Secondary Metabolites of the Rice Blast Fungus Pyricularia Oryzae: Biosynthesis and Biological Function

Total Page:16

File Type:pdf, Size:1020Kb

Secondary Metabolites of the Rice Blast Fungus Pyricularia Oryzae: Biosynthesis and Biological Function International Journal of Molecular Sciences Review Secondary Metabolites of the Rice Blast Fungus Pyricularia oryzae: Biosynthesis and Biological Function Takayuki Motoyama Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama 351-0198, Japan; [email protected] Received: 31 August 2020; Accepted: 17 November 2020; Published: 18 November 2020 Abstract: Plant pathogenic fungi produce a wide variety of secondary metabolites with unique and complex structures. However, most fungal secondary metabolism genes are poorly expressed under laboratory conditions. Moreover, the relationship between pathogenicity and secondary metabolites remains unclear. To activate silent gene clusters in fungi, successful approaches such as epigenetic control, promoter exchange, and heterologous expression have been reported. Pyricularia oryzae, a well-characterized plant pathogenic fungus, is the causal pathogen of rice blast disease. P. oryzae is also rich in secondary metabolism genes. However, biosynthetic genes for only four groups of secondary metabolites have been well characterized in this fungus. Biosynthetic genes for two of the four groups of secondary metabolites have been identified by activating secondary metabolism. This review focuses on the biosynthesis and roles of the four groups of secondary metabolites produced by P. oryzae. These secondary metabolites include melanin, a polyketide compound required for rice infection; pyriculols, phytotoxic polyketide compounds; nectriapyrones, antibacterial polyketide compounds produced mainly by symbiotic fungi including endophytes and plant pathogens; and tenuazonic acid, a well-known mycotoxin produced by various plant pathogenic fungi and biosynthesized by a unique NRPS-PKS enzyme. Keywords: plant pathogenic fungus; Magnaporthe oryzae; secondary metabolite biosynthetic gene cluster; biological function 1. Introduction Filamentous fungi, including plant pathogenic fungi, produce a wide variety of secondary metabolites with unique and complex structures. However, the relationship between pathogenicity and secondary metabolites remains unclear in most cases. Filamentous fungi are a rich source of secondary metabolites for drug development. Whole-genome sequencing analyses have revealed that filamentous fungi possess many more secondary metabolism genes than expected, suggesting that most secondary metabolite biosynthetic genes are silent under laboratory conditions. To utilize fungal secondary metabolite production ability, secondary metabolism genes have been activated through many approaches, including epigenetic control, manipulation of global regulators, ribosome engineering, overexpression of pathway-specific transcription factors, co-culture, and heterologous expression of secondary metabolite gene clusters [1–4]. Pyricularia oryzae (syn. Magnaporthe oryzae) is the causal pathogen of rice blast disease and is a well-characterized plant pathogen. P. oryzae infects rice plants through an infection-specific organ, the appressorium, and proliferates inside the rice plant via filamentous growth and causes rice blast disease [5]. P. oryzae is also rich in secondary metabolism genes and shown to have 22 polyketide synthase (PKS) genes and eight non-ribosomal peptide synthetase (NRPS) genes [6,7]. Biosynthetic genes for only four groups of secondary metabolites (melanin, pyriculols, nectriapyrones, Int. J. Mol. Sci. 2020, 21, 8698; doi:10.3390/ijms21228698 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 17 tenuazonicInt. J. Mol. Sci. acid)2020, 21have, 8698 been well characterized in P. oryzae (Figure 1). Biosynthetic genes for 2two of 16 (nectryapyrones and tenuazonic acid) of the four groups of secondary metabolites have been identified by activating secondary metabolism. andHere, tenuazonic I review acid) the have biosynthesis been well and characterized biological inrolesP. oryzae of secondary(Figure1 ).metabolites Biosynthetic in genesthe rice for blast two fungus(nectryapyrones P. oryzae. andThis tenuazonic review mainly acid) focuses of the four on the groups four of groups secondary of secondary metabolites metabolites have been shown identified in Figureby activating 1. secondary metabolism. Figure 1. Chemical structures of secondary metabolites from the rice blast fungus P. oryzae. Figure 1. Chemical structures of secondary metabolites from the rice blast fungus P. oryzae. Here, I review the biosynthesis and biological roles of secondary metabolites in the rice blast 2. Melanin fungus P. oryzae. This review mainly focuses on the four groups of secondary metabolites shown in FigureP. oryzae1. produces the black pigment melanin (Figure 1), which is essential for rice infection [8]. Melanin is not a toxin, but this secondary metabolite is essential for infection by the mechanism shown2. Melanin below. P. oryzae forms an infection-specific organ, appressorium, and infects rice plants throughP.oryzae this organ.produces Appressorium the black pigment formation melanin and appressorium (Figure1), which melanin is essential formation for riceare essential infection for [ 8]. riceMelanin infection. is not The a invasion toxin, but of thisrice secondaryplants is achieved metabolite by an is infection essential peg for infectionthat is formed by the at mechanismthe base of anshown appressorium, below. P. oryzae whichforms adheres an infection-specific tightly to the ho organ,st surface. appressorium, For successful and infects penetration rice plants from through the infectionthis organ. peg, Appressoriummechanical force formation exerted by and appressori appressoriuma is necessary melanin [8]. formation An appressorial are essential melanin for layer rice betweeninfection. the The cell invasion wall and of cell rice membrane plants is achieved is required by for an infectionthe generation peg that of the is formed mechanical at the force. base ofThe an turgorappressorium, forces are which focused adheres toward tightly the epidermal to the host surfac surface.es of For the successful rice plant, penetration and the pressure from the inside infection the appressoriapeg, mechanical has been force estimated exerted by to appressoria be as high as is necessary8 MPa [9,10]. [8]. AnThis appressorial pressure can melanin be produced layer between by 3.2 Mthe glycerol cell wall andformed cell membraneinside the is requiredappressorium for the [1 generation1]. Melanin of the was mechanical proposed force. to Thefunction turgor forcesas a semipermeableare focused toward membrane the epidermal that passes surfaces water of but the not rice glycerol plant, and and the as pressure a structural inside support the appressoria for this very has highbeen pressure. estimated to be as high as 8 MPa [9,10]. This pressure can be produced by 3.2 M glycerol formed insideMelanin the appressorium is a well-known [11]. Melaninblack pi wasgment proposed of biological to function origin. as aOn semipermeablee type of fungal membrane melanin that is dihydroxynaphthalenepasses water but not glycerol (DHN)-melanin, and as a structural which is support biosynthesized for this very by highpolymerizing pressure. the polyketide compoundMelanin 1,8-dihydroxynaphthalene is a well-known black pigment(1,8-DHN) of biological[12,13]. P. origin. oryzae Oneproduces type ofDHN-melanin fungal melanin and is biosyntheticdihydroxynaphthalene genes have been (DHN)-melanin, identified, and which the bi isosynthetic biosynthesized pathway by has polymerizing been elucidated the polyketide(Figure 2) [14–17].compound The 1,8-dihydroxynaphthalenePKS enzyme ALB1/MGG_07219 (1,8-DHN) biosynthesizes [12,13]. P. oryzaethe backboneproduces compound DHN-melanin 1,3,6,8- and tetrahydroxynaphthalenebiosynthetic genes have (1,3,6,8-THN). been identified, Melanin and the was biosynthetic originally pathwayproposed has as beena pentaketide elucidated compound.(Figure2)[ 14However,–17]. The from PKS the enzyme analysis ALB1 of/MGG_07219 an ALB1 homolog biosynthesizes in a theclosely backbone related compound fungus, Colletotrichum1,3,6,8-tetrahydroxynaphthalene lagenarium, it has been (1,3,6,8-THN). shown that Melanin melanin was is originally a hexaketide proposed compound as a pentaketide and the backbonecompound. (1,3,6,8-THN) However, is frombiosynthesized the analysis using of an an acetyl-CoA ALB1 homolog and five in amalonyl-CoA closely related [18]. fungus,Then, 1,3,6,8-THNColletotrichum is lagenariumconverted, itto has 1,8-DHN been shown by using that melanin three enzymes: is a hexaketide 1,3,6,8-THN compound reductase and the (4HNR), backbone scytalone(1,3,6,8-THN) dehydratase is biosynthesized (SDH1/RSY1), using an and acetyl-CoA 1,3,8-trihydroxynaphthalene and five malonyl-CoA [18(1,3,8-THN)]. Then, 1,3,6,8-THN reductase is (3HNR/BUF1).converted to 1,8-DHN Finally, by1,8-DHN using threeis polymerized enzymes: 1,3,6,8-THNto form DHN-melanin. reductase (4HNR), Melanin scytalone biosynthesis dehydratase can be induced(SDH1/RSY1), by epigenetic and 1,3,8-trihydroxynaphthalene control [19]. (1,3,8-THN) reductase (3HNR/BUF1). Finally, 1,8-DHN is polymerized to form DHN-melanin. Melanin biosynthesis can be induced by epigenetic control [19]. Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 17 Int. J. Mol. Sci. 2020, 21, 8698 3 of 16 Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 17 acetyl-CoA acetyl-CoA+ 5 x malonyl-CoA+ Melanin 5 x malonyl-CoA Melanin PKS ALB1 MBI-P polymerization PKS ALB1 MBI-P polymerization 4HNR SDH1/RSY1 3HNR/BUF1 SDH1/RSY1 +3HNR4HNR SDH1/RSY1 +4HNR3HNR/BUF1 SDH1/RSY1 +3HNR +4HNR reduction -H2O
Recommended publications
  • Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics
    toxins Article Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics Bryan John J. Subong 1,2,* , Arturo O. Lluisma 1, Rhodora V. Azanza 1 and Lilibeth A. Salvador-Reyes 1,* 1 Marine Science Institute, University of the Philippines- Diliman, Velasquez Street, Quezon City 1101, Philippines; [email protected] (A.O.L.); [email protected] (R.V.A.) 2 Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo 113-8654, Japan * Correspondence: [email protected] (B.J.J.S.); [email protected] (L.A.S.-R.) Abstract: Alexandrium minutum and Alexandrium tamutum are two closely related harmful algal bloom (HAB)-causing species with different toxicity. Using isobaric tags for relative and absolute quantita- tion (iTRAQ)-based quantitative proteomics and two-dimensional differential gel electrophoresis (2D-DIGE), a comprehensive characterization of the proteomes of A. minutum and A. tamutum was performed to identify the cellular and molecular underpinnings for the dissimilarity between these two species. A total of 1436 proteins and 420 protein spots were identified using iTRAQ-based proteomics and 2D-DIGE, respectively. Both methods revealed little difference (10–12%) between the proteomes of A. minutum and A. tamutum, highlighting that these organisms follow similar cellular and biological processes at the exponential stage. Toxin biosynthetic enzymes were present in both organisms. However, the gonyautoxin-producing A. minutum showed higher levels of osmotic growth proteins, Zn-dependent alcohol dehydrogenase and type-I polyketide synthase compared to the non-toxic A. tamutum. Further, A. tamutum had increased S-adenosylmethionine transferase that may potentially have a negative feedback mechanism to toxin biosynthesis.
    [Show full text]
  • Diversity and Evolution of Secondary Metabolism in the Marine
    Diversity and evolution of secondary metabolism in the PNAS PLUS marine actinomycete genus Salinispora Nadine Ziemert, Anna Lechner, Matthias Wietz, Natalie Millán-Aguiñaga, Krystle L. Chavarria, and Paul Robert Jensen1 Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093 Edited* by Christopher T. Walsh, Harvard Medical School, Boston, MA, and approved February 6, 2014 (received for review December 30, 2013) Access to genome sequence data has challenged traditional natural The pathways responsible for secondary metabolite biosynthesis product discovery paradigms by revealing that the products of most are among the most rapidly evolving genetic elements known (5). bacterial biosynthetic pathways have yet to be discovered. Despite It has been shown that gene duplication, loss, and HGT have all the insight afforded by this technology, little is known about the played important roles in the distribution of PKSs among diversity and distributions of natural product biosynthetic pathways microbes (8, 9). Changes within PKS and NRPS genes also include among bacteria and how they evolve to generate structural di- mutation, domain rearrangement, and module duplication (5), all versity. Here we analyze genome sequence data derived from 75 of which can account for the generation of new small-molecule strains of the marine actinomycete genus Salinispora for pathways diversity. The evolutionary histories of specific PKS and NRPS associated with polyketide and nonribosomal peptide biosynthesis, domains have proven particularly informative, with KS and C the products of which account for some of today’s most important domains providing insight into enzyme architecture and function medicines.
    [Show full text]
  • N-Carbamoylation of 2,4-Diaminobutyrate Reroutes the Outcome in Padanamide Biosynthesis
    Chemistry & Biology Article N-Carbamoylation of 2,4-Diaminobutyrate Reroutes the Outcome in Padanamide Biosynthesis Yi-Ling Du,1 Doralyn S. Dalisay,1 Raymond J. Andersen,1,2 and Katherine S. Ryan1,* 1Department of Chemistry 2Department of Earth, Ocean and Atmospheric Sciences University of British Columbia, Vancouver, BC V6T 1Z1, Canada *Correspondence: [email protected] http://dx.doi.org/10.1016/j.chembiol.2013.06.013 SUMMARY literature. It is interesting that a compound identical to padana- mide A, named actinoramide A (Nam et al., 2011), was indepen- Padanamides are linear tetrapeptides notable for the dently reported from Streptomyces sp. CNQ-027. This actinomy- absence of proteinogenic amino acids in their struc- cete strain was isolated from sediment on the opposite side of the tures. In particular, two unusual heterocycles, (S)- Pacific Ocean, near San Diego, CA, suggesting a potentially wide 3-amino-2-oxopyrrolidine-1-carboxamide (S-Aopc) distribution of the padanamides/actinoramides. It is intriguing and (S)-3-aminopiperidine-2,6-dione (S-Apd), are that, whereas padanamide A and actinoramide A are identical, found at the C-termini of padanamides A and B, the minor compounds (actinoramides B and C) co-isolated from Streptomyces sp. CNQ-027 are unique (Figure 1A). Total respectively. Here we identify the padanamide synthesis of padanamides A and B was recently reported (Long biosynthetic gene cluster and carry out systematic et al., 2013), confirming the previous structural elucidations. gene inactivation studies. Our results show that The padanamides attracted our attention for their many padanamides are synthesized by highly dissociated unusual chemical features.
    [Show full text]
  • Polyketide Biosynthesis Beyond the Type I, II and III Polyketide Synthase Paradigms Ben Shen
    285 Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms Ben Shen Recent literature on polyketide biosynthesis suggests that Three types of bacterial PKSs are known to date. First, polyketide synthases have much greater diversity in both type I PKSs are multifunctional enzymes that are orga- mechanism and structure than the current type I, II and III nized into modules, each of which harbors a set of distinct, paradigms. These examples serve as an inspiration for searching non-iteratively acting activities responsible for the cata- novel polyketide synthases to give new insights into polyketide lysis of one cycle of polyketide chain elongation, as biosynthesis and to provide new opportunities for combinatorial exemplified by the 6-deoxyerythromycin B synthase biosynthesis. (DEBS) for the biosynthesis of reduced polyketides (i.e. macrolides, polyethers and polyene) such as erythro- Addresses mycin A (1)(Figure 1a) [1]. Second, type II PKSs are Division of Pharmaceutical Sciences and Department of Chemistry, multienzyme complexes that carry a single set of iteratively University of Wisconsin, Madison, WI 53705, USA acting activities, as exemplified by the tetracenomycin e-mail: [email protected] PKS for the biosynthesis of aromatic polyketides (often polycyclic) such as tetracenomycin C (2)(Figure 1b) [2]. Current Opinion in Chemical Biology 2003, 7:285–295 Third, type III PKSs, also known as chalcone synthase- like PKSs, are homodimeric enzymes that essentially are This review comes from a themed section on iteratively acting condensing enzymes, as exemplified by Biocatalysis and biotransformation Edited by Tadhg Begley and Ming-Daw Tsai the RppA synthase for the biosynthesis of aromatic poly- ketides (often monocyclic or bicyclic), such as flavolin (3) 1367-5931/03/$ – see front matter (Figure 1c) [3].
    [Show full text]
  • Physiological and Transcriptomic Analyses Reveal the Roles Of
    Jia et al. BMC Genomics (2020) 21:861 https://doi.org/10.1186/s12864-020-07279-2 RESEARCH ARTICLE Open Access Physiological and transcriptomic analyses reveal the roles of secondary metabolism in the adaptive responses of Stylosanthes to manganese toxicity Yidan Jia1,2†, Xinyong Li1†, Qin Liu3, Xuan Hu1, Jifu Li1,2, Rongshu Dong1, Pandao Liu1, Guodao Liu1, Lijuan Luo2* and Zhijian Chen1,2* Abstract Background: As a heavy metal, manganese (Mn) can be toxic to plants. Stylo (Stylosanthes) is an important tropical legume that exhibits tolerance to high levels of Mn. However, little is known about the adaptive responses of stylo to Mn toxicity. Thus, this study integrated both physiological and transcriptomic analyses of stylo subjected to Mn toxicity. Results: Results showed that excess Mn treatments increased malondialdehyde (MDA) levels in leaves of stylo, resulting in the reduction of leaf chlorophyll concentrations and plant dry weight. In contrast, the activities of enzymes, such as peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO), were significantly increased in stylo leaves upon treatment with increasing Mn levels, particularly Mn levels greater than 400 μM. Transcriptome analysis revealed 2471 up-regulated and 1623 down-regulated genes in stylo leaves subjected to Mn toxicity. Among them, a set of excess Mn up-regulated genes, such as genes encoding PAL, cinnamyl-alcohol dehydrogenases (CADs), chalcone isomerase (CHI), chalcone synthase (CHS) and flavonol synthase (FLS), were enriched in secondary metabolic processes based on gene ontology (GO) analysis. Numerous genes associated with transcription factors (TFs), such as genes belonging to the C2H2 zinc finger transcription factor, WRKY and MYB families, were also regulated by Mn in stylo leaves.
    [Show full text]
  • Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era
    microorganisms Review Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era 1, 1, 1,2, Rahul Mahadev Shelake y , Dibyajyoti Pramanik y and Jae-Yean Kim * 1 Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea 2 Division of Life Science (CK1 Program), Gyeongsang National University, Jinju 660-701, Korea * Correspondence: [email protected] These authors contributed equally to this work. y Received: 19 July 2019; Accepted: 14 August 2019; Published: 17 August 2019 Abstract: Plants and microbes are co-evolved and interact with each other in nature. Plant-associated microbes, often referred to as plant microbiota, are an integral part of plant life. Depending on the health effects on hosts, plant–microbe (PM) interactions are either beneficial or harmful. The role of microbiota in plant growth promotion (PGP) and protection against various stresses is well known. Recently, our knowledge of community composition of plant microbiome and significant driving factors have significantly improved. So, the use of plant microbiome is a reliable approach for a next green revolution and to meet the global food demand in sustainable and eco-friendly agriculture. An application of the multifaceted PM interactions needs the use of novel tools to know critical genetic and molecular aspects. Recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing (GE) tools are of great interest to explore PM interactions. A systematic understanding of the PM interactions will enable the application of GE tools to enhance the capacity of microbes or plants for agronomic trait improvement.
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • Agricultural Bioterrorism
    From the pages of Recent titles Agricultural Bioterrorism: A Federal Strategy to Meet the Threat Agricultural in the McNair MCNAIR PAPER 65 Bioterrorism: Paper series: A Federal Strategy to Meet the Threat 64 The United States ignores the The Strategic Implications of a Nuclear-Armed Iran Agricultural potential for agricultural bioter- Kori N. Schake and rorism at its peril. The relative Judith S. Yaphe Bioterrorism: ease of a catastrophic bio- weapons attack against the 63 A Federal Strategy American food and agriculture All Possible Wars? infrastructure, and the devastat- Toward a Consensus View of the Future Security to Meet the Threat ing economic and social conse- Environment, 2001–2025 quences of such an act, demand Sam J. Tangredi that the Nation pursue an aggres- sive, focused, coordinated, and 62 stand-alone national strategy to The Revenge of the Melians: Asymmetric combat agricultural bioterrorism. Threats and the Next QDR The strategy should build on Kenneth F. McKenzie, Jr. counterterrorism initiatives already underway; leverage exist- 61 ing Federal, state, and local pro- Illuminating HENRY S. PARKER grams and capabilities; and Tomorrow’s War Martin C. Libicki involve key customers, stake- PARKER holders, and partners. The U.S. 60 Department of Agriculture The Revolution in should lead the development of Military Affairs: this strategy. Allied Perspectives Robbin F. Laird and Holger H. Mey Institute for National Strategic Studies National Defense University About the Author NATIONAL DEFENSE UNIVERSITY President: Vice Admiral Paul G. Gaffney II, USN Henry S. Parker is National Program Leader for Aquaculture at the Vice President: Ambassador Robin Lynn Raphel Agricultural Research Service in the U.S.
    [Show full text]
  • Investigation and Engineering of Polyketide Biosynthetic Pathways
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2017 Investigation and Engineering of Polyketide Biosynthetic Pathways Lei Sun Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biological Engineering Commons Recommended Citation Sun, Lei, "Investigation and Engineering of Polyketide Biosynthetic Pathways" (2017). All Graduate Theses and Dissertations. 6903. https://digitalcommons.usu.edu/etd/6903 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INVESTIGATION AND ENGINEERING OF POLYKETIDE BIOSYNTHETIC PATHWAYS by Lei Sun A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPHY in Biological Engineering Approved: ______________________ ____________________ Jixun Zhan, Ph.D. David W. Britt, Ph.D. Major Professor Committee Member ______________________ ____________________ Dong Chen, Ph.D. Jon Takemoto, Ph.D. Committee Member Committee Member ______________________ ____________________ Elizabeth Vargis, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2017 ii Copyright© Lei Sun 2017 All Rights Reserved iii ABSTRACT Investigation and engineering of polyketide biosynthetic pathways by Lei Sun, Doctor of Philosophy Utah State University, 2017 Major Professor: Jixun Zhan Department: Biological Engineering Polyketides are a large family of natural products widely found in bacteria, fungi and plants, which include many clinically important drugs such as tetracycline, chromomycin, spirolaxine, endocrocin and emodin.
    [Show full text]
  • Primary and Secondary Metabolites
    PRIMARY AND SECONDARY METABOLITES INRODUCTION Metabolism-Metabolism constituents all the chemical transformations occurring in the cells of living organisms and these transformations are essential for life of an organism. Metabolites-End product of metabolic processes and intermediates formed during metabolic processes is called metabolites. Types of Metabolites Primary Secondary metabolites metabolites Primary metabolites A primary metabolite is a kind of metabolite that is directly involved in normal growth, development, and reproduction. It usually performs a physiological function in the organism (i.e. an intrinsic function). A primary metabolite is typically present in many organisms or cells. It is also referred to as a central metabolite, which has an even more restricted meaning (present in any autonomously growing cell or organism). Some common examples of primary metabolites include: ethanol, lactic acid, and certain amino acids. In higher plants such compounds are often concentrated in seeds and vegetative storage organs and are needed for physiological development because of their role in basic cell metabolism. As a general rule, primary metabolites obtained from higher plants for commercial use are high volume-low value bulk chemicals. They are mainly used as industrial raw materials, foods, or food additives and include products such as vegetable oils, fatty acids (used for making soaps and detergents), and carbohydrates (for example, sucrose, starch, pectin, and cellulose). However, there are exceptions to this rule. For example, myoinositol and ß-carotene are expensive primary metabolites because their extraction, isolation, and purification are difficult. carbohydr -ates hormones proteins Examples Nucleic lipids acids A plant produces primary metabolites that are involved in growth and metabolism.
    [Show full text]
  • Rewiring Yarrowia Lipolytica Toward Triacetic Acid Lactone for Materials Generation
    Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation Kelly A. Markhama,1, Claire M. Palmerb,1, Malgorzata Chwatkoa, James M. Wagnera, Clare Murraya, Sofia Vazqueza, Arvind Swaminathana, Ishani Chakravartya, Nathaniel A. Lynda, and Hal S. Alpera,b,2 aMcKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712; and bInstitute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 Edited by Sang Yup Lee, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea, and approved January 22, 2018 (received for review December 6, 2017) Polyketides represent an extremely diverse class of secondary me- or challenging syntheses, this is not an option for any larger-scale tabolites often explored for their bioactive traits. These molecules are chemistry application. also attractive building blocks for chemical catalysis and polymeriza- Here, we focus on the interesting, yet simple, polyketide, tri- tion. However, the use of polyketides in larger scale chemistry acetic acid lactone (TAL) as it is derived from two common applications is stymied by limited titers and yields from both microbial polyketide precursors, acetyl–CoA and malonyl–CoA. TAL has and chemical production. Here, we demonstrate that an oleaginous been demonstrated as a platform chemical that can be converted organism (specifically, Yarrowia lipolytica) can overcome such produc- into a variety of valuable products traditionally derived from tion limitations owing to a natural propensity for high flux through fossil fuels including sorbic acid, a common food preservative acetyl–CoA. By exploring three distinct metabolic engineering strate- with a global demand of 100,000 t (1, 15–18).
    [Show full text]
  • Substrate Channeling in Proline Metabolism Benjamin W
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Biochemistry -- Faculty Publications Biochemistry, Department of 2012 Substrate channeling in proline metabolism Benjamin W. Arentson University of Nebraska-Lincoln, [email protected] Nikhilesh Sanyal University of Nebraska-Lincoln, [email protected] Donald F. Becker University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/biochemfacpub Part of the Biochemistry Commons, Biotechnology Commons, and the Other Biochemistry, Biophysics, and Structural Biology Commons Arentson, Benjamin W.; Sanyal, Nikhilesh; and Becker, Donald F., "Substrate channeling in proline metabolism" (2012). Biochemistry -- Faculty Publications. 303. http://digitalcommons.unl.edu/biochemfacpub/303 This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biochemistry -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. NIH Public Access Author Manuscript Front Biosci. Author manuscript; available in PMC 2013 January 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Front Biosci. ; 17: 375–388. Substrate channeling in proline metabolism Benjamin W. Arentson1, Nikhilesh Sanyal1, and Donald F. Becker1 1Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA Abstract Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism.
    [Show full text]