126 Structure and Bonding

Total Page:16

File Type:pdf, Size:1020Kb

126 Structure and Bonding 126 Structure and Bonding Series Editor: D. M. P.Mingos Editorial Board: P. Day · X. Duan · T. J. Meyer G.Parkin·H.W.Roesky·J.-P.Sauvage Structure and Bonding Series Editor: D. M. P.Mingos Recently Published and Forthcoming Volumes Halogen Bonding Magnetic Functions Beyond Fundamentals and Applications the Spin-Hamiltonian Volume Editors: Metrangolo, P., Resnati, G. Volume Editor: Mingos, D. M. P. Vol. 126, 2008 Vol. 117, 2005 High Energy Density Materials Intermolecular Forces and Clusters II Volume Editor: Klapötke, T. H. VolumeEditor:Wales,D.J. Vol. 125, 2007 Vol. 116, 2005 Ferro- and Antiferroelectricity Intermolecular Forces and Clusters I Volume Editors: Dalal, N. S., VolumeEditor:Wales,D.J. Bussmann-Holder, A. Vol. 115, 2005 Vol. 124, 2007 Superconductivity in Complex Systems Photofunctional Transition Metal Complexes Volume Editors: Müller, K. A., Volume Editor: V.W.W. Yam Bussmann-Holder, A. Vol. 123, 2007 Vol. 114, 2005 Single-Molecule Magnets Principles and Applications and Related Phenomena of Density Functional Theory Volume Editor: Winpenny, R. in Inorganic Chemistry II Vol. 122, 2006 Volume Editors: Kaltsoyannis, N., McGrady, J. E. Non-Covalent Multi-Porphyrin Assemblies Vol. 113, 2004 Synthesis and Properties Volume Editor: Alessio, E. Principles and Applications Vol. 121, 2006 of Density Functional Theory in Inorganic Chemistry I Recent Developments in Mercury Sience Volume Editors: Volume Editor: Atwood, David A. Kaltsoyannis, N., McGrady, J. E. Vol. 120, 2006 Vol. 112, 2004 Layered Double Hydroxides Supramolecular Assembly Volume Editors: Duan, X., Evans, D. G. via Hydrogen Bonds II Vol. 119, 2005 Volume Editor: Mingos, D. M. P. Vol. 111, 2004 Semiconductor Nanocrystals and Silicate Nanoparticles Applications of Evolutionary Computation Volume Editors: Peng, X., Mingos, D. M. P. in Chemistry Vol. 118, 2005 Volume Editors: Johnston, R. L. Vol. 110, 2004 Halogen Bonding Fundamentals and Applications Volume Editors: P. Metrangolo · G. Resnati With contributions by H.D.Arman·S.Biella·D.W.Bruce·M.Fourmigué·T.W.Hanks A. Karpfen · J. K. Kochi · A. C. Legon · P. Metrangolo W.T. Pennington · T. Pilati · G. Resnati · S. V. Rosokha 123 The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table. It focuses attention on new and developing areas of modern structural and theoretical chemistry such as na- nostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supra- molecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. As a rule, contributions are specially commissioned. The editors and publishers will, however, always be pleased to receive suggestions and supplementary information. Papers are accepted for Structure and Bonding in English. In references Structure and Bonding is abbeviated Struct Bond and is cited as a journal. Springer WWW home page: springer.com Visit the Struct Bond content at springerlink.com Library of Congress Control Number: 2007936637 ISSN 0081-5993 ISBN 978-3-540-74329-3 Springer Berlin Heidelberg New York DOI 10.1007/978-3-540-74330-9 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad- casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com c Springer-Verlag Berlin Heidelberg 2008 The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg Typesetting and Production: LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig Printed on acid-free paper 02/3180 YL – 5 4 3 2 1 0 Series Editor Prof. D. Michael P. Mingos Principal St. Edmund Hall Oxford OX1 4AR, UK [email protected] Volume Editors Pierangelo Metrangolo Giuseppe Resnati Department of Chemistry, Materials, Department of Chemistry, Materials, Chemical Engineering “Giulio Natta” Chemical Engineering “Giulio Natta” Politecnico di Milano Politecnico di Milano Via Mancinelli 7 Via Mancinelli 7 20131 Milano, Italy 20131 Milano, Italy [email protected] [email protected] Editorial Board Prof. Peter Day Prof. Gerard Parkin Director and Fullerian Professor Department of Chemistry (Box 3115) of Chemistry Columbia University The Royal Institution of Great Britain 3000 Broadway 21 Albermarle Street New York, New York 10027, USA London W1X 4BS, UK [email protected] [email protected] Prof. Herbert W. Roesky Prof. Xue Duan Institut for Anorganic Chemistry Director University of Göttingen State Key Laboratory Tammannstr. 4 of Chemical Resource Engineering 37077 Göttingen, Germany Beijing University of Chemical Technology [email protected] 15 Bei San Huan Dong Lu Beijing 100029, P.R. China Prof. Jean-Pierre Sauvage [email protected] Faculté de Chimie Prof. Thomas J. Meyer Laboratoires de Chimie Organo-Minérale Department of Chemistry Université Louis Pasteur Campus Box 3290 4, rue Blaise Pascal Venable and Kenan Laboratories 67070 Strasbourg Cedex, France The University of North Carolina [email protected] and Chapel Hill Chapel Hill, NC 27599-3290, USA [email protected] Structure and Bonding Also Available Electronically For all customers who have a standing order to Structure and Bonding, we offer the electronic version via SpringerLink free of charge. Please contact your librarian who can receive a password or free access to the full articles by registering at: springerlink.com If you do not have a subscription, you can still view the tables of contents of the volumes and the abstract of each article by going to the SpringerLink Home- page, clicking on “Browse by Online Libraries”, then “Chemical Sciences”, and finally choose Structure and Bonding. You will find information about the – Editorial Board –AimsandScope – Instructions for Authors –SampleContribution at springer.com using the search function. Preface Halogen atoms in organic compounds can typically be found at the periphery of molecules. For this reason, they are ideally positioned to be involved in intermolecular interactions. Indeed, halogen atoms are frequently involved in a wide variety of non-covalent interactions which can be remarkably different regarding their energetic and geometric features. Theoretical studies predict thattheelectrondensitydistributionaroundhalogenatomsformsanellipsoid elongated in the direction perpendicular to the covalent bond axis. A clear trend of increasing electropositive potential develops along the covalent bond axis upon increasing the polarizability and atomic mass of the halogen. Exper- imental results confirm this anisotropic distribution and prove the amphoteric character of halogens. This can produce interactions in a direction perpendic- ular to the covalent bond axis when the halogen is the electron donor (Lewis base), and along the axis when the halogen is the electron acceptor (Lewis acid). This book focuses on the interactions wherein halogens work as elec- trophilic species and interact with electron rich sites (namely, electronegative partners). Of the numerous non-covalent interactions involving halogens, this particular subset is typically referred to as halogen bonding. The book begins by introducing theoretical calculations on the characteristics of halogen bond- ing (A. Karpfen), then focuses on the adducts wherein the electron donor is a lone pair possessing species (n donor). The complexes formed by halogens and interhalogens in the gas (A. Legon) and solid phase (W. T.Pennington et al.) are presented and the role of halocarbons in halogen bonding-based crystal en- gineeringisdiscussed(P.Metrangolo,G.Resnatietal.).Achapterexploringthe complexes in which halogen atoms interact with π electron donors (J. K. Kochi et al.) concludes the part of the book that deals with the generalities of halogen bonding. In contrast, the last two chapters of this book discuss halogen bonded adducts endowed with useful applicative properties. Among the many novel applications of halogen bonding, liquid crystals (D. Bruce) and conducting or magnetic materials (M. Fourmigue) are discussed as prototypical examples. The findings presented throughout this book consistently converge towards the use of the term halogen bonding, independent of the energy of the interac- tion or its prevailing character, whether electrostatic or charge-transfer. The effectiveness of a scientific concept and the associated terminology often rest X Preface on an optimized balance between generality, resulting in a wide applicability,
Recommended publications
  • Type II Halogen...Halogen Contacts Are Halogen Bonds
    scientific commentaries Type II halogenÁÁÁhalogen contacts are halogen IUCrJ bonds ISSN 2052-2525 CHEMISTRYjCRYSTENG Pierangelo Metrangolo* and Giuseppe Resnati Laboratory of Nanostructured Fluorinated Materials of the Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, Milano, 20131, Italy Halogenated phenols (HPs) are naturally present in the marine environment (Gribble, 2010). They are also important man-made compounds owing to their chemical inertness and applications in many industrial processes. For instance, chlorinated phenols, e.g. 2,4,6-trichlorophenol and its isomers, have been routinely used as pesticides, bactericides Keywords: halogen bonds; halogenated phenols and fungicides, and a number of tribromophenols are commercially produced as flame retardants and wood preservatives. The carbon–halogen bond can be quite stable in the environment and HPs are recalcitrant molecules, widespread organic pollutants found in air, water, soil and sedi- ments (Shao et al., 2011). The HPs mentioned above have, in fact, been detected and quantified in blood from birds, fish and mammals, including humans. The retention of HPs by living organisms is related to their structural resemblance to the thyroid hormones 3,30,5,50-tetraiodo-l-thyroxin (thyroxine, T4) and 3,30,5-triiodo-l-thyronine (T3). In fact, para-andmeta-halophenols bind to some proteins such as transthyretin (TTR), thyroxin-binding globulin (TGB) and albumin (ALB), and the receptor affinity of o,o’-dihalophenols is remarkably high (Kitamura et al., 2008). To understand the recognition features of HPs at molecular level is thus of paramount importance as it may help to rationalize the adverse biological effects of HPs to which humans are commonly exposed.
    [Show full text]
  • Halogen Bonding Based Recognition Processes: a World Parallel To
    Acc. Chem. Res. 2005, 38, 386-395 to acquaint the nonexperts. This overview will show how Halogen Bonding Based XB is a strong, specific, and directional interaction that Recognition Processes: A World gives rise to well-defined supramolecular synthons. Then ² we will focus on interactions involving halocarbons and Parallel to Hydrogen Bonding on the supramolecular architectures that they produce. Some heuristic principles will spring from this, enabling ,³ PIERANGELO METRANGOLO,* us to develop an XB based crystal engineering, which may ³ § HANNES NEUKIRCH, TULLIO PILATI, AND complement the possibilities offered by HB. Applications ,³ GIUSEPPE RESNATI* and prospects will conclude the paper. Department of Chemistry, Materials, and Chemical The first unequivocal report on the ability of halogen Engineering ªGiulio Nattaº, 7 via Mancinelli, I-20131 Milan, and Campus of Como, 7 via Castelnuovo, I-22100 Como, atoms to form well-defined adducts with electron donor Polytechnic of Milan, Italy, and C.N.R.-Institute of Molecular species dates back to 1863 when Guthrie described the 3 Sciences, 9 via Golgi, I-20133 Milan, Italy formation of the NH3‚‚‚I2 complex. In 1896, Remsen and Received October 28, 2004 Norris proved the general tendency of amines to form adducts with bromine and chlorine.4 Sixty years later, the crystallographic studies of Hassel were a landmark in the ABSTRACT Halogen bonding is the noncovalent interaction between halogen understanding of the XB characteristics. In his Nobel atoms (Lewis acids) and neutral or anionic Lewis bases. The main lecture, Hassel stressed the similarities between interac- features of the interaction are given, and the close similarity with tions where halogen and hydrogen atoms work as electron the hydrogen bonding will become apparent.
    [Show full text]
  • The Halogen Bond in the Design of Functional Supramolecular Materials
    The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances † ‡ ARRI PRIIMAGI,*, GABRIELLA CAVALLO, ‡ ‡ PIERANGELO METRANGOLO,*, ,§ AND GIUSEPPE RESNATI*, † Department of Applied Physics, Aalto University, P.O. Box 13500, FI-00076 ‡ Aalto, Finland, NFMLab-DCMIC “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, IT-20131 Milano, Italy, and §VTT-Technical Research Centre of Finland, Tietotie 2, Espoo, FI-02044 VTT, Finland RECEIVED ON APRIL 9, 2013 CONSPECTUS alogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the H more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield.
    [Show full text]
  • Year 2017 Delegate/Author Name Mario Malinconico
    Name of the Union Activities’ Report - Year 2017 Delegate/Author Name Mario Malinconico 1. Introduction During the course of 2017, Dr. Mario Malinconico performed the following activity. The members of the Italian National Committee for IUPAC participated in the activities from time to timeMain activities carried on by (Union name) during 2017 relevant for Italy and for CNR 2. Main activities carried on by (Union name) during 2017 relevant for Italy and for CNR - Project "Categorizing Chalcogen, Pnictogen, and Tetrel Bonds, and Other Interactions Involving Groups 14-16 Elements" (Project No .: 2016-001-2-300, Division 300, Chategorizing Chalcogen): The inaugural event of the project was organized in Milan (6 February 2017) and the poster for the announcement of the event is attached. All Task Group Members attended the event except Steve Scheiner (USA). The scientific session was open to the scientific community and the participants came from Europe, America and Asia. The report of the event was published as Editorial on Crystal Growth & Design (2017, 17, 1439; see CGD 2017, 17, 1439) (Journal of the American Chemical Society, IF 2016: 4.055) and has already received 4 citations. - on October 10th a meeting was held with the IUPAC past president Leiv Sydnes at the DSCTM in Rome. The meeting addressed the discussion on the follow-up of the CHEMRAWN Conference in Rome in 2016 and on a possible involvement of the CNR in the publishing activity of a book on the management of solid urban waste. The dott. Maurizio Peruzzini was present at the Meeting. - On October 21, during a skype conference, it was decided to set up an IUPAC group for the Centenary, which includes dr.
    [Show full text]
  • Pierangelo Metrangolo Giuseppe Resnati Editors Impact on Materials
    Topics in Current Chemistry 358 Pierangelo Metrangolo Giuseppe Resnati Editors Halogen Bonding I Impact on Materials Chemistry and Life Sciences 358 Topics in Current Chemistry Editorial Board: H. Bayley, Oxford, UK K.N. Houk, Los Angeles, CA, USA G. Hughes, CA, USA C.A. Hunter, Sheffield, UK K. Ishihara, Chikusa, Japan M.J. Krische, Austin, TX, USA J.-M. Lehn, Strasbourg Cedex, France R. Luque, Cordoba, Spain M. Olivucci, Siena, Italy J.S. Siegel, Nankai District, China J. Thiem, Hamburg, Germany M. Venturi, Bologna, Italy C.-H. Wong, Taipei, Taiwan H.N.C. Wong, Shatin, Hong Kong [email protected] Aims and Scope The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage includes all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether at the university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented. A description of the laboratory procedures involved is often useful to the reader. The coverage should not be exhaustive in data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented.
    [Show full text]
  • Both the Experimental and Theoretical Work of This Paper Seem to Be Done
    International Union of Crystallography (IUCr) Activities’ Report - Year 2016 Delegate: Carlo Mealli (CNR-ICCOM) 1. Introduction The IUCr has as target the promotion of the international cooperation in crystallography. The task is not straightforward, because crystallography is highly multi-disciplanary and operates in remote areas of science. The common goal is determining the relations between structure and properties in ordered materials, which span from proteins to drugs, technological species to minerals, including those of extraterrestrial origin. Since 1946, the IUCr promotes and coordinates researches of this type within the international scientific communities to favor a shared culture, the standardization of the methods, innovative collaborations even between very distal subjects, the construction and usage of large facilities, publications in journal of common crystallographic interest, the development of the crystallographic knowhow including less favored countries, the organization of schools and scientific events. In 2014, the International Year of Crystallography (IYCr2014), promoted by the ONU and carried out in strict collaboration with the UNESCO, has been a powerful vehicle for the educational activities of the crystallographic culture also in developing countries with the opening of new laboratories after proper training of the personnel. The thrust forward is continuing to be fruitful. Italy, in particular, has strategically contributed in the mentioned directions, because it participates since many years in the IUCr activities, often including management and governance. 2. Main activities carried on by (Union name) during 2016 relevant for Italy and for CNR The IUCr holds its Congress and General Assembly every three years (the next XXIV IUCr Congress will be in August 2017 in Hyderabad, India).
    [Show full text]
  • News2007fall.Pdf ‏119 KB
    Fall Newsletter & Official Ballot for Election of Executive Committee Positions October 2007 Message from the Chair Sizzling greetings from Los Angeles! I trust that you all had a fruitful and relaxing summer, despite the stormy and wet summer some of you have experienced in the Midwest and South. I know that some of you attended the 15th European Symposium in Fluorine Chemistry in Prague, which I heard was a grand success. On behalf of all of us in the Division, I would like to extend my warm congratulations to Professor Dennis Curran, University of Pittsburgh, the winner of the 2008 ACS Award for Creative Work in Fluorine Chemistry. The 2008 award is sponsored by SynQuest, which will be alternating with sponsorship by Honeywell over the next several years. Professor Curran will give his award address during the Award Symposium (co-sponsored by the Organic Division) in the upcoming 235th ACS National Meeting at New Orleans, LA, April 6 -10, 2008. Two-back-to-back Symposia titled “Nanostructured Fluoro- carbons: Smart Tectons for Self Assembly” and “Novel Bonding and Structural Modalities in Inorganic Fluorine Chemistry” were organized at the 234th ACS Meeting in Boston this August. The latter honored Professor Neil Bartlett on the occasion of his 75th Birthday. Happy Birthday Neil! The division is grateful to all the organizers (G. Resnati, P. Metrangolo, B. Žemva, H. P. A. Mercier, A. Tressaud and G. B. Schrobilgen), participants, attendees and the sponsors. Slava Petrov promises exciting events at New Orleans as well as Philadelphia next year (see the program chair’s report).
    [Show full text]
  • Topics in Current Chemistry
    358 Topics in Current Chemistry Editorial Board: H. Bayley, Oxford, UK K.N. Houk, Los Angeles, CA, USA G. Hughes, CA, USA C.A. Hunter, Sheffield, UK K. Ishihara, Chikusa, Japan M.J. Krische, Austin, TX, USA J.-M. Lehn, Strasbourg Cedex, France R. Luque, Cordoba, Spain M. Olivucci, Siena, Italy J.S. Siegel, Nankai District, China J. Thiem, Hamburg, Germany M. Venturi, Bologna, Italy C.-H. Wong, Taipei, Taiwan H.N.C. Wong, Shatin, Hong Kong Aims and Scope The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage includes all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether at the university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented. A description of the laboratory procedures involved is often useful to the reader. The coverage should not be exhaustive in data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Discussion of possible future research directions in the area is welcome. Review articles for the individual volumes are invited by the volume editors.
    [Show full text]
  • For Peer Review Only
    IUPAC Definition of the chalcogen bond ForJournal: PeerPure and Applied Review Chemistry Only Manuscript ID PAC-REC-18-07-13.R1 Manuscript Type: Recommendation Date Submitted by the Author: 03-Oct-2018 Complete List of Authors: Aakeröy, Christer; Kansas State University, Department of Chemistry Bryce, David Desiraju, Gautam; Indian Institute of Science, Solid State & Structural Chemistry Unit Frontera, Antonio; Universitat de les Illes Balears Departament de Quimica Legon, Anthony; university of bristol, School of Chemistry, Nicotra, Francesco; University of Milano-Bicocca, Department of Bioscience and Biotechnology; Rissanen, Kari; University of Jyväskylä Scheiner, Steve; Utah State University, Department of Chemistry and Biochemistry Terraneo, Giancarlo; Politecnico di Milano Dipartimento di Chimica Materiali e Ingegneria Chimica Giulio Natta Metrangolo, Pierangelo Resnati, Giuseppe; Politecnico di Milano Dipartimento di Chimica Materiali e Ingegneria Chimica Giulio Natta, Chemistry, Materials, Chemical Engineering "Giulio NAtta" nomenclature, supramolecular chemistry, molecular recognition, sulfur, Keywords: selenium Author-Supplied Keywords: P.O. 13757, Research Triangle Park, NC (919) 485-8700 IUPAC Page 10 of 13 1 1 2 3 Christer B. Aakeroy, David L. Bryce, Gautam R. Desiraju, Antonio Frontera, Anthony C. Legon, 4 Francesco Nicotra, Kari Rissanen, Steve Scheiner, Giancarlo Terraneo, Pierangelo Metrangolo 5 and Giuseppe Resnati* 6 7 Definition of the chalcogen bond 8 9 (IUPAC Recommendations 201?) 10 11 http://doi. 12 Received 13 14 Abstract: This recommendation proposes a definition for the term “chalcogen bond”; it is recom- 15 mended the term is used to designate the specific subset of inter- and intramolecular interactions 16 formed by chalcogenFor atoms Peerwherein the Group Review 16 element is the electrophilicOnly site.
    [Show full text]
  • Download Article (PDF)
    Project Place Basic Terminology of Crystal Implementation of InChI for chemi- Engineering cally modified large biomolecules Crystal engineering is the design and synthesis of The IUPAC International Chemical Identifier (InChI) functional crystalline structures, based on a bottom-up algorithm is now well established as a powerful means approach from smaller building blocks. Crystal engi- of denoting the basic chemical structure of a well- neering is a fascinating new subject that has expanded defined, small (<1024 atoms) organic molecule as a rapidly in the last 20 years. It is also attracting the unique machine-readable character string, suitable interest of the chemical and pharmaceutical industry. for electronic data storage, searching, and exchange. It overlaps with supramolecular chemistry, X-ray crys- The IUPAC Division VIII InChI Subcommittee is now tallography, materials science, and solid-state chemis- starting work on a complete overhaul of the InChI try, but is a distinct discipline in itself. The subject goes algorithm, i.e. the beginning of plans for a second ver- beyond the traditional divisions of organic, inorganic, sion of InChI. A crucial part of this work is intended and physical chemistry; this makes for an eclectic to address the known shortcomings of the current blend of ideas, techniques, and strategies. InChI algorithm pertaining to the handling (or lack The diversity in focus and scientific basis of the thereof) of various types of biological substances. researchers in the field has led to numerous terminol- Chemically modified sequences are becoming very ogy practices that are not consistent among research important in life science research both as tools and as groups, causing confusion and unnecessary conflicts.
    [Show full text]
  • Supramolecular Interactions in the Solid State
    feature articles IUCrJ Supramolecular interactions in the solid state ISSN 2052-2525 Giuseppe Resnati,a Elena Boldyreva,b,c Petra Bombiczd* and Masaki Kawanoe CHEMISTRYjCRYSTENG aDepartment of Chemistry, Materials, Chemical Engineering, Politecnico di Milano, 7, via Mancinelli, Milan, Lombardy I- 20131, Italy, bInstitute of Solid State Chemistry, Russian Academy of Sciences, ul. Kutateladze 18, Novosibirsk 128, Russian Federation, cNovosibirsk State University, ul. Pirogova 2, Novosibirsk 630090, Russian Federation, dResearch Group of Chemical Crystallography, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudo´sok koru´tja 2, POB 286, Budapest H-1117, Hungary, and eDivision of Advanced Received 23 June 2015 ¨ Materials Science, Pohang University of Science and Technonlogy, 77 Cheongam-Ro Nam-Gu, Pohang 790-784, South Accepted 3 August 2015 Korea. *Correspondence e-mail: [email protected] Edited by A. D. Bond, University of Copen- In the last few decades, supramolecular chemistry has been at the forefront of hagen, Denmark chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally Keywords: intermolecular interactions; crystal specific short-range intermolecular interactions that are responsible for engineering; self-assembly; halogen bonding; molecular assembly, analysis of crystalline solids provides a primary means to polymorphism; kinetic assembly; coordination
    [Show full text]
  • RSC Macrocyclic & Supramolecular Chemistry Meeting 2015 Durham
    RSC Macrocyclic & Supramolecular Chemistry Meeting 2015 Durham University 21st and 22nd December 2015 MASC 2015 has been made possible by the generous support of our sponsors MASC 2015 Durham University 21st and 22nd December 2015 Welcome Welcome to the Royal Society of Chemistry Macrocyclic and Supramolecular Chemistry Group meeting 2015! We’re delighted to welcome you to Historic Durham and hope you enjoy the fabled North-eastern weather here in December. MASC2015 is taking place will take place on the Science Site of Durham University 21st and 22nd December 2015. The conference dinner will take place on the evening of Monday 21st December at the Historic Durham Castle the founding college of Durham University. Durham City is home to one of the most recognisable landmarks in the UK, the majestic Durham Cathedral. Together with adjacent Durham Castle, this UNESCO World Heritage Site forms one of the most stunning city panoramas in Europe. – See more at http://www.thisisdurham.com. We could not run this meeting without the hugely generous support of our sponsors listed on the inside front cover. THANK YOU ALL! They have made the conference possible, so please do visit them in our exhibition adjacent to the lecture theatre and show your gratitude for keeping costs low at this fantastic event. We are also greatly appreciative of the staff and students at Durham University who have helped make the event happen. We hope you enjoy MASC 2015. Meeting Information Registration is in the reception area of the Calman Learning Centre (see map on back cover). Lectures will be on the ground floor in the Arnold Wolfendale Theatre (CLC013).
    [Show full text]