ISSN 1387-3547, Volume 12, Number 10

Total Page:16

File Type:pdf, Size:1020Kb

ISSN 1387-3547, Volume 12, Number 10 ISSN 1387-3547, Volume 12, Number 10 This article was published in the above mentioned Springer issue. The material, including all portions thereof, is protected by copyright; all rights are held exclusively by Springer Science + Business Media. The material is for personal use only; commercial use is not permitted. Unauthorized reproduction, transfer and/or use may be a violation of criminal as well as civil law. Biol Invasions (2010) 12:3525–3549 Author's personal copy DOI 10.1007/s10530-010-9749-0 ORIGINAL PAPER The alien flora of Greece: taxonomy, life traits and habitat preferences Margarita Arianoutsou • Ioannis Bazos • Pinelopi Delipetrou • Yannis Kokkoris Received: 13 May 2009 / Accepted: 29 March 2010 / Published online: 18 July 2010 Ó Springer Science+Business Media B.V. 2010 Abstract The aim of the paper is the state-of-the-art the native flora. Regarding flowering traits, most of assessment of the alien flora of Greece and its traits. the aliens have a long flowering period (over The dataset consists of a total of 343 alien taxa, 1 month) and flower in late spring, summer and including 49 archaeophytes. The taxonomy, life traits autumn, when few of the native plants are in bloom. and habitat of the 294 neophytes are analysed vs their Vertebrate zoochory and anemochory are the two naturalisation status. Out of the 122 (41%) natura- dispersal modes mostly utilised by the alien plants lised neophytes, 50 are identified as exhibiting (43 and 28%, respectively), while more than one invasive behaviour. Poaceae, Asteraceae, Amaranth- dispersal mechanisms are functional for 56% of them. aceae, Solanaceae, Fabaceae, and Polygonaceae are Artificial habitats have the highest frequencies of the plant families richest in alien taxa. The majority alien plants. The natural habitats with the highest of them are of American origin, followed by those of numbers of aliens are the coastal ones and inland Asiatic and Mediterranean origin. The neophytes are surface waters. Opuntia ficus-barbarica, Ailanthus predominantly herbs, most of them annuals. Yet, the altissima, Oxalis pes-caprae, Erigeron bonariensis, perennial life cycle is equally frequent with the Amaranthus albus and Symphyotrichum squamatum annual one and the proportion of phanerophytes in are typical cases of plants characterised as invasive, the alien flora is increased compared to the one of having established in almost all the habitat groups identified. The diversity of the ecological character- istics of the plants suggests a potential of impacts that needs to be further assessed. & M. Arianoutsou ( ) Á Y. Kokkoris Keywords Plant invasions Á Species traits Á Department of Ecology and Systematics, Faculty of Biology, School of Sciences, Habitats Á Mediterranean basin University of Athens, 15784 Athens, Greece e-mail: [email protected] Introduction I. Bazos Botanical Garden, Department of Ecology and Systematics, Faculty of Biology, School of Sciences, Although the phenomenon of biological invasions has University of Athens, 15784 Athens, Greece been noted for some time (Elton 1958), it is only during the last two decades that the biological P. Delipetrou Department of Botany, Faculty of Biology, School of consequences of exotic invasions have been Sciences, University of Athens, 15784 Athens, Greece researched extensively. This is due to the realisation 123 3526 Author's personal copy M. Arianoutsou et al. of the significant losses of the biological diversity and Aegean Islands, e.g. Lesvos (Bazos 2005), Chios function of the ecosystems invaded and the economic (Snogerup et al. 2001), Kalymnos (Zervou and impacts caused (Mooney and Hobbs 2000; Mack Yannitsaros 2009). However, there had been no et al. 2000; Vila` et al. 2009). Vascular plants are checklist of the alien taxa of Greece. The current among the most ubiquitous invasive organisms. The paper is based on the data inventory carried out under majority of the plants have been introduced for the DAISIE project (http://www.europe-aliens.org/), agricultural, silvicultural, ornamental or medicinal which was complemented by information on plant purposes (Williamson 1996), while many have been traits and habitats. It provides for the first time a accidental introductions (Newsome and Noble 1986). complete catalogue of the alien plants of Greece Two basic questions have fascinated ecologists based on up-to-date information, and it aims to since biological invasions have become a focal issue address basic but essential questions such as the of the global change (Pysˇek and Richardson 2006). number and naturalisation status of the neophytes, The first question articulated was ‘‘which species their taxonomic identity and origin, and their bio- invade and under which conditions?’’ This question logical and ecological profile. has stimulated the search for traits that make plant species potential successful invaders (e.g. Lloret et al. 2004; Pysˇek et al. 1995, 2009). The second question Methods was ‘‘what features of ecosystems make them either prone or resistant to invasions?’’ This has lead to Area of study studies on community characteristics and environ- mental conditions under which an invasive event is Greece occupies the southernmost part of the Balkan realised (e.g. Davis et al. 2000; Vila` et al. 2007). It is Peninsula and has a total land territory of approx. only recently that these two questions have been 132,000 km2. By land it is bordered by Albania, considered in concert (Richardson and Pysˇek 2006; Former Yugoslav Republic of Macedonia and Bul- Weber et al. 2008). garia from the north, and the European part of Turkey Despite the fact that there are several independent from the northeast. The continental mainland is research efforts in the field of invasion ecology in surrounded by the Aegean Sea to the east, the Libyan Europe, it is only recently that a systematic and Sea to the south, and the Ionian Sea to the west. The synthetic approach has been adopted on investiga- insular part occupies more than one-fifth of its total tions into alien species in Europe (DAISIE 2009). area and includes more than 2000 islands (only 227 Prior to the DAISIE work only few European of which are inhabited) (Strid and Tan 1997). countries had sound information on the composition Although a small country, Greece, owing to its of their alien floras, available in specialised check- geomorphology and dissected landscape, has an lists, namely Austria (Essl and Rabitsch 2002), the extremely wide range of natural habitats ranging Czech Republic (Pysˇek et al. 2002), Germany (Klotz from alpine to almost xeric. Eighty percent of Greece et al. 2002;Ku¨hn and Klotz 2003), Ireland (Reynolds consists of mountains or hills which make it the third 2002), the United Kingdom (Clement and Foster most mountainous country in Europe (Dax and 1994; Preston et al. 2002, 2004) and recently Italy Hovorka 2005). The mountains, many of which (Celesti-Grapow et al. 2009). exceed 2,000 m in height, provide a wide range of The study of the alien vascular flora of Greece habitats, including a large variety of shrublands, started in the early 1970’s (Yannitsaros 1982). It forests, and meadows. The lowlands include lakes, became more intense and systematic during the last streams, river deltas and lagoons of international two decades and many new records were added. importance. In terms of ecosystem types Greece Some of the Greek regions for which there is possesses a great diversity, as a result of the complex sufficient knowledge of the alien flora are Attica relief and the relatively mild, until recently, human (Yannitsaros 1982), the island of Crete (Yannitsaros activities. The most extended ecosystems are the 1991; Turland et al. 1995), the urban areas of Mediterranean maquis, phrygana and forests covering Thessaloniki (Krigas and Kokkini 2004) and Patras 40% of the area (Arianoutsou and Diamantopoulos (Chronopoulos and Christodoulakis 2000) and some 1985). Greece has the tenth longest coastline in the 123 The alien flora of Greece Author's personal copy 3527 World (15,000 km total, 7,300 continental and 7,700 intensification and shift of economic activities to in the islands), hence coastal, marine and island the secondary and tertiary sector has increased habitats comprise a priority for the country (Strid and environmental problems and threats to Greece’s Tan 1997). natural environment. The most serious human Greece, being part of the Mediterranean Basin was impacts are wetland reclamation, desertification due settled by humans very early. As a consequence to repeated fires, frequently coupled with grazing, Mediterranean landscapes have long ago experienced development of coastal housing and tourism infra- the human impact. Indigenous agriculture and animal structure. Increased emissions of various kinds of husbandry have been practiced here for more than pollutants and pollution of air, water, and soil have 10,000 years (Naveh 1998) in combination with also been recognised as significant problems. deforestation practices and fire management. Plant community structure and diversity patterns have Data sources-database therefore evolved under the influence of this interac- tion, as is also the case for the other Mediterranean The dataset analysed here originates from the data- type regions of the world (Cowling et al. 1996). base ‘‘Alien’’, an upgraded version of the one These patterns were kept at a dynamic equilibrium at compiled for the DAISIE project (Pysˇek et al. 2009; least until the Second World War (Caravello and http://www.europe-aliens.org/), complemented with Giacomin 1993). Since 1950, major changes have additional and updated information. The database occurred to the economies, the livelihood and hence includes tables with multiple records for the status, the landscapes of the country. Initially, there were distribution, introduction and ecological traits of each extensive rural migrations followed by agricultural plant. The data recorded were based on the investi- intensification from the introduction of new farm gation of 283 sources of which 234 were used for the machinery, new strains of cereals and tree crops and plants of ‘‘Appendix IV’’.
Recommended publications
  • Perceptions of Risk from Non-Native and Horticultural Plants
    Research Collection Doctoral Thesis Perceptions of Risk from Non-Native and Horticultural Plants Author(s): Humair Kuhn, Franziska Publication Date: 2014 Permanent Link: https://doi.org/10.3929/ethz-a-010252721 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 22073 Perceptions of Risk from Non-Native and Horticultural Plants A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by FRANZISKA HUMAIR KUHN M.Sc. in Biology, University of Basel, Switzerland born on November 10, 1968 citizen of Basel (BS), Escholzmatt-Marbach (LU), Waltenschwil (AG) accepted on the recommendation of Prof. Dr. Michael Siegrist, examiner Prof. Dr. Peter Edwards, co-examiner Prof. Dr. Petra Lindemann-Matthies, co-examiner PD Dr. Christoph Kueffer Schumacher, co-examiner 2014 3 5 Summary 1. The life of humans is inextricably linked to biodiversity and functioning ecosys- tems. Nevertheless, we are in the process of changing our planet to such an extent that many species and species communities are critically endangered. The intro- duction of new, non-native plant species to established ecosystems is perceived as one of the main threats to global biodiversity: Some of these species may become dominant and lead to novel interactions within ecosystems (plant invasions). Hu- mans are the main driver of plant invasions. In order to better understand the invasion process, not only ecological relationships, but also human motivation be- hind the choice to introduce certain species has to be examined.
    [Show full text]
  • Mendelova Univerzita V Brně Zahradnická Fakulta V Lednici
    Mendelova univerzita v Brně Zahradnická fakulta v Lednici Použití pnoucích rostlin na území České republiky v první polovině 20. století Diplomová práce Vedoucí diplomové práce: Vypracovala: prof. Ing. Miloš Pejchal, CSc. Bc. Andrea Dundáčková Lednice 2017 2 Čestné prohlášení Prohlašuji, že jsem diplomovou práci na téma Použití pnoucích rostlin na území České republiky v první polovině 20. století vypracovala samostatně a veškeré použité prameny a informace uvádím v seznamu použité literatury. Souhlasím, aby moje práce byla zveřejněna v souladu s § 47b zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších předpisů, a v souladu s platnou Směrnicí o zveřejňování vysokoškolských závěrečných prací. Jsem si vědoma, že se na moji práci vztahuje zákon č. 121/2000 Sb., autorský zákon, a že Mendelova univerzita v Brně má právo na uzavření licenční smlouvy a užití této práce jako školního díla podle § 60 odst. 1 autorského zákona. Dále se zavazuji, že před sepsáním licenční smlouvy o využití díla jinou osobou (subjektem) si vyžádám písemné stanovisko univerzity, že předmětná licenční smlouva není v rozporu s oprávněnými zájmy univerzity, a zavazuji se uhradit případný příspěvek na úhradu nákladů spojených se vznikem díla, a to až do jejich skutečné výše. V Lednici, dne 10. 5. 2017 Podpis studenta ………………………………. Bc. Andrea Dundáčková 3 Poděkování Děkuji především panu prof. Ing. Miloši Pejchalovi, CSc. za odborné vedení, trpělivost, ochotu a za čas strávený konzultacemi nad tématem diplomové práce. Dále bych chtěla velice poděkovat Ústavu biotechniky zeleně Zahradnické fakulty Mendelovy univerzity v Brně za ochotné poskytnutí badatelských zdrojů.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Centranthus Macrosiphon Boiss., 1843 (Valériane À Grosses Tiges)
    Centranthus macrosiphon Boiss., 1843 (Valériane à grosses tiges) Identifiants : 7269/cenmac Association du Potager de mes/nos Rêves (https://lepotager-demesreves.fr) Fiche réalisée par Patrick Le Ménahèze Dernière modification le 30/09/2021 Classification phylogénétique : Clade : Angiospermes ; Clade : Dicotylédones vraies ; Clade : Astéridées ; Clade : Campanulidées ; Ordre : Dipsacales ; Famille : Caprifoliaceae ; Classification/taxinomie traditionnelle : Règne : Plantae ; Sous-règne : Tracheobionta ; Division : Magnoliophyta ; Classe : Magnoliopsida ; Ordre : Dipsacales ; Famille : Caprifoliaceae ; Genre : Centranthus ; Synonymes français : valériane comestible ; Nom(s) anglais, local(aux) et/ou international(aux) : Spanish-valerian, pretty betsy, long-spurred valerian , sommarpipört (sv) ; Note comestibilité : ** Rapport de consommation et comestibilité/consommabilité inférée (partie(s) utilisable(s) et usage(s) alimentaire(s) correspondant(s)) : La plante a été recommandée comme une succédanée des Mâches. Revue horticole, 1872, page 259, sous le litre de (Une bonne salade trop peu connue) : les jeunes tiges sont elles-mêmes très tendres et très comestibles, et si, dès la première fourchetée, on est un peu surpris par la légère amertume de cette salade, on sera tout étonné de la trouver plus agréable à mesure qu'on en mangera davantage, et finalement on sera convaincu que c'est une salade excellente en même temps qu'elle est excessivement inoffensive, et on pourrait ajouter une des plus saines et des plus hygiéniques, puisqu'elle appartient à la famille des Valérianées{{{76(+x). Feuilles également cuites (ex. : comme potherbe) ? (qp*). Les feuilles sont utilisées dans les salades. Les fleurs sont consommées crues Partie testée : feuilles{{{0(+x) (traduction automatique) Original : Leaves{{{0(+x) Taux d'humidité Énergie (kj) Énergie (kcal) Protéines (g) Pro- Vitamines C (mg) Fer (mg) Zinc (mg) vitamines A (µg) 0 0 0 0 0 0 0 néant, inconnus ou indéterminés.néant, inconnus ou indéterminés.
    [Show full text]
  • Staff Assessment Report APP203667: an Application to Import
    EPA advice for APP203667 Staff Assessment Report APP203667: An application to import and release the moth plant beetle (Freudeita confer cupripennis) as a biological control agent for the weed moth plant (Araujia hortorum). Purpose An application to import and release the moth plant beetle, Freudeita cf. cupripennis, as a biological control agent for the weed moth plant, Araujia hortorum Application number APP203667 Application type Notified, Full Release Applicant Waikato Regional Council Date formally received 17 January 2019 1 EPA advice for APP203667 Executive Summary and Recommendation In January 2019, Waikato Regional Council submitted an application to the Environmental Protection Authority (EPA) seeking pre-approval to release the moth plant beetle, Freudeita cf. cupripennis, as a biological control agent (BCA) for the weed moth plant, Araujia hortorum. The application was publicly notified. The EPA received 53 submissions, 23 submissions supported the application, four submissions neither supported nor opposed and 26 submissions opposed the application. The EPA assessed the risks, costs and benefits of the release of F. cf. cupripennis in the context of the environment, market economy, people and communities, public health and on the relationship of Māori and their culture and traditions with their ancestral lands, water, sites, wāhi tapu, valued flora and fauna, and other taonga. The EPA assessed that there are no direct or tangible risks to public health from the release of the moth plant beetle and this was not considered in the assessment. Regarding the environment, we assessed the benefits from the release of the moth plant beetle and found that the BCA is unlikely to reduce the use of chemicals since only a small quantity of herbicide gel is used and that broad spectrum-herbicides would continue to be used to treat other weeds.
    [Show full text]
  • Cucumber Green Mottle Mosaic Virus Keep an “Open Mind” and Question Your Observations Disease Cycle 2
    Cucumber green mottle mosaic virus Keep an “Open Mind” and Question Your Observations Disease Cycle 2. CGMMV cross-contaminated via mechanical transmission – people/equipment, debris and soil 1. Bees and other insects potentially disperse CGMMV in the field CGMMV-contaminated seed 3. Weeds around fields can be hosts/reservoirs for CGMMV direct sown / transplants Cucumber Green Mottle Mosaic Virus (CGMMV) Older leaves silver leaf flecks • Very stable and easily transmissible by mechanically and by plant debris in soil. • Distribution: Worldwide - thought to originate in Asia • Other Cucurbit Tobamoviruses (ZGMMV, KGMMV) distribution– Korea, ?? • Seed transmission has been reported most frequently in cucumber. Although Watermelon appears to be on the increase (Australia, CA,USA). CGMMV Host Range • Cucumber Melon Watermelon Bitter gourd Bitter gourd Gherkin CGMMV outbreak in Fresno area 2017 • Bottle gourd ; Opo round • Squash (pumpkin type; C moschata-C. maxima) • Korean melon • Japanese cucumber • Chinese bitter melon Weeds identified as Potential Hosts to CGMMV Family Scientific name Common name Apiaceae Heracleum moellendorffii Eosuri Boraginaceae Heliotropium europaeum Common heliotrope Lamiaceae Moluccella laevis Bells of Ireland Solanaceae Solanum nigrum Black nightshade Withania somnifera Indian ginseng Amaranthaceae Amaranthus blitoides Prostrate amaranth Amaranthus graecizans Mediterranean amaranth Amaranthus muricatus Rough-fruit amaranth Amaranthus retroflexus Redroot amaranth Amaranthus viridis Green amaranth Chenopodiaceae
    [Show full text]
  • Checklist of the Vascular Alien Flora of Catalonia (Northeastern Iberian Peninsula, Spain) Pere Aymerich1 & Llorenç Sáez2,3
    BOTANICAL CHECKLISTS Mediterranean Botany ISSNe 2603-9109 https://dx.doi.org/10.5209/mbot.63608 Checklist of the vascular alien flora of Catalonia (northeastern Iberian Peninsula, Spain) Pere Aymerich1 & Llorenç Sáez2,3 Received: 7 March 2019 / Accepted: 28 June 2019 / Published online: 7 November 2019 Abstract. This is an inventory of the vascular alien flora of Catalonia (northeastern Iberian Peninsula, Spain) updated to 2018, representing 1068 alien taxa in total. 554 (52.0%) out of them are casual and 514 (48.0%) are established. 87 taxa (8.1% of the total number and 16.8 % of those established) show an invasive behaviour. The geographic zone with more alien plants is the most anthropogenic maritime area. However, the differences among regions decrease when the degree of naturalization of taxa increases and the number of invaders is very similar in all sectors. Only 26.2% of the taxa are more or less abundant, while the rest are rare or they have vanished. The alien flora is represented by 115 families, 87 out of them include naturalised species. The most diverse genera are Opuntia (20 taxa), Amaranthus (18 taxa) and Solanum (15 taxa). Most of the alien plants have been introduced since the beginning of the twentieth century (70.7%), with a strong increase since 1970 (50.3% of the total number). Almost two thirds of alien taxa have their origin in Euro-Mediterranean area and America, while 24.6% come from other geographical areas. The taxa originated in cultivation represent 9.5%, whereas spontaneous hybrids only 1.2%. From the temporal point of view, the rate of Euro-Mediterranean taxa shows a progressive reduction parallel to an increase of those of other origins, which have reached 73.2% of introductions during the last 50 years.
    [Show full text]
  • 2018 Fall Perennials Plant List
    2018 Fall Perennial List Botanical Name Common Name Abelmoschus manihot Hibiscus Manihot Abutilon hybrid Logee's White Abutilon hybrid Seashell Abutilon hybrid Yellow Flowered Abutilon hybrid Victor Reiter Abutilon megapotamicum Trailing Flowering Maple Abutilon x hybridum Souvenir de Bonn Achillea millefolium Proa Yarrow Acmella alba Brede Mafane Spilanthes Acmella calirrhiza Kenyan Spilanthes Acmella oleracea Spilanthes / Toothache Plant Acorus calamus Sweet Flag Acorus gramineus Licorice Sweet Flag Acorus gramineus variegatus Grassy Sweet Flag Agastache foeniculum White Anise Hyssop Agastache foeniculum Blue Anise Hyssop Akebia quinata Chocolate Vine Alchemilla mollis Lady's Mantle Alkanna orientalis Oriental Alkanet Allium ampeloprasum Kurrat/Egyptian Leek Allium schoenoprasum Chives Allium tuberosum Garlic Chives Aloe vera Aloe Vera Alpinia galanga Greater Galangal Alpinia officinarum Lesser Galangal Althaea officinalis Marshmallow Amorpha fruiticosa False Indigo Anchusa capensis Blue Angel Anchusa officinalis Common Alkanet Anemopsis californica Yerba Mansa Angelica pachycarpa New Zealand Angelica Angelica sinensis Dong-Quai Anthemis tinctoria Dyer's Chamomile Anthoxanthum odoratum Sweet Vernal Grass Anthyllis vulneraria Kidney Vetch Apios americana Groundnut Apocynum cannabinum Dogbane Armoracia rusticana Horseradish Artemisia douglasiana Western Mugwort Artemisia dracunculus French Tarragon Artemisia dracunuloides Russian Tarragon Asclepias currassavica Blood Flower 2018 Fall Perennial List Botanical Name Common Name Asclepias
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]
  • Lajiluettelo 2019
    Lajiluettelo 2019 Artlistan 2019 Checklist 2019 Helsinki 2020 Viittausohje, kun viitataan koko julkaisuun: Suomen Lajitietokeskus 2020: Lajiluettelo 2019. – Suomen Lajitietokeskus, Luonnontieteellinen keskusmuseo, Helsingin yliopisto, Helsinki. Viittausohje, kun viitataan osaan julkaisusta, esim.: Paukkunen, J., Koponen, M., Vikberg, V., Fernandez-Triana, J., Jussila, R., Mutanen, M., Paappanen, J., Várkonyi, G. 2020: Hymenoptera, pistiäiset. – Julkaisussa: Suomen Lajitietokeskus 2020: Lajiluettelo 2019. Suomen Lajitietokeskus, Luonnontieteellinen keskusmuseo, Helsingin yliopisto, Helsinki. Citerande av publikationen: Finlands Artdatacenter 2020: Artlistan 2019. – Finlands Artdatacenter, Naturhistoriska centralmuseet, Helsingfors universitet, Helsingfors Citerande av en enskild taxon: Paukkunen, J., Koponen, M., Vikberg, V., Fernandez-Triana, J., Jussila, R., Mutanen, M., Paappanen, J., Várkonyi, G. 2020. Hymenoptera, steklar. – I: Finlands Artdatacenter 2020: Artlistan 2019. – Finlands Artdatacenter, Naturhistoriska centralmuseet, Helsingfors universitet, Helsingfors Citation of the publication: FinBIF 2020: The FinBIF checklist of Finnish species 2019. – Finnish Biodiversity Information Facility, Finnish Museum of Natural History, University of Helsinki, Helsinki Citation of a separate taxon: Paukkunen, J., Koponen, M., Vikberg, V., Fernandez-Triana, J., Jussila, R., Mutanen, M., Paappanen, J., Várkonyi, G. 2020: Hymenoptera, sawflied, wasps, ants and bee. – In: FinBIF 2020: The FinBIF checklist of Finnish species 2019. – Finnish Biodiversity
    [Show full text]
  • Grasses of the Texas Hill Country: Vegetative Key and Descriptions
    Hagenbuch, K.W. and D.E. Lemke. 2015. Grasses of the Texas Hill Country: Vegetative key and descriptions. Phytoneuron 2015-4: 1–93. Published 7 January 2015. ISSN 2153 733X GRASSES OF THE TEXAS HILL COUNTRY: VEGETATIVE KEY AND DESCRIPTIONS KARL W. HAGENBUCH Department of Biological Sciences San Antonio College 1300 San Pedro Avenue San Antonio, Texas 78212-4299 [email protected] DAVID E. LEMKE Department of Biology Texas State University 601 University Drive San Marcos, Texas 78666-4684 [email protected] ABSTRACT A key and a set of descriptions, based solely on vegetative characteristics, is provided for the identification of 66 genera and 160 grass species, both native and naturalized, of the Texas Hill Country. The principal characters used (features of longevity, growth form, roots, rhizomes and stolons, culms, leaf sheaths, collars, auricles, ligules, leaf blades, vernation, vestiture, and habitat) are discussed and illustrated. This treatment should prove useful at times when reproductive material is not available. Because of its size and variation in environmental conditions, Texas provides habitat for well over 700 species of grasses (Shaw 2012). For identification purposes, the works of Correll and Johnston (1970); Gould (1975) and, more recently, Shaw (2012) treat Texas grasses in their entirety. In addition to these comprehensive works, regional taxonomic treatments have been done for the grasses of the Cross Timbers and Prairies (Hignight et al. 1988), the South Texas Brush Country (Lonard 1993; Everitt et al. 2011), the Gulf Prairies and Marshes (Hatch et al. 1999), and the Trans-Pecos (Powell 1994) natural regions. In these, as well as in numerous other manuals and keys, accurate identification of grass species depends on the availability of reproductive material.
    [Show full text]
  • WOOD ANATOMY of CHENOPODIACEAE (AMARANTHACEAE S
    IAWA Journal, Vol. 33 (2), 2012: 205–232 WOOD ANATOMY OF CHENOPODIACEAE (AMARANTHACEAE s. l.) Heike Heklau1, Peter Gasson2, Fritz Schweingruber3 and Pieter Baas4 SUMMARY The wood anatomy of the Chenopodiaceae is distinctive and fairly uni- form. The secondary xylem is characterised by relatively narrow vessels (<100 µm) with mostly minute pits (<4 µm), and extremely narrow ves- sels (<10 µm intergrading with vascular tracheids in addition to “normal” vessels), short vessel elements (<270 µm), successive cambia, included phloem, thick-walled or very thick-walled fibres, which are short (<470 µm), and abundant calcium oxalate crystals. Rays are mainly observed in the tribes Atripliceae, Beteae, Camphorosmeae, Chenopodieae, Hab- litzieae and Salsoleae, while many Chenopodiaceae are rayless. The Chenopodiaceae differ from the more tropical and subtropical Amaran- thaceae s.str. especially in their shorter libriform fibres and narrower vessels. Contrary to the accepted view that the subfamily Polycnemoideae lacks anomalous thickening, we found irregular successive cambia and included phloem. They are limited to long-lived roots and stem borne roots of perennials (Nitrophila mohavensis) and to a hemicryptophyte (Polycnemum fontanesii). The Chenopodiaceae often grow in extreme habitats, and this is reflected by their wood anatomy. Among the annual species, halophytes have narrower vessels than xeric species of steppes and prairies, and than species of nitrophile ruderal sites. Key words: Chenopodiaceae, Amaranthaceae s.l., included phloem, suc- cessive cambia, anomalous secondary thickening, vessel diameter, vessel element length, ecological adaptations, xerophytes, halophytes. INTRODUCTION The Chenopodiaceae in the order Caryophyllales include annual or perennial herbs, sub- shrubs, shrubs, small trees (Haloxylon ammodendron, Suaeda monoica) and climbers (Hablitzia, Holmbergia).
    [Show full text]