A Dinosaur Ichnocoenosis from the Waterberg Plateau \(Etjo Formation

Total Page:16

File Type:pdf, Size:1020Kb

A Dinosaur Ichnocoenosis from the Waterberg Plateau \(Etjo Formation Ichnos An International Journal for Plant and Animal Traces ISSN: 1042-0940 (Print) 1563-5236 (Online) Journal homepage: http://www.tandfonline.com/loi/gich20 A Dinosaur Ichnocoenosis from the Waterberg Plateau (Etjo Formation, Lower Jurassic), Namibia Alexander Wagensommer, Marianna Latiano, Helke B. Mocke, Simone D'Orazi Porchetti & Ansgar Wanke To cite this article: Alexander Wagensommer, Marianna Latiano, Helke B. Mocke, Simone D'Orazi Porchetti & Ansgar Wanke (2016) A Dinosaur Ichnocoenosis from the Waterberg Plateau (Etjo Formation, Lower Jurassic), Namibia, Ichnos, 23:3-4, 312-321 To link to this article: http://dx.doi.org/10.1080/10420940.2016.1168739 Published online: 06 Sep 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gich20 Download by: [Nipissing University] Date: 07 September 2016, At: 19:55 ICHNOS 2016, VOL. 23, NOS. 3–4, 312–321 http://dx.doi.org/10.1080/10420940.2016.1168739 A Dinosaur Ichnocoenosis from the Waterberg Plateau (Etjo Formation, Lower Jurassic), Namibia Alexander Wagensommera, Marianna Latianoa, Helke B. Mockeb, Simone D’Orazi Porchettic, and Ansgar Wanked aDinosaur Footprint Research Group, San Giovanni Rotondo, Italy; bGeological Survey of Namibia, Windhoek, Namibia; cUniversity of Sao Paulo, Faculty of Philosophy, Sciences and Humanities at Ribeirao Preto, Department of Biology, Ribeirao Preto, SP, Brazil; dDepartment of Geology, University of Namibia, Windhoek, Namibia ABSTRACT KEYWORDS About a hundred dinosaur tracks, mostly preserved as isolated footprints, have been recorded at a Dinosaur footprints single site within the borders of the Waterberg National Park, Otjozondjupa Region, north-central Waterberg Plateau; Namibia; Namibia. They are found in an interdune setting within the Lower Jurassic Etjo Formation and Etjo Formation; Early Jurassic; represent medium-sized theropods with slender digits and high projection of digit three. From an tridactyl dinosaur tracks ichnotaxonomic point of view, the Namibian tracks are intermediate in morphology between Grallator (which is known to occur at other localities within the same Etjo Formation) and Anchisauripus, being otherwise in a size range that is usually considered typical for the latter ichnotaxon or even for Eubrontes. The Waterberg tracks do not match the allometric growth model proposed by Olsen et al. (1998) for the Early Jurassic theropod track assemblage of the North American Connecticut Valley, and they highlight the difficulties of consistently discriminating between theropod ichnotaxa in the Grallator-Anchisauripus-Eubrontes plexus. The Waterberg ichnosite adds important data to our understanding of the ichnological diversity of the Etjo Formation, raising to three the dinosaur localities in Namibia with revised and updated ichnofaunas. The dinosaur ichnofauna from Namibia, of which the Waterberg tracksite is a basic component, shows high ichnotaxonomic similarity with coeval assemblages from the northern hemisphere. This points to an overall homogeneity of the global ichnofaunistic composition, even at lower latitudes. Introduction to hyper-arid paleoenvironments. In all cases, dinosaur The presence of dinosaur footprints in the Waterberg tracks are found in interdune settings and represent Plateau has been known for decades (Cosburn, 1980, small to medium bipedal dinosaurs. So far, no quadrupe- 1990; Pickford, 1994, 1995), albeit a detailed description dal trackways have been found. The Etjo ichnofauna and interpretation of these ichnites has never been reveals a strong overall resemblance to coeval ichnoas- attempted so far. The importance of this site is both sci- semblages from North America, pointing to a relatively entific and historical, as it is one of the few windows on homogeneous distribution of trackmakers in the Early the Early Jurassic vertebrate life of this region and a sig- Jurassic. A comparison with the geographically closer nificant addition to the ichnological record from the Etjo and coeval ichnofauna of Lesotho (Ellenberger, 1972, Formation, which has a long research history dating 1974; Olsen and Galton, 1984; Smith et al., 2009) is not back to the first decades of the 20th century (Huene, attempted herein, as the ichnotaxonomy of this assem- 1925;Gurich,€ 1926) and is recognized by the Namibian blage needs to be revised. A major problem is that the government as part of the natural and cultural heritage monumental pioneering work of Ellenberger focused of the country. The whole Namibian dinosaur track mainly on somehow defining idealized track types with- record is in the process of being reevaluated in a series of out assessing their morphological ranges. This makes works that focus on the occurrences in the Waterberg any comparison with other occurrences problematic. range, such as the Omuramba Omambonde tracksite Being inside the borders of the Waterberg National (D’Orazi Porchetti et al., 2015) and the historical occur- Park, and being one of the few dinosaur records from rence at the Otjihaenamaparero 92 Farm (Wagen- Namibia, the Waterberg Plateau tracksite should be con- sommer et al., 2016). All these tracksites occur in the sidered part of a potential paleontological heritage system, Etjo Formation, a Lower Jurassic unit representing arid and as such, it deserves to be protected and promoted. CONTACT Alexander Wagensommer [email protected] Gruppo di Ricerca sulle Impronte di Dinosauri, Via Santa Rita 4, 71013 San Giovanni Rotondo, (FG), Italy. © 2016 Taylor & Francis Group, LLC ICHNOS 313 Geological framework well-sorted, massive sandstone interbedded with thin pebbly gravel layers. The Middle Unit is dominated by The Großer Waterberg is a large plateau in the Otjo- massive and homogeneous sandstone beds and reaches a zondjupa Region, north-central Namibia, which reaches thickness of about ten meters in the Waterberg area. The a maximum height of 1885 meters in the area of the Upper Unit is dominant in terms of thickness, being Waterberg National Park (Fig. 1). Its reddish, vertical about 100 meters thick on the northern part of the cliffs originate from erosive processes of the Etjo and Waterberg. Cross-bedded sandstone is the dominant fea- underlying Omingonde formations. The Etjo Formation ture of this member of the Etjo Formation, testifying to forms the high and steep walls at the top of the plateau, the presence of a large erg (Holzforster€ et al., 1999; reaching a maximum thickness of about 140 meters in Wanke, 2000)(Fig. 2A). outcrop (Wanke, 2000), while the more erodible mud- Footprints have been found on a flat surface (Fig. 2B), stones of the Omingonde Formation (Lower to Middle exposed over a few hundred square meters, moderately Triassic) form the gentle slopes of the Waterberg and are to highly weathered, depending on the sectors. Dinotur- mostly covered by debris. The two formations are sepa- bation occurred on a package of thin parallel sandstone rated by a sharp erosive contact thought to represent a layers, interpreted here as an interdune deposit. Above hiatus of about 35 myr (Smith and Swart, 2002). The Pla- the printed surface, columnar remains of cross-bedded teau stretches along a northeast-southwest line, bordered sandstone are preserved, which are similar to those to the north by the Omaruru-Waterberg fault. The Etjo observed at the Omuramba Omambonde tracksite Formation is dominated by siliciclastic rocks, deposited (Wiechmann, 1983; Grote, 1984;D’Orazi Porchetti et al., in semi-arid to hyper-arid environments. It has been 2015)(Fig. 2C,D). They represent the remnants of a divided into three informal members (Lower, Middle, dune deposit that eventually covered the track-bearing and Upper Units) by Holzforster€ et al. (1999), who dis- interdune surface. Here at the Waterberg tracksite, as tinguish three main depositional phases with increasing well as at the Omuramba Omambonde locality, the foot- aridity. The Lower Unit is represented by 25 meters of print-bearing layer belongs to the uppermost member of Figure 1. Geographic location of the dinosaur tracksite at the Waterberg Plateau (red star). Base map generated in GeoMapApp (http:// www.geomapapp.org). 314 A. WAGENSOMMER ET AL. Figure 2. A. The steep cliffs of the Etjo Formation as visible from the Waterberg Plateau Campsite. A large talus hides the contact with the Omingonde Formation, densely covered by vegetation. B. North to South view of the track-bearing surface. The surface is better pre- served on the left side of the photograph, where large blocks of cross-bedded sandstone are visible. C. Detail of the first-order contact between the trampled surface, interdune, and cross-bedded strata of a dune. Hammer in the centre of the photograph (white circle) for scale. D. One tridactyl footprint is highlighted here in order to show the quality of preservation. Delamination is visible around the foot- print itself. Difference in color depends on the presence of sand inside the digit traces, removed before shooting. The scale is set on 20 cm. the Etjo Formation (Fig. 3A), and these two sites can be However, the surface appears to be medium-to-highly correlated stratigraphically. The historical Otjihaenama- trampled, according to the dinoturbation index proposed parero 92 locality, which is discussed in detail elsewhere by Lockely (1991). Selected tracks have been reproduced (Wagensommer et al., 2016), is more difficult to relate in on transparent peels, photographed,
Recommended publications
  • Eubrontes and Anomoepus Track
    Sullivan, R.M. and Lucas, S.G., eds., 2016, Fossil Record 5. New Mexico Museum of Natural History and Science Bulletin 74. 345 EUBRONTES AND ANOMOEPUS TRACK ASSEMBLAGES FROM THE MIDDLE JURASSIC XIASHAXIMIAO FORMATION OF ZIZHONG COUNTY, SICHUAN, CHINA: REVIEW, ICHNOTAXONOMY AND NOTES ON PRESERVED TAIL TRACES LIDA XING1, MARTIN G. LOCKLEY2, GUANGZHAO PENG3, YONG YE3, JIANPING ZHANG1, MASAKI MATSUKAWA4, HENDRIK KLEIN5, RICHARD T. MCCREA6 and W. SCOTT PERSONS IV7 1School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; -email: [email protected]; 2Dinosaur Trackers Research Group, University of Colorado Denver, P.O. Box 173364, Denver, CO 80217; 3 Zigong Dinosaur Museum, Zigong 643013, Sichuan, China; 4 Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan; 5 Saurierwelt Paläontologisches Museum Alte Richt 7, D-92318 Neumarkt, Germany; 6 Peace Region Palaeontology Research Centre, Box 1540, Tumbler Ridge, British Columbia V0C 2W0, Canada; 7 Department of Biological Sciences, University of Alberta 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada Abstract—The Nianpanshan dinosaur tracksite, first studied in the 1980s, was designated as the type locality of the monospecific ichnogenus Jinlijingpus, and the source of another tridactyl track, Chuanchengpus, both presumably of theropod affinity. After the site was mapped in 2001, these two ichnotaxa were considered synonyms of Eubrontes and Anomoepus, respectively, the latter designation being the first identification of this ichnogenus in China. The assemblage indicates a typical Jurassic ichnofauna. The present study reinvestigates the site in the light of the purported new ichnospecies Chuanchengpus shenglingensis that was introduced in 2012. After re- evaluation of the morphological and extramorphological features, C.
    [Show full text]
  • Download the Article
    A couple of partially-feathered creatures about the The Outside Story size of a turkey pop out of a stand of ferns. By the water you spot a flock of bigger animals, lean and predatory, catching fish. And then an even bigger pair of animals, each longer than a car, with ostentatious crests on their heads, stalk out of the heat haze. The fish-catchers dart aside, but the new pair have just come to drink. We can only speculate what a walk through Jurassic New England would be like, but the fossil record leaves many hints. According to Matthew Inabinett, one of the Beneski Museum of Natural History’s senior docents and a student of vertebrate paleontology, dinosaur footprints found in the sedimentary rock of the Connecticut Valley reveal much about these animals and their environment. At the time, the land that we know as New England was further south, close to where Cuba is now. A system of rift basins that cradled lakes ran right through our region, from North Carolina to Nova Scotia. As reliable sources of water, with plants for the herbivores and fish for the carnivores, the lakes would have been havens of life. While most of the fossil footprints found in New England so far are in the lower Connecticut Valley, Dinosaur Tracks they provide a window into a world that extended throughout the region. According to Inabinett, the By: Rachel Marie Sargent tracks generally fall into four groupings. He explained that these names are for the tracks, not Imagine taking a walk through a part of New the dinosaurs that made them, since, “it’s very England you’ve never seen—how it was 190 million difficult, if not impossible, to match a footprint to a years ago.
    [Show full text]
  • Perennial Lakes As an Environmental Control on Theropod Movement in the Jurassic of the Hartford Basin
    geosciences Article Perennial Lakes as an Environmental Control on Theropod Movement in the Jurassic of the Hartford Basin Patrick R. Getty 1,*, Christopher Aucoin 2, Nathaniel Fox 3, Aaron Judge 4, Laurel Hardy 5 and Andrew M. Bush 1,6 1 Center for Integrative Geosciences, University of Connecticut, 354 Mansfield Road, U-1045, Storrs, CT 06269, USA 2 Department of Geology, University of Cincinnati, 500 Geology Physics Building, P.O. Box 210013, Cincinnati, OH 45221, USA; [email protected] 3 Environmental Systems Graduate Group, University of California, 5200 North Lake Road, Merced, CA 95340, USA; [email protected] 4 14 Carleton Street, South Hadley, MA 01075, USA; [email protected] 5 1476 Poquonock Avenue, Windsor, CT 06095, USA; [email protected] 6 Department of Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, U-3403, Storrs, CT 06269, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-413-348-6288 Academic Editors: Neil Donald Lewis Clark and Jesús Martínez Frías Received: 2 February 2017; Accepted: 14 March 2017; Published: 18 March 2017 Abstract: Eubrontes giganteus is a common ichnospecies of large dinosaur track in the Early Jurassic rocks of the Hartford and Deerfield basins in Connecticut and Massachusetts, USA. It has been proposed that the trackmaker was gregarious based on parallel trackways at a site in Massachusetts known as Dinosaur Footprint Reservation (DFR). The gregariousness hypothesis is not without its problems, however, since parallelism can be caused by barriers that direct animal travel. We tested the gregariousness hypothesis by examining the orientations of trackways at five sites representing permanent and ephemeral lacustrine environments.
    [Show full text]
  • A Dinosaur Track from New Jersey at the State Museum in Trenton
    New Jersey Geological and Water Survey Information Circular What's in a Rock? A Dinosaur Track from New Jersey at the State Museum in Trenton Introduction a large dinosaur track (fig. 2) on the bottom. Most of the rock is sedimentary, sandstone from the 15,000-foot-thick Passaic A large, red rock in front of the New Jersey State Museum Formation. The bottom part is igneous, lava from the 525-foot- (NJSM) in Trenton (fig. 1) is more than just a rock. It has a thick Orange Mountain Basalt, which overspread the Passaic fascinating geological history. This three-ton slab, was excavated Formation. (The overspreading lava was originally at the top of from a construction site in Woodland Park, Passaic County. It the rock, but the rock is displayed upside down to showcase the was brought to Trenton in 2010 and placed upside down to show dinosaur footprint). The rock is about 200 million years old, from the Triassic footprints Period of geologic time. It formed in a rift valley, the Newark Passaic Formation Basin, when Africa, positioned adjacent to the mid-Atlantic states, began to pull eastward and North America began to pull westward contact to open the Atlantic Ocean. The pulling and stretching caused faults to move and the rift valley to subside along border faults including the Ramapo Fault of northeastern New Jersey, about 8 miles west of Woodland Park. Sediments from erosion of higher Collection site Orange Mountain Basalt top N Figure 1. Rock at the New Jersey State Museum. Photo by W. Kuehne Adhesion ripples DESCRIPTION OF MAP UNITS 0 1 2 mi Orange Mountain Basalt L 32 cm Jo (Lower Jurassic) 0 1 2 km W 25.4 cm contour interval 20 feet ^p Passaic Formation (Upper Triassic) Figure 3.
    [Show full text]
  • ) Baieiicanjizseum
    )SovitatesbAieiicanJizseum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 1901 JULY 22, 1958 Coelurosaur Bone Casts from the Con- necticut Valley Triassic BY EDWIN HARRIS COLBERT1 AND DONALD BAIRD2 INTRODUCTION An additional record of a coelurosaurian dinosaur in the uppermost Triassic of the Connecticut River Valley is provided by a block of sandstone bearing the natural casts of a pubis, tibia, and ribs. This specimen, collected nearly a century ago but hitherto unstudied, was brought to light by the junior author among the collections (at present in dead storage) of the Boston Society of Natural History. We are much indebted to Mr. Bradford Washburn and Mr. Chan W. Wald- ron, Jr., of the Boston Museum of Science for their assistance in mak- ing this material available for study. The source and history of this block of stone are revealed in brief notices published at the time of its discovery. The Proceedings of the Boston Society of Natural History (vol. 10, p. 42) record that on June 1, 1864, Prof. William B. Rogers "presented an original cast in sand- stone of bones from the Mesozoic rocks of Middlebury, Ct. The stone was probably the same as that used in the construction of the Society's Museum; it was found at Newport among the stones used in the erec- tion of Fort Adams, and he owed his possession of it to the kindness of Capt. Cullum." S. H. Scudder, custodian of the museum, listed the 1 Curator of Fossil Reptiles and Amphibians, the American Museum of Natural History.
    [Show full text]
  • The New Ichnotaxon Eubrontes Nobitai Ichnosp. Nov. and Other
    Xing et al. Journal of Palaeogeography (2021) 10:17 https://doi.org/10.1186/s42501-021-00096-y Journal of Palaeogeography ORIGINAL ARTICLE Open Access The new ichnotaxon Eubrontes nobitai ichnosp. nov. and other saurischian tracks from the Lower Cretaceous of Sichuan Province and a review of Chinese Eubrontes-type tracks Li-Da Xing1,2* , Martin G. Lockley3, Hendrik Klein4, Li-Jun Zhang5, Anthony Romilio6, W. Scott Persons IV7, Guang-Zhao Peng8, Yong Ye8 and Miao-Yan Wang2 Abstract The Jiaguan Formation and the underlying Feitianshan Formation (Lower Cretaceous) in Sichuan Province yield multiple saurischian (theropod–sauropod) dominated ichnofaunas. To date, a moderate diversity of six theropod ichnogenera has been reported, but none of these have been identified at the ichnospecies level. Thus, many morphotypes have common “generic” labels such as Grallator, Eubrontes, cf. Eubrontes or even “Eubrontes- Megalosauripus” morphotype. These morphotypes are generally more typical of the Jurassic, whereas other more distinctive theropod tracks (Minisauripus and Velociraptorichnus) are restricted to the Cretaceous. The new ichnospecies Eubrontes nobitai ichnosp nov. is distinguished from Jurassic morphotypes based on a very well- preserved trackway and represents the first-named Eubrontes ichnospecies from the Cretaceous of Asia. Keywords: Ichnofossils, Dinosaur footprints, Theropod, Myths 1 Introduction are represented by Brontopodus-type tracks. The non- With over 17 track sites documented so far, the Jiaguan avian theropod tracks consist of Eubrontes-type, gralla- Formation and the underlying Feitianshan Formation torid, Yangtzepus, Velociraptorichnus, cf. Dromaeopodus, hold among the richest records of dinosaur tracks in Minisauripus, cf. Irenesauripus, and Gigandipus, while China (Young 1960; Xing and Lockley 2016; Xing et al.
    [Show full text]
  • Download Download
    Biosis: Biological Systems (2021) 2(2), 271-282 https://doi.org/10.37819/biosis.002.02.0102 ORIGINAL RESEARCH Theropod tracks from the Jurassic–Cretaceous boundary, Tuchengzi Formation, Chengde, China: Review and new observations Lida Xing a, b, Martin G. Lockley c a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China. Corresponding author. Lida Xing: [email protected] b School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; c Dinosaur Trackers Research Group, University of Colorado Denver, PO Box 173364, Denver, CO 80217, USA. © The Authors, 2021 ABSTRACT ARTICLE HISTORY Previously known theropod dinosaur footprints preserved as natural Received: 10-02-2021 casts in the Tuchengzi Formation, on a rock wall beside the railway in Revised: 18-03-2021 Nanshuangmiao Village, Shangbancheng Town, Chengde City, were Accepted: 16-04-2021 originally assigned to ichnogenus Anchisauripus and tentatively attributed to oviraptosaurs. The assemblage was restudied in more detail KEYWORDS by examining the entire assemblage of 55 tracks associated with two Theropod tracks horizons. The size range of the 27 measured tracks suggests a more Anchisauripus diverse grallatorid–eubrontid assemblage and potentially greater Grallatorid diversity of theropod trackmakers. The label Anchisauripus, which has Eubrontid fallen into disuse in some recent literature, implies trackmakers of Oviraptosaurs medium shape and size in the grallatorid–eubrontid morphological spectrum. However, given the presence of other theropod ichnotaxa in the Jurassic to Early Cretaceous strata of the Tuchengzi Formation and time equivalent units we suggest that explicit reference to the Grallator- Anchisauripus-Eubrontes (GAE) plexus, or simply the term Grallator- Eubrontes plexus be confined to Lower Jurassic assemblages as originally defined and intended.
    [Show full text]
  • Theropod Footprints from the Lower Cretaceous Cangxi Formation in the Northern Margin of the Sichuan Basin, China
    Biosis: Biological Systems (2021) 2(1), 174-182 https://doi.org/10.37819/biosis.002.01.0097 ORIGINAL RESEARCH Theropod footprints from the Lower Cretaceous Cangxi Formation in the Northern Margin of the Sichuan Basin, China Lida Xing a, b *, Martin G. Lockley c, Bolin Tong b, Hendrik Klein d, W. Scott Persons IV e, Guangzhao Peng f, Yong Ye f, Miaoyan Wang b a Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. b School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China. c Dinosaur Trackers Research Group, University of Colorado, Denver 80217, USA. d Saurierwelt Paläontologisches Museum Alte Richt 7, D-92318 Neumarkt, Germany. e Mace Brown Museum of Natural History, Department of Geology and Environmental Geosciences, College of Charleston, Charleston 29401, USA. f Zigong Dinosaur Museum, Zigong, Sichuan, China. *Corresponding author. Lida Xing: [email protected] © The Authors 2021 ABSTRACT ARTICLE HISTORY A single well-preserved theropod trackway identified as Eubrontes was Received: 15-01-2021 discovered in the Lower Cretaceous (Berriasian-Valanginian) Cangxi Revised: 06-03-2021 Formation on the northern margin of the Sichuan Basin This is the first Accepted: 12-03-2021 report of tracks from this formation. The occurrence is consistent with reports of theropod dominated ichnofaunas from broadly coeval deposits KEYWORDS such as the Feitianshan Formation in southern parts of the basin. There Theropod tracks is growing evidence that Eubrontes and Eubrontes-like tracks are Eubrontes common in the Lower Cretaceous of Sichuan Province.
    [Show full text]
  • A New Theropod Dinosaur from the Early Jurassic of South Africa and Its Implications for the Early Evolution of Theropods
    A new theropod dinosaur from the Early Jurassic of South Africa and its implications for the early evolution of theropods Adam M. Yates Bernard Price Institute for Palaeontological Research, School of Geosciences, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa E-mail: [email protected] Received 27 June 2005. Accepted 21 September 2005 A new theropod, Dracovenator regenti, from the upper Elliot Formation is described, based upon a fragmentary skull. It can be diagnosed on the basis of a bilobed fossa on the lateral surface of the premaxilla that is connected to the alveolar margin by a narrow channel, the presence of a deep, oblique, lateral notch on the articular and hypertrophied dorsal processes on the articular. Other aspects of its morphology display a mosaic of coelophysoid and advanced theropod characteristics. A cladistic analysis of basal Theropoda, including the new taxon finds that the new taxon is closely related to Dilophosaurus wetherilli and Zupaysaurus rougieri although the clade formed by these three taxa is not robustly supported. It also finds that Coelophysoidea sensu lato is paraphyletic with respect to Ceratosauria + Tetanurae but that this topology is not a significantly better explanation of the data than an inclusive, monophyletic Coelophysoidea. Keywords: Theropoda, Coelophysoidea, Dracovenator, upper Elliot Formation, South Africa. INTRODUCTION 2004). It is now the majority view amongst theropod Prior to Gauthier’s classic (1986) monograph, our under- systematists that Ceratosauria contains Ceratosaurus spp. standing of the interrelationships of theropod dinosaurs and Abelisauroidea and that this clade is more closely could be described as murky at best.
    [Show full text]
  • Download Download
    Biosis: Biological Systems (2021) 2(2), 238-241 https://doi.org/10.37819/biosis.002.02.0099 ORIGINAL RESEARCH First report of deinonychosaurian trackway from the Cretaceous of Guizhou, China Yanjiao Qin a, Lida Xing b c * a Geological Museum of Guizhou, Guiyang 550081, China; b State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China. Corresponding author. Lida Xing: [email protected] c School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China. © The Authors, 2021 ABSTRACT ARTICLE HISTORY The southern edge of Sichuan Basin has a long-standing folklore about the Received: 28-12-2020 Tian Ji Stone, which actually tells of the theropod tracks. Here we describe Revised: 18-03-2021 a new Tian Ji track site named Xinglongwan in Chishui, Guizhou Province, Accepted: 29-05-2021 China. Two kilometers away from the old site recorded in 2011, the later with cf. Irenesauripus isp. are morphologically different from the KEYWORDS Xinglongwan theropod tracks. The tridactyl tracks from Xinglongwan site Eubrontes Velociraptorichnus have been assigned to the cf. Eubrontes. Didactyl tracks in the Xinglongwan Sichuan Basin site, which are the first discovery of deinonychosaurian tracks in Guizhou Jiading Group Province, are assigned to the Velociraptorichnus. Both tracks were recorded Jiaguan Formation Wotoushan Formation in the report about ichnofauna in Jiaguan Formation, representing the diversity of theropod tracks in Sichuan Basin. The authors also briefly discuss the preservation mode and potential external-morphological changes of cf. Eubrontes and Velociraptorichnus from Xinglongwan site. 1 Introduction trackways in Baoyuan. The tracks were preserved on the red thick feldspar and quartz-sand layer of A large collection of tetrapoda tracks have been Jiaguan Formation, and were provisionally found in the Jurassic‒Cretaceous strata in assigned to cf.
    [Show full text]
  • Tetrapod Biostratigraphy and Biochronology Across the Triassic-Jurassic Boundary in Northeastern Arizona
    Heckert, A.B., and Lucas, S.G., eds., 2005, Vertebrate Paleontology in Arizona. New Mexico Museum of Natural History and Science Bulletin No. 29. 84 TETRAPOD BIOSTRATIGRAPHY AND BIOCHRONOLOGY ACROSS THE TRIASSIC-JURASSIC BOUNDARY IN NORTHEASTERN ARIZONA SPENCER G. LUCAS1, LAWRENCE H. TANNER2 and ANDREW B. HECKERT3 1New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104-1375; 2Department of Biology, Le Moyne College, 1419 Salt Springs Road, Syracuse, NY, 13214; 3Department of Geology, Appalachian State University, ASU Box 32067, Boone, NC, 28608-2067 Abstract—Nonmarine fluvial, eolian and lacustrine strata of the Chinle and Glen Canyon groups in northeastern Arizona and adjacent areas preserve tetrapod body fossils and footprints that are one of the world’s most extensive tetrapod fossil records across the Triassic-Jurassic boundary. We organize these tetrapod fossils into five, time-successive biostratigraphic assemblages (in ascending order, Owl Rock, Rock Point, Dinosaur Canyon, Whitmore Point and Kayenta) that we assign to the (ascending order) Revueltian, Apachean, Wassonian and Dawan land-vertebrate faunachrons (LVF). In doing so, we redefine the Wassonian and the Dawan LVFs. The Apachean-Wassonian boundary approximates the Triassic-Jurassic boundary. This tetrapod biostratigraphy and biochronology of the Triassic-Jurassic transition on the southern Colorado Plateau confirms that non-crocodilian crurotarsan extinction closely corresponds to the end of the Triassic, and that a dramatic increase in dinosaur diversity, abundance and body size preceded the end of the Triassic. Keywords: Triassic, Jurassic, vertebrate, biostratigraphy, Arizona, Glen Canyon Gp, Moenave Fm INTRODUCTION 114o Gateway Lisbon Valley The Four Corners (common boundary of Utah, Colorado, UTAH 50 km COLORADO Arizona and New Mexico) sit in the southern portion of the Colo- rado Plateau (Fig.
    [Show full text]
  • The Rocky Hill Dinosaurs
    University of New Hampshire University of New Hampshire Scholars' Repository New England Intercollegiate Geological NEIGC Trips Excursion Collection 1-1-1968 The Rocky Hill Dinosaurs Ostrom, John H. Quarrier, Sidney S. Follow this and additional works at: https://scholars.unh.edu/neigc_trips Recommended Citation Ostrom, John H. and Quarrier, Sidney S., "The Rocky Hill Dinosaurs" (1968). NEIGC Trips. 96. https://scholars.unh.edu/neigc_trips/96 This Text is brought to you for free and open access by the New England Intercollegiate Geological Excursion Collection at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NEIGC Trips by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. C-3 1 Trip C-3 THE ROCKY HILL DINOSAURS by John H. Ostrom Yale University with an Introduction by Sidney S. Quarrier Connecticut Geological and Natural History Survey INTRODUCTION On August 24, 1966, excavations were under way for the foundation of a Connecticut State Highway Department testing laboratory in the Town of Rocky Hill. Edward McCarthy, a bulldozer operator, noticed that his machine had uncovered a slab of rock bearing oddly shaped tracks; and, thinking that the tracks might hold some significance, he stopped his machine and called the attention of the engineer to his find. In a rapid succession of events, interested personnel were notified of the discovery; its scientific and educational values were determined; and with a speed rare in government circles, steps were immediately in­ stituted through the direct action of Governor John Dempsey to preserve the tracks in place.
    [Show full text]