Community Level Impact and Potential Management Practices of West Indian Marsh Grass in the Myakka River Watershed

Total Page:16

File Type:pdf, Size:1020Kb

Community Level Impact and Potential Management Practices of West Indian Marsh Grass in the Myakka River Watershed Community Level Impact and Potential Management Practices of West Indian marsh grass in the Myakka River Watershed Funded by The Charlotte Harbor National Estuary Program Final Project Report November 2006 Prepared by: William A. Overholt/1, Rodrigo Diaz/1, Jim P. Cuda/2, Paula Benshoff/3 /1Biological Control Research and Containment Laboratory Indian River Research and Education Center University of Florida Fort Pierce, FL 34945 /2Entomology and Nematology Department University of Florida Gainesville, FL 32611 /3Myakka River State Park Sarasota, FL 34241 Table of contents Summary ................................................................................................................................3 General Introduction ..............................................................................................................3 Impacts of Hymenachne amplexicaulis on plant and arthropod communities.......................5 Introduction........................................................................................................................5 Material and Methods ........................................................................................................5 Study area.......................................................................................................................5 Sampling ........................................................................................................................5 Statistical Analysis.........................................................................................................7 Results................................................................................................................................7 Marsh characteristics......................................................................................................7 Plant community and biomass accumulation.................................................................8 Macroinvertebrates Summer ..........................................................................................9 Macroinvertebrates Fall ...............................................................................................13 Discussion ........................................................................................................................16 Effectiveness of herbicides for controlling Hymenachne amplexicaulis in marshes...........18 Introduction......................................................................................................................18 Material and Methods ......................................................................................................18 Results and Discussion.....................................................................................................19 References cited ...............................................................................................................24 Acknowledgements..............................................................................................................25 2 Summary Invasion of exotic plants constitute a major threat to aquatic ecosystems. West Indian marsh grass, Hymenachne amplexicaulis (Rudge) Nees, is currently invading the watersheds of central and south Florida. During this process, native flora and fauna are being displaced by this aggressive grass. We investigated the impact of Hymenachne invasion to flora and macroinvertebrates in Myakka River State Park and evaluated the effect of herbicides for its control. Sites invaded by Hymenachne had larger accumulation of biomass, reduced macroinvertebrate abundance and simpler trophic structure than native sites. There was no indication that native insect herbivores were colonizing Hymenachne and this could be explained by the relatively recent arrival of this grass into Florida. The herbicide experiment suggested that Hymenachne can be controlled using a tankmix of glyphosate and imazapir, and the timing of its application should be targeted for early growing season (February to May) when the plant is under stress and before flowering. Management of this invasive grass in infested wetlands must include a combination of strategies such as winter burning, herbicide application and hydroperiod control. Prevention by monitoring and early control is ideal in uninfested wetlands. General Introduction Invasion of exotic species poses a serious threat to Florida’s sensitive ecosystems. International trade, tourism, agricultural and urban disturbance have increased the probability of establishment of exotic plants. In Florida wetlands, exotic species spread rapidly due to floods, large interconnected waterway systems, and increased use of commercial and recreational boats. Fertilizer and sediment runoff from agricultural lands and waste water from beef and dairy operations contribute to successful establishment of aquatic exotic plants. Wunderlin and Hansen (2003) reported 1,316 exotic plants species naturalized in Florida, with 125 species being serious threats to natural areas (FLEPPC 2005). Of those, 65 are considered highly invasive because they are disruptive to native plant communities. West Indian Marsh Grass, Hymenachne amplexicaulis (hereafter referred as Hymenachne), is one of many species currently invading sensitive wetlands in Florida. Hymenachne is a native of South America and the West Indies and has spread to most countries of the neo-tropics. The pathway and timing of the introduction of this grass into Florida are uncertain; however, the first herbarium record was from a ponded pasture in Palm Beach County in 1957 (University of Florida Herbarium). This suggests that the grass could have been intentionally introduced as forage. The next record was from a wet pasture in Collier county in 1977 (University of Florida Herbarium). Current records confirm that Hymenachne is present in wetlands and rivers in 16 counties in Florida. Hymenachne is present in most the counties included in the Charlotte Harbor National Estuary Study Area (University of Florida Herbarium and personal communication with aquatic plant managers) (Fig. 1). Large monocultures of 3 Hymenachne can be found in the rivers, canals and wetlands located in the Myakka and Peace River Basins. Nutrient enrichment, especially with nitrogen and phosphorous, of surface water due to runoffs from agricultural fields and geological deposits of phosphate may have facilitated the establishment and dominance of Hymenachne in these rivers (Charlotte Harbor Environmental Center, 2002). Counties infested with Hymenachne amplexicaulis Figure 1. Current distribution of Hymenachne amplexicaulis in Florida. Invasion of Hymenachne is favored by aggressive mechanisms of reproduction and dispersal. In Australia, a single inflorescence can produce more than 4000 seeds (Tropical Weeds Research Centre 2003) with approximately 98% viability (Lyons 1996). Another method of reproduction is through vegetative material (stolons). Hymenachne experimental colonies in the Indian River Research & Education Center at Fort Pierce are easily reproduced by planting small pieces of stems containing at least one node. Moreover, ponded pastures in Australia were easily established by simply casting pieces of the grass from boats (Lukacs 1996). Summer floodwaters in Florida can transport Hymenachne seeds and stolons great distances through watersheds complicating management programs. Simplification of wetland ecosystems due to the invasion of Hymenachne could have severe impacts in the native fauna. Diverse aquatic habitats are places for feeding, resting, refuge and reproduction for wading birds, wood stork, snail kite, killifishes, live bearers, juvenile sunfishes, southern leopard frog, pig frog, green tree frog, American alligator and American crocodile, among others (Mitsch and Gosselink 2000). The present study had two objectives a) assess the impact of Hymenachne on the flora and macroinvertebrate fauna and b) evaluate the use of herbicides as a means to control Hymenachne. 4 Impacts of Hymenachne amplexicaulis on plant and arthropod communities Introduction Large infestations of exotic grasses can reduce biodiversity in aquatic ecosystems. Recent studies in wetlands demonstrate that exotic grasses are capable of simplifying the plant diversity and reducing or changing the arthropod community (Herrera and Dudley 2003, Houston and Duivenvoorden 2002, Talley and Levin 2001, Posey 1988). These changes can be linked to alteration of trophic structure, and habitat usage by birds, fish and other vertebrates. Despite the large areas infested and visible reduction of wetland plants, no studies have been conducted to quantify the impact of Hymenachne on Florida native plant and arthropod communities. The objectives of this study were to quantify the impact of Hymenachne on native flora and macroinvertebrates assemblages in floodplain marshes. Material and Methods Study area The Myakka River flows through 45 square miles of Myakka River State Park, which is located in Sarasota County in southwest Florida. The land cover in the upper river basin is dominated by a mosaic of pastures, hardwood forest, palms, citrus groves and row crops. Rainfall is seasonal with most of the rain falling between April and October (Kushlan 1990). Heavy rain triggers floods during the summer in the park. In the last four years, increased hurricane activity generated large discharges of water into marshes next to the river. Vegetation of marshes adjacent to the Myakka River is composed of: (a) emergent
Recommended publications
  • Het News Issue 22 (Spring 2015)
    Circulation : An informal newsletter circulated periodically to those interested in Heteroptera Copyright : Text & drawings © 2015 Authors. Photographs © 2015 Photographers Citation : Het News, 3 rd series, 22, Spring 2015 Editor : Tristan Bantock: 101 Crouch Hill, London N8 9RD [email protected] britishbugs.org.uk , twitter.com/BritishBugs CONTENTS ANNOUNCEMENTS Scutelleridae A tribute – Ashley Wood…………………………………………….. 1 Odonotoscelis fuliginosa ……………………………………………... 5 Updated keys to Terrestrial Heteroptera exc. Miridae…………… 2 Stenocephalidae County Recorder News……………………………………………… 2 Dicranocephalus medius feeding on Euphorbia x pseudovirgata 5 IUCN status reviews for Heteroptera………………………………. 2 Lygaeidae New RES Handbook to Shieldbugs & Allies of Britain and Ireland 2 Nysius huttoni ………………………………………………………… 5 Request for photographs of Peribalus spp…………………………. 2 Ortholomus punctipennis …………………….……………………… 5 Ischnodemus sabuleti ……………..………….……………………… 5 SPECIES NEW TO BRITAIN Rhyparochromus vulgaris ……………………………………………. 6 Centrocoris variegatus (Coreidae)………………………………….. 2 Drymus pumilio…………………………………………………….…. 6 Orius horvathi (Anthocoridae)……………………………………….. 2 Miridae Nabis capsiformis (Nabidae)………………………………………… 3 Globiceps fulvicollis cruciatus…………………….………………… 6 Psallus anaemicus (Miridae)………………………………………… 3 Hallodapus montandoni………………………………………………. 6 Psallus helenae (Miridae)……………………………………………. 3 Pachytomella parallela……………………………………………….. 6 Hoplomachus thunbergii……………………………………………… 6 SPECIES NOTES Chlamydatus evanescens……………………… …………………….
    [Show full text]
  • Improved Conservation Plant Materials Released by NRCS and Cooperators Through December 2014
    Natural Resources Conservation Service Improved Conservation Plant Materials Released by Plant Materials Program NRCS and Cooperators through December 2014 Page intentionally left blank. Natural Resources Conservation Service Plant Materials Program Improved Conservation Plant Materials Released by NRCS and Cooperators Through December 2014 Norman A. Berg Plant Materials Center 8791 Beaver Dam Road Building 509, BARC-East Beltsville, Maryland 20705 U.S.A. Phone: (301) 504-8175 prepared by: Julie A. DePue Data Manager/Secretary [email protected] John M. Englert Plant Materials Program Leader [email protected] January 2015 Visit our Website: http://Plant-Materials.nrcs.usda.gov TABLE OF CONTENTS Topics Page Introduction ...........................................................................................................................................................1 Types of Plant Materials Releases ........................................................................................................................2 Sources of Plant Materials ....................................................................................................................................3 NRCS Conservation Plants Released in 2013 and 2014 .......................................................................................4 Complete Listing of Conservation Plants Released through December 2014 ......................................................6 Grasses ......................................................................................................................................................8
    [Show full text]
  • Macrophyte Structure in Lotic-Lentic Habitats from Brazilian Pantanal
    Oecologia Australis 16(4): 782-796, Dezembro 2012 http://dx.doi.org/10.4257/oeco.2012.1604.05 MACROPHYTE STRUCTURE IN LOTIC-LENTIC HABITATS FROM BRAZILIAN PANTANAL Gisele Catian2*, Flávia Maria Leme2, Augusto Francener2, Fábia Silva de Carvalho2, Vitor Simão Galletti3, Arnildo Pott4, Vali Joana Pott4, Edna Scremin-Dias4 & Geraldo Alves Damasceno-Junior4 2Master, Program in Plant Biology, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. 3Master, Program in Ecology and Conservation, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. 4Lecturer, Program in Plant Biology, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. E-mail: [email protected]*, [email protected], [email protected], [email protected], [email protected], arnildo. [email protected], [email protected], [email protected], [email protected] ABSTRACT The goal of this study was to compare the vegetation structure of macrophytes in an anabranch-lake system. Sampling was carried out at flood in three types of aquatic vegetation, (wild-rice, floating meadow and Polygonum bank) in anabranch Bonfim (lotic) and in lake Mandioré (lentic) in plots along transects, to estimate the percent coverage and record life forms of species. We collected 59 species in 50 genera and 28 families.
    [Show full text]
  • The Influence of Prairie Restoration on Hemiptera
    CAN THE ONE TRUE BUG BE THE ONE TRUE ANSWER? THE INFLUENCE OF PRAIRIE RESTORATION ON HEMIPTERA COMPOSITION Thesis Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Biology By Stephanie Kay Gunter, B.A. Dayton, Ohio August 2021 CAN THE ONE TRUE BUG BE THE ONE TRUE ANSWER? THE INFLUENCE OF PRAIRIE RESTORATION ON HEMIPTERA COMPOSITION Name: Gunter, Stephanie Kay APPROVED BY: Chelse M. Prather, Ph.D. Faculty Advisor Associate Professor Department of Biology Ryan W. McEwan, Ph.D. Committee Member Associate Professor Department of Biology Mark G. Nielsen Ph.D. Committee Member Associate Professor Department of Biology ii © Copyright by Stephanie Kay Gunter All rights reserved 2021 iii ABSTRACT CAN THE ONE TRUE BUG BE THE ONE TRUE ANSWER? THE INFLUENCE OF PRAIRIE RESTORATION ON HEMIPTERA COMPOSITION Name: Gunter, Stephanie Kay University of Dayton Advisor: Dr. Chelse M. Prather Ohio historically hosted a patchwork of tallgrass prairies, which provided habitat for native species and prevented erosion. As these vulnerable habitats have declined in the last 200 years due to increased human land use, restorations of these ecosystems have increased, and it is important to evaluate their success. The Hemiptera (true bugs) are an abundant and varied order of insects including leafhoppers, aphids, cicadas, stink bugs, and more. They play important roles in grassland ecosystems, feeding on plant sap and providing prey to predators. Hemipteran abundance and composition can respond to grassland restorations, age of restoration, and size and isolation of habitat.
    [Show full text]
  • 2004Jointannualmeetingwi
    We sincerely thank our sponsors and exhibitors for their support here in Pensacola Beach and added thanks for all of their ongoing help back home: Sponsors ExhibitorsNendors Dow AgroSciences Aquatic Vegetation Control, Inc. NPS, SE Exotic Plant Mgmt. Team Arbor Tree and Land Syngenta BASF Pro Source One Brewer International BASF Callahan's Kudzu Management LLC DuPont Cerexagri, Inc. Brewer International Cbemical Containers, Inc. Cerexagri, Inc. Dow AgroSciences Callahan's Kudzu Management LLC Habitat Restoration Resources, Inc. UAP Timberland LLC Helena Chemical Co. U. S. Forest Service Monsanto SAMAB (Southern Appalachian Man Natural Resource Planning Svcs., Inc. and Biosphere) NaturCbem, Inc. SAK Specialty Sales LLC SePro Corporation Syngenta UAP Timberland LLC TAME (The Area Wide Mgmt. and Evaluation of Melaleuca) University of Florida IFAS Bookstore Southeast Exotic Pest Plant Council 6th Annual Symposium and Florida Exotic Pest Plant Council 19th Annual Symposium "West of Eden: Where Research, Policy and Practice Meet" April 28-30, 2004 Clarion Suites and Convention Center Pensacola Beach, Florida Agenda Wednesday, April 28th 2004 Moderator: Mike Bodle 0900 - 0910 Welcome Mike Bodle, Brian Bowen 0910 - 0945 Keynote Speaker Phyllis Windle Nine hundred experts and groups call for action! 0945 - 1005 National invasive species issues Randall Stocker 1005 -1020 Break Moderator: Brian Bowen 1020 - 1100 Exotic plant management teams: meeting the National Park Service natural resources challenge Nancy Fraley 1100 - 1120 South Florida and Caribbean parks exotic plant management plan and EIS Sandy Hamilton 1120 - 1140 Industry influence on exotic plant pest policies Barbara Lucas 1140 -1200 IFAS Assessment Alison Fox 1200 - 1300 Lunch (On your own) Moderator: Alison Fox 1300 - 1320 Fla.
    [Show full text]
  • BSES Limited
    BSES Limited FINAL REPORT – SRDC PROJECT BSS280 OVERSEAS SUGARCANE QUARANTINE AND EMERGENCY RESPONSE PLANNING by MN SALLAM SD05017 Contact: Dr Mohamed Sallam Research Officer BSES Limited PO Box 122 Gordonvale Q 4865 Telephone: 07 4056 1255 Facsimile: 07 4056 2405 Email: [email protected] BSES is not a partner, joint venturer, employee or agent of SRDC and has no authority to legally bind SRDC, in any publication of substantive details or results of this Project. BSES Limited Publication SRDC Final report SD05017 November 2005 Copyright © 2005 by BSES Limited All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of BSES Limited. Warning: Our tests, inspections and recommendations should not be relied on without further, independent inquiries. They may not be accurate, complete or applicable for your particular needs for many reasons, including (for example) BSES Limited being unaware of other matters relevant to individual crops, the analysis of unrepresentative samples or the influence of environmental, managerial or other factors on production. Disclaimer: Except as required by law and only to the extent so required, none of BSES Limited, its directors, officers or agents makes any representation or warranty, express or implied, as to, or shall in any way be liable (including liability in negligence) directly or indirectly for any loss, damages, costs, expenses or reliance arising out of or in connection with, the accuracy, currency, completeness or balance of (or otherwise), or any errors in or omissions from, any test results, recommendations statements or other information provided to you.
    [Show full text]
  • Weed Control in Florida Ponds1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. CIR 707 Weed Control in Florida Ponds1 D.D. Thayer, K. A. Langeland, W.T. Haller, and J.C. Joyce2 Ponds are often built to supplement farm income Site Selection via fish production, for personal enjoyment, or for stormwater management. Soon after the pond is Where you dig a pond can be an important constructed, unforeseen problems often arise. One decision when it comes to preventive control. Proper major problem that occurs is that the pond becomes location can help minimize erosion and nutrient clogged with aquatic plants. The level at which an enrichment from the runoff of silt and inorganic and aquatic plant becomes a weed problem depends on organic fertilizers that decrease the lifespan of the the pond's intended use. A farm pond used primarily pond and limit its usefulness. for weekend fishing can tolerate considerably more Whether you fertilize your pond for fish vegetation than a pond constructed specifically for production or avoid intentional nutrient enrichment, fish production and/or irrigation. Shoreline grasses sites near fertilized fields, feedlots, barnyards, septic can help stabilize and prevent bank erosion, but out of tanks, gardens, roadways, or other sources of runoff control grasses may encroach into the water, where should be avoided. Agricultural and domestic runoff they restrict access and usability. This circular such as from parking lots and roadways may also provides information on aquatic weed identification contribute heavy metals, oils, and pesticide and control for farm and aquaculture ponds. contaminants. If an “ideal” pond location cannot be Prevention is the best technique for reducing found, a berm to divert runoff away from the pond takeover by aquatic weeds.
    [Show full text]
  • Saprophylic Hemiptera Roth Complete
    Saproxylic Hemiptera Taxonomy, Ecology & Evolu8on Steffen Roth, University Museum Bergen, Norway Воро́неж, 26 ию́ нь 2019 г. Outline: Hemiptera? What the f*** is a bug? Which taxa do we find in dead wood? Morphological and physiological adapta?on Evolu?on of saproxylic Hemiptera and how to entangle it: a case study An ecological case study: What aCracts saproxylic Hemiptera towards dead wood? scale insects jumping plant lice Aphids White flies cicadas scale insects Homoptera s.stricto spi:le bugs leaf hopper tree hopper Cicadinea Planthoppers thorn bugs Fulgoridae lanternflies Derbidae Fla-dae Delphacidae moss bugs Malcolm Burrows et al. J Exp Biol 2007;210:3311-3318 moss bugs true bugs Kevin P. Johnson et al. PNAS 2018;115:50:12775-12780 Gosner & Damken 2018 Saproxylic hemiptera- feeding types Several Families of Heteroptera Aradidae (flat bugs), 1800 spp.: - 90% of all spp. fungi feeder - all live stages Reduviidae (Assassin bug), 6800 spp.: - predators Miridae (plant bugs), 10 000 spp.: - all feeding types - only 1 of 7 subfamilies strictly saproxylic (Cylapinae: ca 50 spp.) Fulgoromorpha: - Fungi feeder and predators, oJen - Achilidae and Derbidae (out of 21 unknown families) -only nymphs are saproxylic Anthocoridae (minute pirate/flower bugs), 600 spp: - all feeding types - host plant specific among predatory spp. Morphological and physiological adapta1on 1 - extremely dorsoventrally fla9ened body - waxy surface - special secretory glands and gut structure for myceto-phagous feeding - Elonga1on of stylet bundles Morphological and physiological adapta,on 2 - wing reduc,on/losses (50% of all known genera and most subfamilies od Aradidae) - camouflaged in their habitat: colour and tubercular bark mimics - acyclic reproduc,on Morphological and physiological adaptation 3 - Piryphilous and secondary colonization of burned forest - photomechanic infrared sensilla * Aradus angularis Gossner et al.
    [Show full text]
  • Tropical Forages
    Tropical Forages Hymenachne amplexicaulis Scientific name Hymenachne amplexicaulis (Rudge) Nees Synonyms Aquatic or sub-aquatic perennial with coarse culms Leaves to >3cm wide with stem- Basionym: Panicum amplexicaule Rudge clasping auricles at base Family/tribe Family: Poaceae (alt. Gramineae) subfamily: Panicoideae tribe: Paspaleae subtribe: Otachyriinae. Morphological description A perennial, stoloniferous/rhizomatous grass, with robust, erect or ascending culms 1–2.5 m high and to Aquatic culm with nodal rooting (cv. >12 mm thick, and prostrate stems that run on wet Olive) ground, or float on water, developing adventitious roots. Stems glabrous, pithy. Leaves glossy green in colour, Inflorescence a narrow spike-like largely glabrous; sheaths often spongy; blades mostly panicle linear-lanceolate, 10–45 cm long and to >3 cm wide, cordate, auriculate and clasping at base; ligule an eciliate membrane, 1–2.5 mm long. Panicle narrow, spikelike, cylindrical, 20–50 cm long, 1–2 cm across, sometimes with 2 to a few long, upright branches. Spikelets lanceolate, dorsi-ventrally compressed, upright, 3–4 (–5) mm long and 1 mm diameter; c. 2.3 million seeds/kg. Caryopsis ellipsoid, easily detached, 1–2 mm long and 0.6 mm diameter. Prolific seed production Note: Morphologically similar to, but distinct from Hymenachne acutigluma (Steud.) Gilliland, which is native to Continental Asia, Malesia and Australasia. Leaves and inflorescence Similar species H. amplexicaulis: leaf base cordate-auriculate, stem- clasping (amplexicaul). H. acutigluma (Steud.) Gilliland (syn. Hymenachne pseudointerrupta Müll. Hal.): leaf base rounded to sub- cordate. Native to S and SE Asia, and northern Australia. Checking maturity in seed production Common names area (cv.
    [Show full text]
  • Diversity and Abundance of Insect Herbivores Foraging on Seedlings in a Rainforest in Guyana
    R Ecological Entomology (1999) 24, 245±259 Diversity and abundance of insect herbivores foraging on seedlings in a rainforest in Guyana YVES BASSET CABI Bioscience: Environment, Ascot, U.K. Abstract. 1. Free-living insect herbivores foraging on 10 000 tagged seedlings representing ®ve species of common rainforest trees were surveyed monthly for more than 1 year in an unlogged forest plot of 1 km2 in Guyana. 2. Overall, 9056 insect specimens were collected. Most were sap-sucking insects, which represented at least 244 species belonging to 25 families. Leaf-chewing insects included at least 101 species belonging to 16 families. Herbivore densities were among the lowest densities reported in tropical rainforests to date: 2.4 individuals per square metre of foliage. 3. Insect host speci®city was assessed by calculating Lloyd's index of patchiness from distributional records and considering feeding records in captivity and in situ. Generalists represented 84 and 78% of sap-sucking species and individuals, and 75 and 42% of leaf-chewing species and individuals. In particular, several species of polyphagous xylem-feeding Cicadellinae were strikingly abundant on all hosts. 4. The high incidence of generalist insects suggests that the Janzen±Connell model, explaining rates of attack on seedlings as a density-dependent process resulting from contagion of specialist insects from parent trees, is unlikely to be valid in this study system. 5. Given the rarity of ¯ushing events for the seedlings during the study period, the low insect densities, and the high proportion of generalists, the data also suggest that seedlings may represent a poor resource for free-living insect herbivores in rainforests.
    [Show full text]
  • Insects of Larose Forest (Excluding Lepidoptera and Odonates)
    Insects of Larose Forest (Excluding Lepidoptera and Odonates) • Non-native species indicated by an asterisk* • Species in red are new for the region EPHEMEROPTERA Mayflies Baetidae Small Minnow Mayflies Baetidae sp. Small minnow mayfly Caenidae Small Squaregills Caenidae sp. Small squaregill Ephemerellidae Spiny Crawlers Ephemerellidae sp. Spiny crawler Heptageniiidae Flatheaded Mayflies Heptageniidae sp. Flatheaded mayfly Leptophlebiidae Pronggills Leptophlebiidae sp. Pronggill PLECOPTERA Stoneflies Perlodidae Perlodid Stoneflies Perlodid sp. Perlodid stonefly ORTHOPTERA Grasshoppers, Crickets and Katydids Gryllidae Crickets Gryllus pennsylvanicus Field cricket Oecanthus sp. Tree cricket Tettigoniidae Katydids Amblycorypha oblongifolia Angular-winged katydid Conocephalus nigropleurum Black-sided meadow katydid Microcentrum sp. Leaf katydid Scudderia sp. Bush katydid HEMIPTERA True Bugs Acanthosomatidae Parent Bugs Elasmostethus cruciatus Red-crossed stink bug Elasmucha lateralis Parent bug Alydidae Broad-headed Bugs Alydus sp. Broad-headed bug Protenor sp. Broad-headed bug Aphididae Aphids Aphis nerii Oleander aphid* Paraprociphilus tesselatus Woolly alder aphid Cicadidae Cicadas Tibicen sp. Cicada Cicadellidae Leafhoppers Cicadellidae sp. Leafhopper Coelidia olitoria Leafhopper Cuernia striata Leahopper Draeculacephala zeae Leafhopper Graphocephala coccinea Leafhopper Idiodonus kelmcottii Leafhopper Neokolla hieroglyphica Leafhopper 1 Penthimia americana Leafhopper Tylozygus bifidus Leafhopper Cercopidae Spittlebugs Aphrophora cribrata
    [Show full text]
  • Hemiptera: Fulgoromorpha: Derbidae) from Korea Mohammad Atikur RAHMAN,1,2 Yong Jung KWON1 and Sang Jae SUH1
    bs_bs_banner Entomological Research 42 (2012) 227–242 RESEARCH PAPER Taxonomic revision of the tribe Zoraidini (Hemiptera: Fulgoromorpha: Derbidae) from Korea Mohammad Atikur RAHMAN,1,2 Yong Jung KWON1 and Sang Jae SUH1 1 School of Applied Biosciences, Kyungpook National University, Daegu, Korea 2 Department of Entomology, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh Correspondence Abstract Yong Jung Kwon, School of Applied Biosciences, College of Agriculture and Life The Korean planthopper tribe Zoraidini is revised taxonomically. Five genera are Sciences, Kyungpook National University, recognized in the Korean fauna: Diostrombus Uhler, 1896, Losbanosia Muir, 1917, Daegu 702 701, Korea. Pamendanga Distant, 1906, Shirakiana Metcalf, 1945, Zoraida Kirkaldy, 1900. Email: [email protected] Among them, the genus Shirakiana is recorded for the first time in Korea. Nine species, four of which are recognized new to Korea: S. infumata (Matsumura), Received 29 January 2012; Z. koannania Matsumura, Z. hubeiensis Chou et Huang, and Z. kuwayamae (Mat- accepted 19 July 2012. sumura). Previous record of one species, Z. pterophoroides (Westwood, 1851), is doi: 10.1111/j.1748-5967.2012.00463.x removed from the list of Korean fauna because it was erroneously reported, based on a misidentification. All species are described and illustrated, and identification keys to genera and species are provided. Key words: Auchenorrhyncha, Derbid planthopper, Fulgoroidea, taxonomy. to Korea: Shirakiana infumata (Matsumura), Zoraida koan- Introduction nania Matsumura, Zoraida hubeiensis Chou et Huang and Derbidae Spinola, 1839 is one of the largest and most mor- Zoraida kuwayamae (Matsumura). The voucher specimens phologically differentiated families in Fulgoromorpha and of Zoraida pterophoroides (Westwood 1851), previously comprises the subfamilies Cedusinae Emeljanov, 1992, Der- examined by Lee and Kwon (1979) and Kwon and Huh binae Spinola, 1839 and Otiocerinae Muir, 1917.
    [Show full text]