Downloaded From
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stem Caecilian from the Triassic of Colorado Sheds Light on the Origins
Stem caecilian from the Triassic of Colorado sheds light PNAS PLUS on the origins of Lissamphibia Jason D. Pardoa, Bryan J. Smallb, and Adam K. Huttenlockerc,1 aDepartment of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; bMuseum of Texas Tech University, Lubbock, TX 79415; and cDepartment of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved May 18, 2017 (received for review April 26, 2017) The origin of the limbless caecilians remains a lasting question in other early tetrapods; “-ophis” (Greek) meaning serpent. The vertebrate evolution. Molecular phylogenies and morphology species name honors paleontologist Farish Jenkins, whose work on support that caecilians are the sister taxon of batrachians (frogs the Jurassic Eocaecilia inspired the present study. and salamanders), from which they diverged no later than the early Permian. Although recent efforts have discovered new, early Holotype. Denver Museum of Nature & Science (DMNH) 56658, members of the batrachian lineage, the record of pre-Cretaceous partial skull with lower jaw and disarticulated postcrania (Fig. 1 caecilians is limited to a single species, Eocaecilia micropodia. The A–D). Discovered by B.J.S. in 1999 in the Upper Triassic Chinle position of Eocaecilia within tetrapod phylogeny is controversial, Formation (“red siltstone” member), Main Elk Creek locality, as it already acquired the specialized morphology that character- Garfield County, Colorado (DMNH loc. 1306). The tetrapod as- izes modern caecilians by the Jurassic. Here, we report on a small semblage is regarded as middle–late Norian in age (Revueltian land amphibian from the Upper Triassic of Colorado, United States, with vertebrate faunachron) (13). -
A Comparative Study of Locomotion in the Caecilians Dermophis Mexicanus and Typhlonectes Natans (Amphibia: Gymnophiona)
Zoological Journal of the Linnean Society (1997), 121: 65±76. With 4 ®gures A comparative study of locomotion in the caecilians Dermophis mexicanus and Typhlonectes natans (Amphibia: Gymnophiona) ADAM P. SUMMERS Organismic and Evolutionary Biology Program, University of Massachusetts, Amherst, MA 01003-5810, U.S.A. JAMES C. O'REILLY Department of Biological Sciences, Northern Arizona University, FlagstaV, AZ 86011±5640, U.S.A. Received January 1996; accepted for publication September 1996 We compared locomotion of two species of caecilian using x-ray videography of the animals traversing smooth-sided channels and a pegboard. Two channel widths were used, a body width channel and a body width +20% channel. The terrestrial caecilian, Dermophis mexicanus, used internal concertina locomotion in both channels and lateral undulation on the pegboard. The aquatic caecilian, Typhlonectes natans, was not able to move at all in the body width channel. In the wider channel Typhlonectes proceeded at the same speed as Dermophis while using normal, rather than internal, concertina locomotion. On the pegboard, Typhlonectes used lateral undulation and achieved 2.5 times the speed managed by Dermophis. A phylogenetic analysis of this, and other, evidence shows that (1) internal concertina evolved in the ancestor to extant caecilians and (2) internal concertina locomotion was secondarily lost in the aquatic caecilians. 1997 The Linnean Society of London ADDITIONAL KEY WORDSÐburrowing ± phylogenetic analysis ± lateral undulation ± concertina ± internal concertina ± Caeciliidae. CONTENTS Introduction ....................... 66 Methods ........................ 68 Husbandry and surgery ................. 68 Locomotion ..................... 68 Data analysis and statistics ................ 68 Phylogenetic analysis .................. 69 Correspondence to A.P. Summers. email: [email protected] 65 0024±4082/97/090065+12 $25.00/0/zj960090 1997 The Linnean Society of London 66 A. -
Phallus Morphology in Caecilians (Amphibia, Gymnophiona) and Its Systematic Utility
Bull. nat. Hist. Mus. Lond. (Zool.) 68(2): 143–154 Issued 28 November 2002 Phallus morphology in caecilians (Amphibia, Gymnophiona) and its systematic utility DAVID J. GOWER AND MARK WILKINSON Department of Zoology, The Natural History Museum, London SW7 5BD, UK. email addresses: [email protected], [email protected] CONTENTS Introduction ............................................................................................................................................................................. 143 Abbreviation used in text ..................................................................................................................................................... 144 Abbreviations used in figures .............................................................................................................................................. 144 Morphology ............................................................................................................................................................................. 144 Disposition of the cloaca ..................................................................................................................................................... 144 Divisions of the cloaca ........................................................................................................................................................ 146 Urodeum ............................................................................................................................................................................. -
Situación Actual De Las Especies De Anfibios Y Reptiles Del Perú Situación Actual De Las Especies De Anfibios Y Reptiles Del Perú
Ministerio del Ambiente SITUACIÓN ACTUAL DE LAS ESPECIES DE ANFIBIOS Y REPTILES DEL PERÚ SITUACIÓN ACTUAL DE LAS ESPECIES DE ANFIBIOS Y REPTILES DEL PERÚ Ministerio del Ambiente Viceministerio de Desarrollo Estratégico de los Recursos Naturales Dirección General de Diversidad Biológica Dirección de Conservación Sostenible de Ecosistemas y Especies Equipo técnico José Pérez Zúñiga Laboratorio de Estudios en Biodiversidad Universidad Peruana Cayetano Heredia Diseño y diagramación Ministerio del Ambiente Agradecimientos: Los autores expresan su agradecimiento a: Angela Condezo (MINAM), Angélica Nicolás (PRODUCE), Diana Farro (OSINFOR), Diego Neyra (SERFOR), Eduardo Padilla (PRODUCE), Elizabeth Cárdenas (MINAM), Fabiola Carreño (MINAM), Fabiola Núñez (MINAM), Frida Rodríguez (MINAM), Irene Alva (PRODUCE), Jhony Ríos (OEFA), José Luis Vásquez (MINAM), Juan Carlos Chaparro (MUBI), Luis Rico (OSINFOR), Marina Rosales (SERNANP), Pilar Gálvez (OEFA), Segundo Crespo (OEFA), Yuri Beraún (MINAM) Cita sugerida: MINAM. (2018). Situación actual de las especies de anfibios y reptiles del Perú. Fecha de publicación Diciembre de 2018 Ministerio del Ambiente SITUACIÓN ACTUAL DE LAS ESPECIES DE ANFIBIOS Y REPTILES DEL PERÚ Situación actual de las especies de anfibios y reptiles del Perú 2 Situación actual de las especies de anfibios y reptiles del Perú Índice I. Resumen ejecutivo 5 II. Introducción 7 III. Metodología 8 3.1. Recopilación, revisión y sistematización de la información 8 3.2. Análisis de la información 11 IV. Resultados 12 4.1. Anfibios 12 4.1.1 Riqueza de especies 12 4.1.2 Comparativo histórico de la riqueza de anfibios 14 4.1.3 Análisis situacional y distribución de los anfibios 15 4.1.4 Impactos o amenazas a los anfibios 20 4.1.5 Usos de los anfibios 24 4.1.6 Estado de conservación de los anfibios 22 4.2. -
Amphibian Diversity the Origin and Evolution of Amphibians
Amphibian Diversity The Origin and Evolution of Amphibians • The three living groups of amphibians are descended from a diverse group of tetrapods that first appeared in the Devonian Period, about 400 million years ago • The ancient continents were uniting into a single large landmass, Pangaea, much of which was situated in tropical or subtropical latitudes. • The climate is assumed to have been relatively warm and equable for terrestrial life. Land communities were characterized by assemblages of relatively primitive plants and arthropods. Phylogeny of Devonian tetrapods Phylogeny of Devonian tetrapods, with diagrammatic representations of skull structure of major clades. Ichthyostega is considered the sister group to the later tetrapods. The Origin of Modern Amphibians Alternative phylogenetic hypotheses for the relationships of lissamphibians, amniotes, and early tetrapods. (A)Traditional hypothesis showing lissamphibians related to temnospondyls. (B) Hypothesis of Laurin and Reisz (1997), showing lissamphibians related to lepospondyls and to microsaurs in particular. General Characteristics of Living Amphibians • Three major groups of amphibians are very different : 1. Frogs and toads (order Anura) : specialized for jumping, with greatly enlarged hind legs, shortened bodies, no tail, and large heads and eyes. 2. Salamanders and newts (order Urodela): more elongate, with front and back legs of approximately equal size and a long tail (this clade is called Caudata by some systematists, derived from the Latin rather than the Greek word for “tail”). 3. Caecilians (order Gymnophiona) : specialized for life underground. They have elongated, snakelike bodies that lack legs, and they have greatly reduced eyes. Reconstructions of The Earliest Anuran and Caecilian Fossils (A) Triadobatrachus massinoti, a froglike amphibian from an early Triassic deposit in Madagascar. -
Comparative Morphology of Caecilian Sperm (Amphibia: Gymnophiona)
JOURNAL OF MORPHOLOGY 221:261-276 (1994) Com parative Morphology of Caecilian Sperm (Amp h i bi a: Gym nop h ion a) MAFWALEE H. WAKE Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720 ABSTRACT The morphology of mature sperm from the testes of 22 genera and 29 species representing all five families of caecilians (Amphibia: Gymnoph- iona) was examined at the light microscope level in order to: (1)determine the effectiveness of silver-staining techniques on long-preserved, rare material, (2) assess the comparative morphology of sperm quantitatively, (3) compare pat- terns of caecilian sperm morphology with that of other amphibians, and (4) determine if sperm morphology presents any characters useful for systematic analysis. Although patterns of sperm morphology are quite consistent intrage- nerically and intrafamilially, there are inconsistencies as well. Two major types of sperm occur among caecilians: those with very long heads and pointed acrosomes, and those with shorter, wider heads and blunt acrosomes. Several taxa have sperm with undulating membranes on the flagella, but limitations of the technique likely prevented full determination of tail morphology among all taxa. Cluster analysis is more appropriate for these data than is phylogenetic analysis. cc: 1994 Wiley-Liss, Inc. Examination of sperm for purposes of describ- ('70), in a general discussion of aspects of ing comparative sperm morphology within sperm morphology, and especially Fouquette and across lineages -
Occasional Papers of the Museum of Zoology University of Michigan
OCCASIONAL PAPERS OF THE MUSEUM OF ZOOLOGY UNIVERSITY OF MICHIGAN RHINATREMATIDAE: A NEW FAMILY OF CAECILIANS (AMPHIBIA: GYMNOPHIONA) Of the three orders of modern Amphibia, the caecilians (G~mnophiona)are the least known. Prior to 1968, caecilians were thought to be poorly diversified and all species were placed in a single family (Caeciliidae). Largely because of the efforts of Dr. Edward H. Taylor, we now know that caecilians have undergone a much greater evolutionary expansion than was previously believed. Current classification of caecilians is based largely on Taylor's 1968 and 1969a publications, in which three families and many new genera and species were named. Taylor (1968) placed a group of species which he considered to be the most primitive in the family Ichthyophiidae. This family has a broadly disjunct distribution in the tropics of southeast Asia and northern South America. All ichthyophiids are thought to have an aquatic larval stage and terrestrial, semifossorial adults. The most diverse family, Caeciliidae, is also the most widespread, being found in the tropics of India, Seychelles, Africa, and South and Central America as far north as southern Mexico. Caeciliids are advanced over ichthyophiids, both in morphological organization and mode of life history. In general, caeciliids are more specialized for burrowing than are ichthyophiids. While some caeciliids have larvae, others have direct terrestrial development, and yet others are livebearers. A third family, Typhlonectidae, consists of specialized aquatic forms which are livebearers; they are confined to South America. The fourth and last family, Scolecomorphidae is found only in 2 Nussbaum OCC. Papers Africa and contains one genus and six species of highly specialized burrowers. -
The Palaeozoic Ancestry of Salamanders, Frogs and Caecilians
Blackwell Publishing LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2007? 2007 150s2 1140 Original Articles LISSAMPHIBIAN ANCESTRYR. L. CARROLL Zoological Journal of the Linnean Society, 2007, 150 (Suppl. 1), 1–140. With 78 figures The Palaeozoic Ancestry of Salamanders, Frogs and Caecilians ROBERT L. CARROLL FLS1 1Redpath Museum, McGill University, 859 Sherbrooke St W., Montreal, P.Q. Canada, H3A 2K6 The relationships of frogs, salamanders, and caecilians (Gymnophiona) with one another and with the vast assem- blage of Palaeozoic amphibians remain highly contentious phylogenetic problems. Cladistic analyses support a com- mon ancestry of the three modern orders, but fail to achieve a consensus regarding their affinities with Palaeozoic amphibians. The most exhaustive phylogenetic analyses that have been applied to the ancestry of lissamphibians have recognized few, if any, biologically significant characters differentiating the living orders. These results can be attributed to limiting the database primarily to characters common to Palaeozoic amphibians and including few fea- tures that distinguish the modern orders. Making use of the numerous derived characters that are expressed in either the larvae or adults of extant salamanders, frogs, and caecilians provides the basis for recognizing a nested sequence of synapomorphies that support a common ancestry of salamanders and anurans with temnospondyl lab- yrinthodonts to the exclusion of caecilians. The larvae of Carboniferous and Permian temnospondyl labyrinthodonts provide strong evidence for their being members of the stem group of urodeles. This is based primarily on the great similarity in the sequence of ossification of the bones of the skull and appendicular skeleton, but is also supported by detailed similarities of the hyoid apparatus. -
Bonner Zoologische Beiträge
© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at Bonn. zool. Beitr. 213 35 (1984), Heft 1-3 A new caecilian from Peru (Amphibia: Gymnophiona) by MARVALEE H. WAKE Department of Zoology and Museum of Vertebrate Zoology, University of California The caecilian (Amphibia: Gymnophiona) fauna of Peru is relatively rich and diverse, numbering at least thirteen species in six genera representing all three of the families that occur in the New World. These occur largely east of the Andes in the Amazon drainage (Table 1). It is possible that a number of the spe- cies described from southeastern Ecuador may occur as well in northeastern Peru (see Table 1), but the area is little collected. These suggestions are based on the data in Taylor, 1968, 1970, etc., collated for the Association of Systemat- ics Collections list of caecilian and salamander species (in press). A single specimen so distinctive that it warrants description was collected near Iquitos, Peru. It ist clearly an Oscaecilia, a member of the subfamily Caeciliinae of the family Caeciliidae (fide Wake & Campbell, 1983). I am pleased to desig- nate this species in recognition of the contributions of Hans and Maria Koepcke to our understanding of the biology of the vertebrate fauna of Peru. Oscaecilia koepckeorum sp. nov. Holotype: ZFMK Bonn 23392. Type locality: Quisto Cocha, an oxbow of the Rio Itaya, 15 km S of Iquitos, Peru. Collected by K. H. Liiling, 24 July 1959. Diagnosis: the species is an attenuate medium-sized member of the genus Oscae- cilia. It is distinguished from all species of Oscaecilia, except hypereumeces, by its relatively high number of primary annuli (228) and low number of second- aries (9). -
Stem Caecilian from the Triassic of Colorado Sheds Light on the Origins
Stem caecilian from the Triassic of Colorado sheds light PNAS PLUS on the origins of Lissamphibia Jason D. Pardoa, Bryan J. Smallb, and Adam K. Huttenlockerc,1 aDepartment of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; bMuseum of Texas Tech University, Lubbock, TX 79415; and cDepartment of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved May 18, 2017 (received for review April 26, 2017) The origin of the limbless caecilians remains a lasting question in other early tetrapods; “-ophis” (Greek) meaning serpent. The vertebrate evolution. Molecular phylogenies and morphology species name honors paleontologist Farish Jenkins, whose work on support that caecilians are the sister taxon of batrachians (frogs the Jurassic Eocaecilia inspired the present study. and salamanders), from which they diverged no later than the early Permian. Although recent efforts have discovered new, early Holotype. Denver Museum of Nature & Science (DMNH) 56658, members of the batrachian lineage, the record of pre-Cretaceous partial skull with lower jaw and disarticulated postcrania (Fig. 1 caecilians is limited to a single species, Eocaecilia micropodia. The A–D). Discovered by B.J.S. in 1999 in the Upper Triassic Chinle position of Eocaecilia within tetrapod phylogeny is controversial, Formation (“red siltstone” member), Main Elk Creek locality, as it already acquired the specialized morphology that character- Garfield County, Colorado (DMNH loc. 1306). The tetrapod as- izes modern caecilians by the Jurassic. Here, we report on a small semblage is regarded as middle–late Norian in age (Revueltian land amphibian from the Upper Triassic of Colorado, United States, with vertebrate faunachron) (13). -
Characters, Congruence and Quality: a Study of Neuroanatomical and Traditional Data in Caecilian Phylogeny
Biol. Rev.(), , pp. – Printed in the United Kingdom CHARACTERS, CONGRUENCE AND QUALITY: A STUDY OF NEUROANATOMICAL AND TRADITIONAL DATA IN CAECILIAN PHYLOGENY B MARK WILKINSON School of Biological Sciences, University of Bristol, Bristol, BSUG, UK (Received July ; revised March ; accepted March ) ABSTRACT Previous phylogenetic analyses of caecilian neuroanatomical data yield results that are difficult to reconcile with those based upon more traditional morphological and molecular data. A review of the literature reveals problems in both the analyses and the data upon which the analyses were based. Revision of the neuroanatomical data resolves some, but not all, of these problems and yields a data set that, based on comparative measures of data quality, appears to represent some improvement over previous treatments. An extended data set of more traditional primarily morphological data is developed to facilitate the evaluation of caecilian relationships and the quality and utility of neuroanatomical and more traditional data. Separate and combined analyses of the neuroanatomical and traditional data produce a variety of results dependent upon character weighting, with little congruence among the results of the separate analyses and little support for relationships among the ‘higher’ caecilians with the combined data. Randomization tests indicate that: () there is significantly less incompatibility within each data set than that expected by chance alone; () the between- data-set incompatibility is significantly greater than that expected for random partitions of characters so the two data sets are significantly heterogeneous; () the neuroanatomical data appear generally of lower quality than the traditional data; () the neuroanatomical data are more compatible with the traditional data than are phylogenetically uninformative data. -
Genomic Perspectives on Amphibian Evolution Across Multiple Phylogenetic Scales
University of Kentucky UKnowledge Theses and Dissertations--Biology Biology 2017 GENOMIC PERSPECTIVES ON AMPHIBIAN EVOLUTION ACROSS MULTIPLE PHYLOGENETIC SCALES Paul Michael Hime University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/ETD.2017.284 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Hime, Paul Michael, "GENOMIC PERSPECTIVES ON AMPHIBIAN EVOLUTION ACROSS MULTIPLE PHYLOGENETIC SCALES" (2017). Theses and Dissertations--Biology. 45. https://uknowledge.uky.edu/biology_etds/45 This Doctoral Dissertation is brought to you for free and open access by the Biology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Biology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.