Nanoparticle Diffusion in Polymer Networks

Total Page:16

File Type:pdf, Size:1020Kb

Nanoparticle Diffusion in Polymer Networks University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Nanoparticle Diffusion In Polymer Networks Emmabeth Parrish Vaughn University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Mechanics of Materials Commons, and the Nanoscience and Nanotechnology Commons Recommended Citation Vaughn, Emmabeth Parrish, "Nanoparticle Diffusion In Polymer Networks" (2017). Publicly Accessible Penn Dissertations. 3073. https://repository.upenn.edu/edissertations/3073 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3073 For more information, please contact [email protected]. Nanoparticle Diffusion In Polymer Networks Abstract The incorporation of nanoparticles into polymer networks can lead to improvements in current technologies and solutions for global challenges. For example, mechanical properties can be enhanced while maintaining processability, controlled release of drugs can be enabled, and desalinization membrane capabilities can be improved. Inherent to these applications is controlling the localization and mobility of nano-scale diffusants. To improve the functionality of polymer nanocomposite materials, a fundamental understanding of how polymer parameters affect nanoparticle diffusion is required. For this dissertation, I studied nanoparticle diffusion within heterogeneous, homogenous, and biological polymer networks. Using single particle tracking, I investigated the role of confinement, heterogeneity, extent of gelation, and swelling on nanoparticle mobility. For each study, nanoparticles were integrated into the polymer network, hundreds of trajectories were followed in fast frame rate videos, and then these trajectories were analyzed to yield quantitative information such as mean-squared displacement, displacement distributions, and diffusion coefficients.r F om quantitative analysis of nanoparticle dynamics, insight into the impact of various polymer properties on mobility were obtained. Specifically, in two environmentally responsive, heterogeneous hydrogels, polyacrylamide and poly(N- isopropylacrylamide) gels, confinement, dynamic heterogeneity, and enthalpic interactions impacted nanoparticle mobility, which varied from diffusive to localized. Solvents and temperature were used to elicit collapse of these heterogeneous networks, which resulted in drastically decreased nanoparticle mobility. In these studies, displacement distributions revealed the extent of Gaussian behavior which was found to be a marker of environmental heterogeneity or cage size. For gelation of tetra-poly(ethylene glycol) networks, a proposed homogeneous network, polymer concentration and extent of gelation impacted nanoparticle diffusion. Using analytical tools developed for synthetic polymer networks, nanoparticle diffusion within the cell cytoplasm was studied, revealing that nanoparticles moved further and faster in cancerous cells and in cells with disrupted actin networks. Overall, our studies revealed that confinement alone does not control nanoparticle mobility within polymer networks and that dynamic heterogeneity played a significant ole.r Identifying factors which determine how nanoparticles diffuse in polymer networks will aid in the design of novel and existing membranes, scaffolds, and drug delivery systems. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Materials Science & Engineering First Advisor Russell J. Composto Keywords hydrogels, intracellular diffusion, nanoparticle diffusion, non-Gaussian displacements, single particle tracking, volume phase transition Subject Categories Mechanics of Materials | Nanoscience and Nanotechnology This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/3073 NANOPARTICLE DIFFUSION IN POLYMER NETWORKS Emmabeth Parrish Vaughn A DISSERTATION in Materials Science and Engineering Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2017 Supervisor of Dissertation ________________ Russell J. Composto Professor of Materials Science and Engineering Graduate Group Chairperson ________________ David Srolovitz Professor of Materials Science and Engineering Dissertation Committee Karen I. Winey, Chair and Professor of Materials Science and Engineering Zahra Fakhraai, Associate Professor of Chemistry Daeyeon Lee, Professor of Chemical and Biomolecular Engineering NANOPARTICLE DIFFUSION IN POLYMER NETWORKS COPYRIGHT 2017 Emmabeth Parrish Vaughn This work is licensed under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 License To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/3.0/us/ To my mother and to those I mother, for the encouragement of science to and through women iii ACKNOWLEDGMENT Within my research advisor’s thesis is an excerpt from Luke 12:48 which says, “To whomsoever much is given, of him shall much be required.” Indeed Dr. Composto has given me much over the past five years. He has given me numerous research ideas and the guidance to help make many of those ideas fruitful. He gave me the opportunity to travel to France to learn a different way of doing science. He has also given me opportunities for teaching and scientific outreach. He recommended me for a Center for Teaching and Learning Fellowship, encouraged me to participate in Girls in Engineering, Math, and Science (GEMS) and other outreach events, and allowed me to be the T. A. for his class for 2 years as well as guest lecturer in subsequent years. I came into graduate school with the desire to teach as my career; I am truly fortunate that he values teaching. Thank you Dr. Composto for each of these gifts. I would also like to thank my thesis committee for their gifts of time, education, and wisdom. Both Dr. Lee and Dr. Winey gave me the best classes I took at Penn. I would not be able to consider myself a polymer physicist without these classes and their instruction. Dr. Winey has also given me valuable feedback on my work throughout my time at Penn through MWN and other subgroup meetings. Dr. Fakhraai always has advice on whose work I should be reading at my committee updates, and has been instrumental in facilitating many of the Penn Polymer group activities. In fact, each member of my committee has been involved with the Penn Polymer group which has given me both a space to internally give talks and posters and a network of peers to work alongside; for that I am very thankful. A highlight of my time at Penn was the year I spent as a Center for Teaching and Learning (CTL) Fellow. Bruce Lenthall, Ian Petrie, Catherine Turner, and everyone else at CTL helped me shape the way I think about teaching. Ian was particularly influential on my own teaching, despite the differences in our fields (his is history). I met with Ian and a group of other graduate students from disciplines all over campus every two weeks to discuss our teaching, other people’s effective teaching methods, and best practices in education. I also took a short summer course on evidence-based teaching methods from Ian which solidified my interest in engineering education research. iv I am thankful for the support staff of both the department and facilities. Pat Overend, Irene Clements, and Vicky Lee have helped me with room booking, scanning documents, and lifting my spirits by telling me they liked my outfit. Matt Brukman has helped maintain the inverted microscopy equipment which I used to complete most of my thesis work. Also, Doug Yates and Jamie Ford taught me how to use the Ion Beam and FIB SEM and generally keep equipment in amazing shape. My peers in the Composto group have been an invaluable source of scientific knowledge, sympathetic ears, and friendship. When I joined the group, the members that came before me, especially Rob Ferrier and Jim Lin, were always available to answer any science or Philadelphia questions I had. Jim thought of me when he wanted to add nanoparticle diffusion to the perspective he was writing, which has really boosted my Google Scholar page! Rob always made me feel like I was capable of actually completing this degree, no easy task. The post docs in our lab have also been integral to me completing my thesis. Hyun-Su Lee was our chemistry guru. Jihoon Choi showed me how to collect ion beam data. Carme Coll-Ferrer taught me about being safe in lab while pregnant, well before I knew how important that would be. Prathima Nalam taught me how to make colloidal AFM tips, which I did not use for my own research, but was able to provide to many collaborators. I am grateful for my collaboration with Martha Grady which resulted in Chapter 6. We also had many fruitful conversations regarding the importance of teaching and mentorship. The current members of the Composto group, Boris Rasin, Ben Lindsay, Nadia Krook, Katie Rose, Yuanchi Ma, Shawn Maguire, Sarah Seeger, Carlos Medina, and Teddy Kurkoski, are gems. Boris makes sure you question everything and always has a thought to share. Yuanchi and Katie are working on projects that are extensions of this thesis work, and it has been enriching to work with them. Katie also provides the office with lots of snacks, which has been particularly great while nursing! Shawn and Katie also took over management of the website. If I were a prospective student, I would join our group based on it. Ben provides a computationalist’s view to group
Recommended publications
  • Exploiting Colloidal Interfaces to Increase Dispersion, Performance, and Pot-Life in Cellulose Nanocrystal/Waterborne Epoxy Composites
    Polymer 68 (2015) 111e121 Contents lists available at ScienceDirect Polymer journal homepage: www.elsevier.com/locate/polymer Exploiting colloidal interfaces to increase dispersion, performance, and pot-life in cellulose nanocrystal/waterborne epoxy composites Natalie Girouard a, Gregory T. Schueneman b, Meisha L. Shofner c, d, * J. Carson Meredith a, d, a School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, USA b Forest Products Laboratory, U.S. Forest Service, One Gifford Pinchot Drive, Madison, WI, USA c School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, USA d Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street NW, Atlanta, GA, USA article info abstract Article history: In this study, cellulose nanocrystals (CNCs) are incorporated into a waterborne epoxy resin following two Received 23 February 2015 processing protocols that vary by order of addition. The processing protocols produce different levels of Received in revised form CNC dispersion in the resulting composites. The more homogeneously dispersed composite has a higher 2 May 2015 storage modulus and work of fracture at temperatures less than the glass transition temperature. Some Accepted 7 May 2015 properties related to the component interactions, such as thermal degradation and moisture content, are Available online 14 May 2015 similar for both composite systems. The mechanism of dispersion is probed with electrophoretic mea- surements and electron microscopy, and based on these results, it is hypothesized that CNC preaddition Keywords: Interfaces facilitates the formation of a CNC-coated epoxy droplet, promoting CNC dispersion and giving the Colloidal stability epoxide droplets added electrostatic stability.
    [Show full text]
  • Polymer-Particle Nanocomposites: Size and Dispersion Effects
    Polymer-Particle Nanocomposites: Size and Dispersion Effects Joseph Moll Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 ©2012 Joseph Moll All Rights Reserved ABSTRACT Polymer-Particle Nanocomposites: Size and Dispersion Effects Joseph Moll Polymer-particle nanocomposites are used in industrial processes to enhance a broad range of material properties (e.g. mechanical, optical, electrical and gas permeability properties). This dissertation will focus on explanation and quantification of mechanical property improvements upon the addition of nanoparticles to polymeric materials. Nanoparticles, as enhancers of mechanical properties, are ubiquitous in synthetic and natural materials (e.g. automobile tires, packaging, bone), however, to date, there is no thorough understanding of the mechanism of their action. In this dissertation, silica (SiO2) nanoparticles, both bare and grafted with polystyrene (PS), are studied in polymeric matrices. Several variables of interest are considered, including particle dispersion state, particle size, length and density of grafted polymer chains, and volume fraction of SiO2. Polymer grafted nanoparticles behave akin to block copolymers, and this is critically leveraged to systematically vary nanoparticle dispersion and examine its role on the mechanical reinforcement in polymer based nanocomposites in the melt state. Rheology unequivocally shows that reinforcement is maximized by the formation of a transient, but long-lived, percolating polymer-particle network with the particles serving as the network junctions. The effects of dispersion and weight fraction of filler on nanocomposite mechanical properties are also studied in a bare particle system. Due to the interest in directional properties for many different materials, different means of inducing directional ordering of particle structures are also studied.
    [Show full text]
  • Stimulus Methods of Multi-Functional Shape Memory Polymer
    Composites: Part A 100 (2017) 20–30 Contents lists available at ScienceDirect Composites: Part A journal homepage: www.elsevier.com/locate/compositesa Review Stimulus methods of multi-functional shape memory polymer nanocomposites: A review ⇑ ⇑ Tianzhen Liu a, Tianyang Zhou a, Yongtao Yao a, Fenghua Zhang a, Liwu Liu b, Yanju Liu b, , Jinsong Leng a, a Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 YiKuang Street, PO Box 3011, Harbin 150080, People’s Republic of China b Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), No. 92 West Dazhi Street, PO Box 301, Harbin 150001, People’s Republic of China article info abstract Article history: This review is focused on the most recent research on multifunctional shape memory polymer nanocom- Received 19 February 2017 posites reinforced by various nanoparticles. Different multifunctional shape memory nanocomposites Received in revised form 22 April 2017 responsive to different kinds of stimulation methods, including thermal responsive, electro-activated, Accepted 28 April 2017 alternating magnetic field responsive, light sensitive and water induced SMPs, are discussed separately. Available online 2 May 2017 This review offers a comprehensive discussion on the mechanism, advantages and disadvantages of each actuation methods. In addition to presenting the micro- and macro- morphology and mechanical prop- Keywords: erties of shape memory polymer nanocomposites, this review demonstrates the shape memory perfor- Shape memory polymer mance and the potential applications of multifunctional shape memory polymer nanocomposites Nanocomposites Multifunctional under different stimulation methods. Actuation Ó 2017 Elsevier Ltd. All rights reserved. Contents 1. Introduction .......................................................................................................... 20 2. Thermo-responsive SMP nanocomposites.
    [Show full text]
  • Non-Spherical Nanoparticles in Block Copolymer Composites: Nanosquares, Nanorods and Diamonds
    Non-spherical nanoparticles in block copolymer composites: nanosquares, nanorods and diamonds Javier Diaz1, Marco Pinna∗1, Andrei V. Zvelindovsky1 and Ignacio Pagonabarragay2,3,4 1Centre for Computational Physics, University of Lincoln. Brayford Pool, Lincoln, LN6 7TS, UK 2Departament de F´ısicade la Mat`eriaCondensada, Universitat de Barcelona, Mart´ıi Franqu`es1, 08028 Barcelona, Spain 3 CECAM, Centre Europ´eende Calcul Atomique et Mol´eculaire, Ecole´ Polytechnique F´ed´eralede Lausanne, Batochime - Avenue Forel 2, 1015 Lausanne, Switzerland 4Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain October 28, 2019 For Table of Contents use only Abstract A hybrid block copolymer(BCP) nanocomposite computational model is proposed to study nanoparti- cles(NPs) with a generalised shape including squares, rectangles and rhombus. Simulations are used to study the role of anisotropy in the assembly of colloids within BCPs, ranging from NPs that are compat- ible with one phase, to neutral NPs. The ordering of square-like NPs into grid configurations within a minority BCP domain was investigated, as well as the alignment of nanorods in a lamellar-forming BCP, comparing the simulation results with experiments of mixtures of nanoplates and PS-b-PMMA BCP. The assembly of rectangular NPs at the interface between domains resulted in alignment along the interface. The aspect ratio is found to play a key role on the aggregation of colloids at the interface, which leads to a distinct co-assembly behaviour for low and high aspect ratio NPs. 1 Introduction Polymer nanocomposite materials containing anisotropic nanoparticles have attracted a lot of atten- tion due to their ability to create functional materials with enhanced properties 1.
    [Show full text]
  • Textile Nanocomposite of Polymer/Carbon Nanotube
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ivy Union Publishing (E-Journals) American Journal of Nanoscience and Nanotechnology ResearchPage 1 of 8 A Kausar et al. American Journal of Nanoscience & Nanotechnology Research. 2018, 6:28-35 http://www.ivyunion.org/index.php/ajnnr 2017, 5:21-40 Research Article Textile Nanocomposite of Polymer/Carbon Nanotube Ayesha Kausar* School of Natural Sciences, National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan Abstract: Carbon nanotube (CNT) possess outstanding electrical, mechanical, anisotropic, and thermal properties to be employed in several material science applications. Polymer/carbon nanotube forms an important class of nanocomposites for textile uses. Different techniques have been used to develop such textiles including dip coating, spraying, wet spinning, electrospinning, etc. Enhanced nanocomposite performance has been attributed to synergistic effect of polymer and carbon nanotube nanofiller. Textile performance of polymer/CNT nanocomposite has been potentially important for flame retardant clothing, electromagnetic shielding wear, anti-bacterial fabric, flexible sensors, and waste water treatment. In this article, researches on application areas of polymer/CNT in textile industry has been reviewed. Modification of nanotube may lead to variety of further functional textiles with different high performance properties. Keywords: Polymer; carbon nanotube; nanocomposite; textile Received: May 26, 2018; Accepted: June 28, 2018; Published: July 22, 2018 Competing Interests: The author has declared that no competing interests exist. Copyright: 2018 Kausar A et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation
    membranes Review A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation Oluranti Agboola 1,*, Ojo Sunday Isaac Fayomi 2, Ayoola Ayodeji 1, Augustine Omoniyi Ayeni 1 , Edith E. Alagbe 1, Samuel E. Sanni 1 , Emmanuel E. Okoro 3 , Lucey Moropeng 4, Rotimi Sadiku 4 , Kehinde Williams Kupolati 5 and Babalola Aisosa Oni 6 1 Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; [email protected] (A.A.); [email protected] (A.O.A.); [email protected] (E.E.A.); [email protected] (S.E.S.) 2 Department of Mechanical Engineering, Covenant University, Ota PMB 1023, Nigeria; [email protected] 3 Department of Petroleum Engineering, Covenant University, Ota PMB 1023, Nigeria; [email protected] 4 Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; [email protected] (L.M.); [email protected] (R.S.) 5 Department of Civil Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; [email protected] 6 Department of Chemical Engineering and Technology, China University of Petroleum, Beijing 102249, China; [email protected] * Correspondence: [email protected] Abstract: Globally, environmental challenges have been recognised as a matter of concern. Among Citation: Agboola, O.; Fayomi, O.S.I.; these challenges are the reduced availability and quality of drinking water, and greenhouse gases Ayodeji, A.; Ayeni, A.O.; Alagbe, E.E.; that give rise to change in climate by entrapping heat, which result in respirational illness from smog Sanni, S.E.; Okoro, E.E.; Moropeng, L.; and air pollution.
    [Show full text]
  • Electrospun Polyacrylonitrile Nanocomposite Fibers Reinforced
    Polymer 50 (2009) 4189–4198 Contents lists available at ScienceDirect Polymer journal homepage: www.elsevier.com/locate/polymer Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis Di Zhang a, Amar B. Karki b, Dan Rutman a, David P. Young b, Andrew Wang c, David Cocke a, Thomas H. Ho a, Zhanhu Guo a,* a Integrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA b Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA c Ocean NanoTech, LLC, 2143 Worth Ln., Springdale, AR 72764, USA article info abstract Article history: The manufacturing of pure polyacrylonitrile (PAN) fibers and magnetic PAN/Fe3O4 nanocomposite fibers is Received 12 June 2009 explored by an electrospinning process. A uniform, bead-free fiber production process is developed by Accepted 20 June 2009 optimizing electrospinning conditions: polymer concentration, applied electric voltage, feedrate, and Available online 30 June 2009 distance between needle tip to collector. The experiments demonstrate that slight changes in operating parameters may result in significant variations in the fiber morphology. The fiber formation mechanism for Keywords: both pure PAN and the Fe3O4 nanoparticles suspended in PAN solutions is explained from the rheologial Nanocomposite fibers behavior of the solution. The nanocomposite fibers were characterized by scanning electron microscopy Electrospinning Polyacronitrile (PAN) (SEM), Fourier transform infrared (FT-IR) spectrophotometer, and X-ray diffraction (XRD). FT-IR and XRD results indicate that the introduction of Fe3O4 nanoparticles into the polymer matrix has a significant effect on the crystallinity of PAN and a strong interaction between PAN and Fe3O4 nanoparticles.
    [Show full text]
  • Introducing a Novel Low Energy Gamma Ray Shield Utilizing
    www.nature.com/scientificreports OPEN Introducing a novel low energy gamma ray shield utilizing Polycarbonate Bismuth Oxide composite Rojin Mehrara1, Shahryar Malekie2, Seyed Mohsen Saleh Kotahi1 & Sedigheh Kashian2* The fabrication of diferent weight percentages of Polycarbonate-Bismuth Oxide composite (PC-Bi2O3), namely 0, 5, 10, 20, 30, 40, and 50 wt%, was done via the mixed-solution method. The dispersion state of the inclusions into the polymeric matrix was studied through XRD and SEM analyses. Also, TGA and DTA analyses were carried out to investigate the thermal properties of the samples. Results showed that increasing the amount of Bi2O3 into the polymer matrix shifted the glass transition temperature of the composites towards the lower temperatures. Then, the amount of mass attenuation coefcients of the samples were measured using a CsI(Tl) detector for diferent gamma rays of 241Am, 57Co, 99mTc, and 133Ba radioactive sources. It was obtained that increasing the concentration of the Bi2O3 fllers in the polycarbonate matrix resulted in increasing the attenuation coefcients of the composites signifcantly. The attenuation coefcient was enhanced twenty-three times for 50 wt% composite in 59 keV energy, comparing to the pure polycarbonate. X and γ-rays have a wide range of applications in military, medical, health, scientifc, and agricultural industries. Increasing the utilization of hazardous radiations, including gamma sources in hospitals and research centers for diagnostic and therapeutic applications, has provided a much more unsecured place for personnel. So there will be a need to design an appropriate shield, depends on the type of ionizing radiation, to reduce the radiation dose in the intended site1.
    [Show full text]
  • Michael R. Bockstaller
    Michael R. Bockstaller Professor, Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh PA 15213. Phone: (412) 268-2709; Fax: (412) 268-7247; E-mail: [email protected] Professional Preparation University of Karlsruhe, Karlsruhe (Germany) Chemistry (Diplom) 1990-1996 Johannes Gutenberg University, Mainz (Germany) Chemistry (Dr. rer. nat.) 2000-2005 Postdoctoral Associate, MIT, Cambridge MA Mat. Sci. & Eng. 2000-2004 Lecturer, RWTH Aachen, Aachen (Germany) Chemistry 2004-2005 Appointments 07/14 – present Professor, Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 03/11 – present Adjunct Professor, Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213 07/10 – 06/14 Associate Professor, Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 4/05 – 05/10 Assistant Professor, Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 3/04 – 3/05 Emmy-Noether Research Group Leader, Department of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen (Germany) 7/00 – 2/04 Postdoctoral Associate, Department of Materials Science and Engineering, MIT, Cambridge, 02139 MA 4/99 – 12/99 Visiting Scientist, Foundation of Research and Technology Hellas - Institute for Electronic Structure and Laser Technology, Iraklion (Greece) 1/98 – 12/98 Teaching Assistant, Dept. of Chemistry., Johannes Gutenberg University, Mainz (Germany) 9/97 – 7/00 Research Assistant, Max-Planck Institute for Polymer Research, Mainz (Germany) Awards and Honors 2014 Fellow of the American Physical Society 2008 The Philbrook Prize (by the Department of Materials Science and Engineering) 2003 Emmy Noether grant recipient of the German Science Foundation 2000 Feodor-Lynen fellowship award by Alexander von Humboldt Foundation Membership and Activities in Honorary Fraternities, Professional Societies 1.
    [Show full text]
  • Effect of Copolymer Sequence on Local Viscoelastic Properties in Spherical
    Effect of copolymer sequence on local viscoelastic properties in spherical coordinates around a nanoparticle Mitchell F. Wendt,y Advisors: Alex J. Trazkovich,y,z and Lisa M. Hall∗,y yWilliam G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 W 19th Ave., Columbus, OH 43210 zSEA Limited, 7001 Buffalo Parkway, Columbus, OH 43229 E-mail: [email protected],[email protected],[email protected] Abstract A polymer nanocomposite consisting of a spherical nanoparticle surrounded by coarse-grained polymer chains is simulated. Two monomer types make up the poly- mers, differing only in their interactions with the nanoparticle. All atomic stress fluctu- ations are measured, converted to spherical coordinates centered around the nanopar- ticle, and used to estimate the local stress autocorrelation as a function of distance from the nanoparticle. The local stress autocorrelation is substituted into the relation- ship between the bulk stress autocorrelation and bulk dynamic modulus, analyzed in both radial shear and tangential shear geometries. The result is then treated as an es- timate of the local dynamic modulus. This allows us to separate radial and tangential effects on overall dynamic modulus as a function of distance from the nanoparticle for multiple copolymer sequences. Unlike the direction-independent results, short block length copolymer sequences exhibit a non-monotonic progression of the magnitude of the tan(δ) (hysteresis) peak over distance to the nanoparticle, suggesting that adjusting copolymer sequence could significantly control observed nanocomposite dynamics. 1 Introduction Note: Some text and figures are adapted and reprinted with permission from A.J. Trazkovich.; M.F.Wendt.; L.M.
    [Show full text]
  • Smart Polymers in Micro and Nano Sensory Devices
    chemosensors Review Smart Polymers in Micro and Nano Sensory Devices José Antonio Reglero Ruiz * ID , Ana María Sanjuán, Saúl Vallejos, Félix Clemente García and José Miguel García ID Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; [email protected] (A.M.S.); [email protected] (S.V.); [email protected] (F.C.G.); [email protected] (J.M.G.) * Correspondence: [email protected]; Tel.: +34-947-258-085 Received: 25 February 2018; Accepted: 19 March 2018; Published: 21 March 2018 Abstract: The present review presents the most recent developments concerning the application of sensory polymers in the detection and quantification of different target species. We will firstly describe the main polymers that are being employed as sensory polymers, including, for example, conducting or acrylate-based polymers. In the second part of the review, we will briefly describe the different mechanisms of detection and the target species, such as metal cations and anions, explosives, and biological and biomedical substances. To conclude, we will describe the advancements in recent years concerning the fabrication of micro and nano sensory devices based on smart polymers, with a bibliographic revision of the research work published between 2005 and today, with special emphasis on research work presented since 2010. A final section exposing the perspectives and challenges of this interesting research line will end the present review article. Keywords: sensors; smart polymers; detection; sensory devices 1. Introduction Sensory or smart polymers present the ability to respond, reversibly or irreversibly, to different stimuli. Different sources can cause these responses: Temperature [1], electromagnetic pulses [2], biological molecules [3] or Ph media [4].
    [Show full text]
  • The Siege of Khe Sahn by Kyle Lockwood
    PRESRT STD US POSTAGE DISPATCHES PAID BAKERSFIELD CA PERMIT NO 66 FROM DECISION GAMES #29 FALL 2015 (661) 587-9633 | (661) 587-5031 fax | P.O. Box 21598 | Bakersfield CA 93390 | DECISIONGAMES.COM SAMPLE FROM MODERN WAR #21 The Siege of Khe Sahn by Kyle Lockwood t dawn on 21 January 1968 a wave of North Vietnamese troops descended upon the American airbase at Khe Sahn. For weeks A the airfield had come under sporadic fire and bombardment from NVA artillery. US intelligence had been reporting that multiple regiments of North Vietnamese troops had penetrated into the region surrounding the airfield and were poised to strike at any time. For the next six months, American and South Vietnamese troops fought a vicious battle of attrition with the North Vietnamese defending the airfield, and nearly caused the United States to unleash its nuclear arsenal. The Khe Sahn airfield was located just below the DMZ between North and South Vietnam. It had served as a Special Forces outpost in the early phase of American operations in Vietnam before being established as an anchor point for US Marine operations in the northern part of South Vietnam. In April 1967 the North Vietnamese launched their first offensive US Marines take cover during the Siege of Khe Sahn. continued on page 3 » Dispatch #29 | DECISION GAMES 1 2015-2016 ARTICLE LINE-UP ❖ Battle of Nam Dong | Operation Musketeer | Armies & Strategies: Suez 1956 | East African Insurgencies | China’s Liaoning Aircraft Carrier | Iraqi Army vs. ISIS | Matador Missiles Red Dragon Falling | Battle of Chinese
    [Show full text]