca River-Oneida The Oswego River Basin has an Lake Trough, a belt of lowlands central New York State contains a area of 5,100 square miles and running west-to east through which diverse system of streams, lakes, encompasses three physiographic the Barge Canal flows. The trough and canals. Water flows from upland provinces the Appalachian Plateau, is key to understanding the Oswego streams to the Finger Lakes, then the Tug Hill Plateau, and the Lake River Basin flow system its natural Ontario Plain (fig. 2). One additional and human-altered "plumbing". to low-gradient rivers, which are part of the New York State Barge 76° Canal, and ultimately to Lake Ontario (fig. 1). Although natural LAKE ONTARIO and man-made components of this hydrologic system are known, how the system functions and how the OneitiB Lake ,OME components interact are not completely understood. This Fact 43C - Sheet is a result of a shared interest /"" pCp6si Skaneateles Conesus '-, Carantagua £84. .CS2&3 ' Lake Otisco Lake r on the part of U.S. Geological Honeoye : Lake \ Seneca \ Survey (USGS) and Finger Lake " _ Hemlock Owasco Lakes-Lake Ontario Watershed Keuka Protection Alliance (FL-LOWPA) in OSWEGO f. ,, Lake - ITHACA RIVER facilitating public understanding » ^WATKINS kS BASIN GLEN .'I / and discussion of the complex Oswego River Basin and its water- EXPLANATION resource-management issues. New York State Barge Canal > Direction of flow 130 Barge Canal lock and number Figure 1. Location of major lakes and 25 Eg rivers, New York State Barge Canal, 42° 0 25 KILOMETERS and major cities within the Oswego Base from U.S. Geological Survey digital data, 1:2,000,000, 1972. Albers Equal-Area Conic projection River Basin in Central New York Standard parallels 29 30' and 45 30', central meridian -96 00'. U.S. Department of the Interior Fact Sheet FS 180-99 U.S. Geological Survey March 2000 77° 76° Clyde/Seneca River-Oneida Lake 44C Trough The trough is a product of regional 500 geology and glaciation. During and after the last Ice Age (ending about LAKE ONTARIO 14,000 years ago), glaciers carved-out erodible shales that lie between the Lockport Dolomite bedrock "ridge" to the north of the trough and Onondaga Limestone bedrock "ridge" 500 that forms the northern edge of the Appalachian Plateau to the south. The 43C trough was subsequently filled with mixtures of clay, silt, sand, and gravel from the receding glacier. The result was a flat, low-lying area with many square miles of wetlands, some of which are now farmed as muckland. The New York State Barge Canal was constructed within the trough because the gradient is exceptionally low. The Canal's surface elevation drops only 23 feet in 60 miles along EXPLANATION the main stem between Locks 27 New York State Barge Canal ° and 24. Before construction of the Line of equal elevation Barge Canal Lock canal in the early 1800's, the gradient 42C averaged about 0.4 feet per mile; with Base from U.S. Geological Survey digital data, 1:2,000,000, 1972. the canal, the water-surface elevation Standard parallels 29 30' and 45 30', central meridian -96 00'. changes in steps at each of the locks. The low gradient poses a challenge to Figure 2. Physiographic provinces of the Oswego River Basin and generalized land- surface elevation water-resources management because the natural and man-made gradient inhibits the rapid movement of large volumes of water. feet. During some major storm-runoff from the surrounding watershed, and periods, the water-surface elevation the additive contribution of these in the Barge Canal near Montezuma lake outflows to the Barge Canal Effect of the Trough on Basin (just downstream from the Cayuga results in a "bottleneck" at Three Drainage Lake outlet) has exceeded the water- Rivers junction (the confluence of the surface elevation in Cayuga Lake; and Seneca, Oneida, and Oswego Rivers). Surface water and ground water if the Mudlock gates had been open, This junction receives water from 96 in the Oswego River Basin flows water would have flowed from the percent of the Oswego River Basin from upland watersheds to rivers Barge Canal into Cayuga Lake. but is within the flattest, slowest- and lakes and then to the trough The area near Montezuma receives moving reach of the Barge Canal and containing the main stem of the about 48 percent of the runoff from the Oswego River Basin. At times, New York State Barge Canal. As the Oswego River Basin's 5,100 inflow to the trough exceeds the illustrated in figure 3, water flows square miles. Further downstream (to channel capacity and causes flooding from the outlet of Keuka Lake the east), the canal receives additional within Seneca, Cayuga, and Oneida to Seneca Lake, with a change in water from the Owasco, Skaneateles, Lakes and along the Seneca and elevation of about 270 feet, and from and Otisco Lake watersheds, which, Oneida Rivers. The gradient in the Seneca Lake to Cayuga Lake with like Canandaigua Lake to the west, Oswego River, downstream of Fulton, an elevation change of about 60 feet, are at higher elevations and drain increases markedly to 118 feet in 29 then from Cayuga Lake to the Barge readily to the trough. Similarly, the miles (4 feet per mile), and allows Canal through the Mudlock gate- uplands around Oneida Lake drain the water to flow more readily toward structure where the fall is only 9 to the eastern end of the trough Lake Ontario. NOT A FLOODPLAIN PROBLEM, BUT A WATERSHED CONSIDERATION The amount of water that enters Most water-resource problems one, allowing more water to move any Finger Lake from a storm within the Oswego River Basin (or through more quickly. This in turn depends on local watershed any other basin) tend to be looked could erode denuded road banks, and conditions. For example, when soils upon as local water-level issues, carry enlarged sediment loads to a are saturated or frozen in the Cayuga property issues, water-quality issues river or lake where the sediment Lake watershed, for every inch of or single-use issues. The first is deposited as an alluvial fan that water that falls on the watershed and responsibility and challenge to clogs the mouth of the stream and runs off to the lake, the lake level water-resource managers and users may cause flooding of nearby increases by one foot within 1 to 2 is to view all issues within the property. The town then excavates days, but once in the lake, this amount context of basin-wide management. this sediment and removes more than of water can take a week or more Only when the focus is on the entire was deposited to avoid the need to to fully drain to the Barge Canal system will the basin residents be reexcavate in the near future. This because the lake level can be lowered able to define reasonable goals and over excavation can begin a process by only a tenth of a foot per day work toward them. of stream erosion that may spread due to the low gradient of the Seneca Thus, water level, water-quantity, upstream into the watershed, causing River/Barge Canal and the difference or water-quality problems within the further erosion of streambed and in elevation between the River and Basin need to be considered on the streambanks. In this hypothetical Cayuga Lake. The natural drainage a watershed basis, rather than as example, each individual action within this basin, with its cumulative, isolated problems along a particular benefits the local situation, but the rapidly flowing upland discharges stretch of river or lake. As an cumulative effect alters stream and a slowly draining outflow, poses example, an upland farmer might conditions in the watershed, and can difficulties for water-level install drain tile to remove water cause a natural process of erosion management. The New York State from his fields so that he can work and(or) deposition, which may be Barge Canal Corporation uses the fields earlier in the season. This viewed in a detrimental way from "control points" within the Oswego common practice can cause more some perspectives. Whenever a Basin to monitor and manage water water to flow into a nearby roadside stream is disturbed locally, it needs levels. The management strategies of ditch, and prompt the town highway time to restore its gradient and this system have been controversial department to deepen the ditch. The streambank conditions, and if the for nearly a century because the increased flow from the ditch now disturbance (natural or man-made) is users desire differing water- could increase erosion and possibly large enough, the watershed can be level-management results. Reaching cause a downstream culvert to clog affected well beyond the initially- resolution is not simple, nor is any and cause localized flooding. The affected area, and can take a decade decision favorable to all. town replaces the culvert with a larger or more to reach a new equilibrium. LIMITATIONS IN WEATHER FORECASTING AND UNDERSTANDING CLIMATE VARIABILITY Today's forecasting "skill" or as the Oswego River Basin, is generally calm, cyclic pattern between accuracy in predicting a precipitation difficult with only a 2-day lead time 1890 and 1960, with relatively few amount is accurate to only about 2 for specific weather information.
Recommended publications
  • Section 5.4.3: Risk Assessment – Flood
    SECTION 5.4.3: RISK ASSESSMENT – FLOOD 5.4.3 FLOOD This section provides a profile and vulnerability assessment for the flood hazard. HAZARD PROFILE This section provides hazard profile information including description, extent, location, previous occurrences and losses and the probability of future occurrences. Description Floods are one of the most common natural hazards in the U.S. They can develop slowly over a period of days or develop quickly, with disastrous effects that can be local (impacting a neighborhood or community) or regional (affecting entire river basins, coastlines and multiple counties or states) (Federal Emergency Management Agency [FEMA], 2006). Most communities in the U.S. have experienced some kind of flooding, after spring rains, heavy thunderstorms, coastal storms, or winter snow thaws (George Washington University, 2001). Floods are the most frequent and costly natural hazards in New York State in terms of human hardship and economic loss, particularly to communities that lie within flood prone areas or flood plains of a major water source. The FEMA definition for flooding is “a general and temporary condition of partial or complete inundation of two or more acres of normally dry land area or of two or more properties from the overflow of inland or tidal waters or the rapid accumulation of runoff of surface waters from any source (FEMA, Date Unknown).” The New York State Disaster Preparedness Commission (NYSDPC) and the National Flood Insurance Program (NFIP) indicates that flooding could originate from one
    [Show full text]
  • Erie Canalway Map & Guide
    National Park Service Erie Canalway National Heritage Corridor U.S. Department of the Interior Erie Canalway Map & Guide Pittsford, Frank Forte Pittsford, The New York State Canal System—which includes the Erie, Champlain, Cayuga-Seneca, and Oswego Canals—is the centerpiece of the Erie Canalway National Heritage Corridor. Experience the enduring legacy of this National Historic Landmark by boat, bike, car, or on foot. Discover New York’s Dubbed the “Mother of Cities” the canal fueled the growth of industries, opened the nation to settlement, and made New York the Empire State. (Clinton Square, Syracuse, 1905, courtesy Library of Congress, Prints & Photographs Division, Detroit Publishing Extraordinary Canals Company Collection.) pened in 1825, New York’s canals are a waterway link from the Atlantic Ocean to the Great Lakes through the heart of upstate New York. Through wars and peacetime, prosperity and This guide presents exciting Orecession, flood and drought, this exceptional waterway has provided a living connection things to do, places to go, to a proud past and a vibrant future. Built with leadership, ingenuity, determination, and hard work, and exceptional activities to the canals continue to remind us of the qualities that make our state and nation great. They offer us enjoy. Welcome! inspiration to weather storms and time-tested knowledge that we will prevail. Come to New York’s canals this year. Touch the building stones CONTENTS laid by immigrants and farmers 200 years ago. See century-old locks, lift Canals and COVID-19 bridges, and movable dams constructed during the canal’s 20th century Enjoy Boats and Boating Please refer to current guidelines and enlargement and still in use today.
    [Show full text]
  • New York State Canal Corporation Flood Warning and Optimization System
    K19-10283720JGM New York State Canal Corporation Flood Warning and Optimization System SCOPE OF SERVICES K19-10283720JGM Contents 1 Background of the Project........................................................................................................... 3 2 Existing FWOS features ............................................................................................................... 5 2.1 Data Import Interfaces ............................................................................................................ 5 2.2 Numeric Models ...................................................................................................................... 5 2.2.1 Hydrologic Model............................................................................................................. 6 2.2.2 Hydraulic Model .............................................................................................................. 6 2.3 Data Dissemination Interfaces .................................................................................................. 6 3 Technical Landscape ................................................................................................................... 7 3.1 Software ................................................................................................................................. 7 3.1.1 Systems......................................................................................................................... 7 3.1.2 FWOS Software ..............................................................................................................
    [Show full text]
  • Barge Canal” Is No Longer an Accurate Description of the New York State Canals Marine Activity on New York’S Canals
    The Story of the Afterword Today, the name “Barge Canal” is no longer an accurate description of the New York State Canals marine activity on New York’s canals. Trains and trucks have taken over the transport of most cargo that once moved on barges along the canals, but the canals remain a viable waterway for navigation. Now, pleasure boats, tour Historical and Commercial Information boats, cruise ships, canoes and kayaks comprise the majority of vessels that ply the waters of the legendary Erie and the Champlain, Oswego and Cayuga- Seneca canals, which now constitute the 524-mile New York State Canal ROY G. FINCH System. State Engineer and Surveyor While the barges now are few, this network of inland waterways is a popular tourism destination each year for thousands of pleasure boaters as well as visitors by land, who follow the historic trade route that made New York the “Empire State.” Across the canal corridor, dozens of historic sites, museums and community festivals in charming port towns and bustling cities invite visitors to step back in time and re-live the early canal days when “hoggees” guided mule-drawn packet boats along the narrow towpaths. Today, many of the towpaths have been transformed into Canalway Trail segments, extending over 220 miles for the enjoyment of outdoor enthusiasts from near and far who walk, bike and hike through scenic and historic canal areas. In 1992, legislation was enacted in New York State which changed the name of the Barge Canal to the “New York State Canal System” and transferred responsibility for operation and maintenance of the Canal System from the New York State Department of Transportation to the New York State Canal Corporation, a newly created subsidiary of the New York State Thruway Authority.
    [Show full text]
  • Oswego County 2012 Water Chestnut Control Program
    Oswego County Soil and Water Conservation District 3105 State Route 3 Fulton, New York 13069 Oswego County 2012 Water Chestnut Control Program Introduction This year’s Water chestnut (Trapa natans) control program included various physical hand pulling events as well as a large chemical treatment approach throughout Oswego County. Multiple hand pulls were orchestrated on three different water bodies: Oswego River, Oneida Lake and the Salmon River. Chemical treatment took place on the Oswego River only. Chemical Treatment Preparations and planning began during the winter and spring of 2012. Discussions took place between NYS Department of Environmental Conservation (DEC)/Division of Environmental Permits, Onondaga County Health Department and this office pertaining to the application techniques and outcomes. Decisions were being formulated as to which approach would be undertaken for the 2012 season: chemical alone, and which one? hand pulling, cutting, and/or mechanical harvesting, or a combination of any or all of the mentioned techniques. Chemical effectiveness was being looked at more closely; knowing that terrestrial plants can build up a resistance to glyphosate (Roundup), and that Rodeo (the aquatic version of Roundup) has been used for a number of years now, it was decided to alter the chemical for 2012. The prior approved and labeled chemical called Clearcast was then selected to be used as a comparison test for effectiveness. Clearcast cost ten times as much as Rodeo, thereby making for a tighter management of financial resources in support of the 2012 expectation. A total resources package was then developed between: St. Lawrence-Eastern Lake Ontario (SLELO) PRISM via The Nature Conservancy, the NYS Environmental Protection Fund via the Finger Lakes-Lake Ontario Watershed Protection Alliance (FLLOWPA) and the federal Great Lakes Restoration Initiative (GLRI) Aquatic Nuisance Species grant via FLLOWPA.
    [Show full text]
  • The Effect of Different Confluence Confirmation Strategies on the Obturation of Vertucci Type II Canal: Micro-CT Analysis
    Restor Dent Endod. 2021 Feb;46(1):e12 https://doi.org/10.5395/rde.2021.46.e12 pISSN 2234-7658·eISSN 2234-7666 Research Article The effect of different confluence confirmation strategies on the obturation of Vertucci type II canal: micro-CT analysis Seungjae Do , Min-Seock Seo * Department of Conservative Dentistry, Wonkwang University Daejeon Dental Hospital, Daejeon, Korea Received: Apr 8, 2020 Revised: Jun 7, 2020 ABSTRACT Accepted: Jun 17, 2020 Objectives: The present study aims to compare the obturation quality of 2 confluence Do S, Seo MS confirmation techniques in artificial maxillary first premolars showing Vertucci type II root canal configuration. *Correspondence to Min-Seock Seo, DDS, PhD Materials and Methods: Thirty artificial maxillary premolars having Vertucci type II root Associate Professor, Department of canal configuration were made. They were divided into 3 groups according to the confluence Conservative Dentistry, Wonkwang University confirmation technique as follows. Gutta-percha indentation (GPI) group (confluence Daejeon Dental Hospital, 77 Dunsan-ro, Seo- confirmation using a gutta-percha cone and a K file); electronic apex locator (EAL) group gu, Daejeon 35233, Korea. (confluence confirmation using K files and EAL); and no confluence detection (NCD) E-mail: [email protected] group. In the GPI group and the EAL group, shaping and obturation were performed with Copyright © 2021. The Korean Academy of the modified working length (WL). In the NCD group, shaping was performed without WL Conservative Dentistry adjustment and obturation was carried out with an adjusted master cone. Micro-computed This is an Open Access article distributed tomography was used before preparation and after obturation to calculate the percentage under the terms of the Creative Commons of gutta-percha occupied volume (%GPv) and the volume increase in the apical 4 mm.
    [Show full text]
  • 2016 Water Chestnut Control Report
    OSWEGO RIVER BASIN AQUATIC INVASIVE CONTROL Oswego County Soil and Water Conservation District Water Chestnut Control Final Report September 22, 2016 1. Due to the fact that New York State/Department of Environmental Conservation permitting protocols changed beginning in the 2016 season and was late being noticed at the local level, such requirements were then shifted over to the awarded contractor for completion. General chemical permit application work and public notification was completed by contractor and spraying was conducted on Monday, August 29th, 2016. Approximately 60 acres of Water chestnut was treated in Ox Creek between the RR Bridge overpass and Co. Rt. 14 highway culvert. Another 20 acres were treated just on the north side of Big Island located downstream from Ox Creek, in the Oswego River. Water samples were pulled and analyzed for any chemical concentrations; by September 2nd concentration levels were below 1ppb, and the lifting of the restriction of water usage notice was sent out to all targeted property owners within the treatment areas. On September 14th a visual observation was conducted and clearly showed that the treated areas were decaying and decomposing as expected. As the season progressed, other areas within the Oswego River Corridor showed increase numbers of plants, more than what could be hand pulled. Therefore, for 2017 a more intense chemical treatment campaign will be necessary to keep Water chestnut in check. 2. Five college students formed the first Oswego County Water Chestnut Assault Team (aka Water CATs). Team began work on June 7th and continued throughout the summer, for a ten week period, ending on August 11th.
    [Show full text]
  • Umbrella Empr: Flood Control and Drainage
    I. COVERSHEET FOR ENVIRONMENTAL MITIGATION PLAN & REPORT (UMBRELLA EMPR: FLOOD CONTROL AND DRAINAGE) USAID MISSION SO # and Title: __________________________________ Title of IP Activity: __________________________________________________ IP Name: __ __________________________________________________ Funding Period: FY______ - FY______ Resource Levels (US$): ______________________ Report Prepared by: Name:__________________________ Date: ____________ Date of Previous EMPR: _________________ (if any) Status of Fulfilling Mitigation Measures and Monitoring: _____ Initial EMPR describing mitigation plan is attached (Yes or No). _____ Annual EMPR describing status of mitigation measures is established and attached (Yes or No). _____ Certain mitigation conditions could not be satisfied and remedial action has been provided within the EMPR (Yes or No). USAID Mission Clearance of EMPR: Contracting Officer’s Technical Representative:__________ Date: ______________ Mission Environmental Officer: _______________________ Date: ______________ ( ) Regional Environmental Advisor: _______________________ Date: ______________ ( ) List of CHF Haiti projects covered in this UEMPR (Flood Control and Drainage) 1 2 1. Background, Rationale and Outputs/Results Expected: According to Richard Haggerty’s country study on Haiti from 1989, in 1925, 60% of Haiti’s original forests covered the country. Since then, the population has cut down all but an estimated 2% of its original forest cover. The fact that many of Haiti’s hillsides have been deforested has caused several flooding problems for cities and other communities located in critical watershed and flood-plain areas during recent hurricane seasons. The 2008 hurricane season was particularly devastating for Haiti, where over 800 people were killed by four consecutive tropical storms or hurricanes (Fay, Gustav, Hanna, and Ike) which also destroyed infrastructure and caused severe crop losses. In 2004, tropical storm Jeanne killed an estimated 3,000 people, most in Gonaives.
    [Show full text]
  • Canal and River Bank Stabilisation for Protection Against Flash Flood and Sea Water Intrusion in Central Vietnam
    CANAL AND RIVER BANK STABILISATION FOR PROTECTION AGAINST FLASH FLOOD AND SEA WATER INTRUSION IN CENTRAL VIETNAM V. Thuy1, I. Sobey2 and P. Truong3 1 Department of Agriculture and Rural Development, Quang Ngai, Vietnam 2Kellog Brown Roots, Quang Ngai Natural Disaster Mitigation Project [email protected] 3 TVN Director and East Asia and South Pacific Representative, 23 Kimba St, Chapel Hill, Brisbane 4069, Australia [email protected] Abstract Quang Ngai, a coastal province in central Vietnam, is prone to flash flood caused by high annual rainfall, with 70% (2300mm/yr) falling over three months and steep terrain resulting in high velocity water flows. This often leads to flash floods in mountainous areas and large scale flooding in low-lying areas. The high velocity flows and flooding cause severe erosion on dike, canal and river banks built to protect farm land from flooding in the rain season and sea water intrusion in the dry season. Therefore the stability of these measures provides the local community a protection against flash flood and sea water intrusion at the same time. Both vegetative measures and hard structures such as rock and concrete have been used in the past to protect these banks, but they are ineffective partly due to the local sandy soils used to build them and partly to the strong current. Although vetiver grass has been used very successfully for flood erosion control in the Mekong Delta of southern Vietnam, where flow velocity is relatively slow, it has not been used under very strong current. As a last resort, vetiver grass was tested for its effectiveness in protecting the banks of these rivers and canals.
    [Show full text]
  • SOLICITOR's SEARCHES This Note Sets out Useful
    SOLICITOR’S SEARCHES This note sets out useful background information regarding the nature of enquiries with which Canal & River Trust can assist, the fees that are payable in respect of such enquires and other general information that may be of assistance to you. The Trust cares for a 2,000 mile network of canals and rivers. Most of the Trust’s structures are well over 200 years old and the canals themselves are constructed in a variety of ways. Some are natural rivers which are not owned by the Trust but where we are the navigation authority. The Trust also manages a significant portfolio of property that includes operational boat yards, docks, historic warehouses, cottages, marinas, industrial estates and development land across England and Wales. Every precaution must be taken to avoid the risk of removing Trust’s right of support, breaching the waterway damaging any of the waterway structure, as this may result in extensive flooding, with damage to buildings, property, services and possible loss of life. Embankments and other waterway structures are particularly vulnerable and no excavation, landscaping, or any other work or activity should take place near to, or at the foot of an embankment or waterway structure without consulting the Trust, even though such works may not be on Trust’s property. Except where they are expressly reserved for the benefit of the property, rights such as mooring, fishing, discharges to, or abstraction from, the waterway, and any encroachment upon or projection over the waterway require the written consent of the Trust and in some circumstances, that of the other organisations such as the Environment Agency.
    [Show full text]
  • Channel Morphology and Bed-Sediment Characteristics Before
    Channel Morphology and Bed-Sediment Characteristics Before and After Riparian Vegetation Clearing in the Cottonwood Ranch, Platte River, Nebraska, Water Years 2001–2004 By Paul J. Kinzel, Jonathan M. Nelson, and Ashley K. Heckman Prepared in cooperation with the Platte River Endangered Species Partnership Scientific Investigations Report 2005–5285 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior P. Lynn Scarlett, Acting Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia: 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Kinzel, P.J., Nelson, J.M., and Heckman, A.K., 2006, Channel morphology and bed-sediment characteristics before and after riparian vegetation clearing in the Cottonwood Ranch, Platte River, Nebraska, water years 2001–2004: U.S. Geological Survey Scientific Investigations Report 2005–5285, 25 p. iii Contents Abstract ...........................................................................................................................................................1
    [Show full text]
  • Greater Syracuse Area Waterway Destinations and Services
    Waterway Destinations and Services Map Central Square Y¹ `G Area Syracuse Greater 37 C Brewerton International a e m t ic Speedway Bradbury's R ou d R Boatel !/ y Remains of 5 Waterfront nt Bradbury Rd 1841 Lock !!¡ !l Fort Brewerton State Dock ou Caughdenoy Marina C !Z!x !5 Alb County Route 37 a Virginia St ert Palmer Ln bc !x !x !Z Weber Rd !´ zabeth St N River Dr !´ E R North St Eli !£ iver R C a !´ A bc d !º UG !x W Genesee St H Big Bay B D !£ E L ÆJ !´ \ N A ! 5 O C !l Marina !´ ! Y !5 K )§ !x !x !´ ÆJ Mercer x! Candy's Brewerton x! N B a Memorial 5 viga Ç7 Winter Harbor r Y b Landing le hC Boat Yard e ! Cha Park FA w nn e St NCH Charley's Boat Livery ![ el Charlott ROAD ER Guy Young Rd e r Oswego St Hidden Harbor !® t !´ Lock 23 o Trade-A-Yacht !´ 159 Oneid n Marina XW Ess-Kay Yards R !y Lock State Canal XW Ka East Marina a d 158 th C N R Park a a River St Island L !x zG n v E !l NA !x i E A ga C Brewerton R b K Y d Park D 151 l N ¡ e LOCK 23 Brewerton A C E O River § h O XWXW !l Riverfront Park 5 !l a ERI H R ! n T !¡ n Û 150 [¤ N el Paper Mill !´ !´ 136 5 J !£ A Æ GUY !y !´ ! D K XWXW Island Park 5 H OA A `G R T 137 !´ ! OR YO H 134 5 !2 !¡ A E U S R Bl NG N ! !® O XW O C O H a W E G ROAD O A c R O S DINGLEHOLE D LINE E 169 k D XW ¸- COUNTY !y !\ 170 135 Bartel Rd ÆJ !® XWXW 31 J D SH Æ PE COUNTY LINE Marble St NDE COLE RD R !º Mud RGAST UBA I ROAD EAST !¡ Û!´ S D ROAD Phoenix L SeeROA Brewerton CanalR Port Inset !2 LOCK O-1 A MILLE BA 00.250.125 LANE N KIBBY D Û RABBIT FENNER R RD ROAD !£ ORANGEPORT B Miles N River Edge Mansion
    [Show full text]