Renal Function Studies and Kidney Pyruvate Garboxylase in Subacute Necrotizing Encephalomyelopathy Leigh's Syndrome)

Total Page:16

File Type:pdf, Size:1020Kb

Renal Function Studies and Kidney Pyruvate Garboxylase in Subacute Necrotizing Encephalomyelopathy Leigh's Syndrome) Pediat. Res. 7: 832-841 (1973) Lactate pyruvate carboxylase Leigh's syndrome (encephalomyelitis) renal tubular acidosis Renal Function Studies and Kidney Pyruvate Garboxylase in Subacute Necrotizing Encephalomyelopathy Leigh's Syndrome) ALAN B. GRUSKIN, [50] MULCHAND S. PATEL, MICHAEL LINSHAW, ROBERT ETTENGER, DALE HUFF, AND WARREN GROVER St. Christopher's Hospital for Children and Departments of Pediatrics, Neurology, Biochemistry, and Pathology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA Extract Proximal renal tubular acidosis has been observed in two infants who had lactic acidosis associated with subacute necrotizing encephalomyelitis. Reduced renal thresholds for bicarbonate (18-19.2 niM/liter) were found in both, in conjunction with the ability to excrete normal quantities of acid. In order to raise the level of serum bicarbonate, increasing rates of infusion of solutions containing bicarbonate were required, because of a progressive increase in serum lactate from 18 to 54 mg/dl. The infusion of sodium bicarbonate expanded the extracellular space, as measured by an increase in chloride space of 12.9%. Volume expansion was associated with a progressive fall in bicarbonate reabsorption from a maximum of 1.91 to 1.02 mM/100 ml glomerular filtration rate. In addition, the tubular reabsorption of phosphate fell from 80 to 60%, urate clearance increased from 8.7 to 20 ml/min/1.73 m2, lactate clearance increased from 0.23 to 22.9 ml/min/1.73 m2, and chloride excretion in- creased from 0.7 to 3.14 /iEq/min/1.73 m2. At autopsy, reduced activity of renal pyruvate carboxylase was demonstrated for the first time in this disease. Speculation As a reflection of impaired lactate metabolism in subacute necrotizing encephalo- myelitis (SNE), generation of ATP may be reduced in the renal cortex. This reduced supply of energy might be expected to impair reabsorption of normal quantities of filtered bicarbonate; proximal renal tubular acidosis may be the result. The fact that other evidence of proximal tubular dysfunction was not observed in the normohy- drated state further suggests that failure to reabsorb filtered sodium bicarbonate may be the initial abnormality observed when the supply of energy diminishes in the renal cortex. The changes in the chloride space observed during bicarbonate infusions may provide data useful in the interpretation of changes in the renal threshold both for bicarbonate and for other solutes. Finally, it appears that subacute necrotizing encephalomyelitis may include a spectrum of biochemical abnormalities, and that only certain forms may be asso- ciated with renal tubular acidosis. 832 Subacute necrotizing encephalomyelopathy 833 Introduction probably had early SNE because the serum alanine and blood lactate levels were elevated and methylama- One hundred cases of SNE have been reported since lonicaciduria was not found. No beneficial effect oc- the original description of the disease by Leigh in 1951 curred after therapy with biotin and lipoic acid, 10 mg [26]. Affected individuals may appear normal during of each daily. Chemical determinations over the next early infancy. With increasing age, progressive neuro- 17 months revealed a persistent anion gap and hyper- logic involvement is manifested by hypotonia, incoor- lacticacidemia, without hyperchloremia. On several oc- dination, oculomotor palsies, visual disturbances, and casions the urinary specific gravity exceeded 1.016 and regressive behavior. The course is progressive, variable 2+ proteinuria was seen. Glycosuria was never found. in duration, and usually fatal. Pathologic changes in- clude symmetrical necrotizing lesions scattered through- When the patient was 7 months old, the presence of out the basal ganglia, brainstem, cerebellum, and proximal RTA was established. Gradually increasing spinal cord [29]. quantities of sodium bicarbonate, ultimately exceeding 120 mEq/24 hr, were required to maintain the serum A major feature of SNE is the periodic occurrence of CO content of the patient above 18 mM/liter. Neutro- acidosis, which may be associated with increased levels 2 penia did not recur. At 19 months of age there was the of lactic acid. We will describe a child with SNE in rapid development of coma and the patient died whom there was persistent acidosis with a normal within a day. serum lactate level. Following this finding we have At postmortem examination the patient's weight was demonstrated proximal renal tubular acidosis (RTA) 4,050 g. No cardiac defect was found. On light micros- in two subjects with SNE and have examined renal copy the kidneys were not remarkable. Examination of function extensively in one. the brain revealed bilateral scattered areas of enceph- This report will present: (1) the clinical course of alomalacia, with gliosis and neovascularization both patients; (2) the changes of venous lactate in re- throughout the white matter of the cerebellum, hippo- sponse to the administration of bicarbonate; (3) stud- campal gyrus, dentate nucleus, and white matter of the ies of the renal mechanisms involved in the reabsorp- brainstem. tion of urate, phosphate, lactate, sodium, and bicar- MG (SCHC 68-00-230) was a boy born after a full bonate; (4) the changes in transport which occurred as term, uncomplicated gestation. Birth weight was 3,930 a result of expansion of extracellular volume; and (5) g. The parents were well, and unrelated. A male sib- data concerning the renal activity of pyruvate carbox- ling had died at the age of 2 years, with SNE con- ylase. firmed at postmortem examination. On monthly exam- ination our patient's early growth and development Case Reports appeared to be normal. His blood lactate level, exam- SW (SCHC 68-00-538) was a girl born to a 23-year-old ined initially at the age of 7 months, was found to be mother after an uncomplicated gestation of 39 weeks' 56 mg/dl; the serum alanine was 5 mg/dl. Blood-urea duration. Birth weight was 2,670 g and length was 50 nitrogen was 10 mg/dl, serum Na 135 mEq/liter, cm. The Apgar score was 9 at 1 min. Over the next 26 serum Cl 103 mEq/liter, serum K 4.1 mEq/liter, total hr, the child became jittery, hypothermic (92° F), and CO2 17.9 mM/liter, pH 7.26, and PC02 38 mm Hg. He- developed pneumonitis. Recovery followed treatment mogram, urinalysis, blood sugar, electroencephalogram, with intravenous fluids, ampicillin, and kanamycin. and roentgenograms of the skeletal system were nor- The patient did not thrive, and at 6 weeks of age mal. Over the ensuing 2.5 years it was found that the weighed 3,150 g. Studies elsewhere revealed multiple serum bicarbonate level of the patient would fall below urinary colony counts exceeding 105 Escherichia coli, 10 mM/liter unless he was given bicarbonate in excess and the patient was treated with sulfisoxazole. Our of 5 mEq/kg/24 hr. On several occasions his serum studies included blood-urea nitrogen 25 mg/dl, serum chloride exceeded 110 mEq/liter without any evidence Na 138 mEq/liter, serum K 5.3 mEq/liter, serum Cl of an anion gap. On other occasions he had an anion gap exceeding 20 mEq/liter. Over 30 measurements of 105 mEq/liter, CO2 content 16.1 mM/liter, pH 7.25, venous lactate were made. Values ranged from 9 to 62 and PC02 35.5 mm Hg. Blood lactate levels ranged from 25 to 140 mg/dl (normal <30 mg/dl). Neutropenia mg/dl. was found. The diagnosis of a variant of hyperglycine- During his 2nd year of life the patient stopped grow- mia was considered, but it was felt the subject more ing and developed progressive neurologic impairment. 834 GRUSKIN ET AL. He received thiamine and lipoic acid therapy, the de- dose of inulin and 2% p-aminohippurate (PAH) in tails of which are reported elsewhere [19]. No major 0.9% NaCl, sufficient quantities of both were adminis- therapeutic response occurred. tered to maintain the blood level of inulin at 50 mg/dl The patient was first shown to have proximal RTA and of PAH at 1-3 mg/dl. After the control specimens at the age of 12 months, and a more detailed evalua- were obtained, bicarbonate was added to the infusion tion of his renal function was made at 32 months. and no further chloride was given. Three separate in- Roentgenograms did not at any time show evidence of fusion rates were utilized: 3.3 ml/min/1.73 m2 until rickets. There was gradual clinical deterioration; the urinary pH exceeded 6.1 (the corresponding serum death came at 38 months of age. bicarbonate value defines the renal threshold for bicar- Postmortem examination of the brain revealed nu- bonate); 6.2 ml/min/1.73 m2 after the threshold was merous punctate areas of red and gray softening scat- ascertained; and 13.2 ml/min/1.73 m2 when it became tered throughout the nuclear structures of the central apparent that the rate of rise of serum bicarbonate was neuronal axis, from the head of the caudate nucleus inadequate to reach levels at which tubular maximum rostral and/or caudad to the lower cervical spinal (Tm) for bicarbonate can be measured. Blood samples cord. The largest lesion almost totally destroyed the were obtained at 20-30-min intervals, and midpoint putamen and extended into the adjacent globus palli- serum levels were calculated by interpolation for each dus, thalamus, and amygdala. The subthalamic nu- urine collection period. cleus and substantia nigra were extensively involved. The mammillary bodies were spared. Numerous le- Laboratory Methods sions were present in the central nuclear structures of Blood pH was measured at 38° with an IL pH meter the midbrain, pons, and medulla. The dentate nucleus [40]. Urine pH was measured at 25° with a Corning was totally destroyed. The gray matter was involved, pH meter [41] and subsequently corrected for body especially in the anterior horns of most of the cervical temperature.
Recommended publications
  • Cardiac Dysfunction and Lactic Acidosis During Hyperdynamic and Hypovolemic Shock
    è - \-o(J THESIS FOR TIIE DEGREE OF DOCTOR OF MEDICINE CARDIAC DYSFUNCTION AND LACTIC ACIDOSIS DURING HYPERDYNAMIC AND HYPOVOLEMIC SHOCK DAVID JAMES COOPER DEPARTMENT OF ANAESTIIESIA AND INTENSIVE CARE FACULTY OF MEDICINE UNIVERSITY OF ADELAIDE Submitted: October,1995 Submitted in revised form: November, 1996 2 J TABLE OF CONTENTS Page 5 CH 1(1.1) Abstract (1.2) Signed statement (1.3) Authors contribution to each publication (1.4) Acknowledgments (1.5) Publications arising 9 CH2Introduction (2.1) Shock and lactic acidosis (2.2) Cardiac dysfunction and therapies during lactic acidosis (2.3) Cardiac dysfunction during hyperdynamic shock (2.4) Cardiac dysfunction during hypovolemic shock (2.5) Cardiac dysfunction during ionised hypocalcaemia l7 CH3 Methods (3. 1) Left ventricular function assessment - introduction (3.2) Left ventricular function assessment in an animal model 3.2.I Introduction 3.2.2 Anaesthesia 3.2.3 Instrumentation 3.2.4 Systolic left ventricular contractility 3.2.5 Left ventricular diastolic mechanics 3.2.6 Yentricular function curves 3.2.1 Limitations of the animal model (3.3) Left ventricular function assessment in human volunteers 3.3.7 Left ventricular end-systolic pressure measurement 3.3.2 Left ventricular dimension measurement 3.3.3 Rate corrected velocity of circumferential fibre shortening (v"¡.) 3.3.4. Left ventricular end-systolic meridional wall stress (o"r) 4 33 CH 4 Cardiac dysfunction during lactic acidosis (4.1) Introduction 4.7.1 Case report (4.2) Human studies 4.2.1 Bicarbonate in critically ill patients
    [Show full text]
  • Persistent Lactic Acidosis - Think Beyond Sepsis Emily Pallister1* and Thogulava Kannan2
    ISSN: 2377-4630 Pallister and Kannan. Int J Anesthetic Anesthesiol 2019, 6:094 DOI: 10.23937/2377-4630/1410094 Volume 6 | Issue 3 International Journal of Open Access Anesthetics and Anesthesiology CASE REPORT Persistent Lactic Acidosis - Think beyond Sepsis Emily Pallister1* and Thogulava Kannan2 1 Check for ST5 Anaesthetics, University Hospitals of Coventry and Warwickshire, UK updates 2Consultant Anaesthetist, George Eliot Hospital, Nuneaton, UK *Corresponding author: Emily Pallister, ST5 Anaesthetics, University Hospitals of Coventry and Warwickshire, Coventry, UK Introduction • Differential diagnoses for hyperlactatemia beyond sepsis. A 79-year-old patient with type 2 diabetes mellitus was admitted to the Intensive Care Unit for manage- • Remember to check ketones in patients taking ment of Acute Kidney Injury refractory to fluid resusci- Metformin who present with renal impairment. tation. She had felt unwell for three days with poor oral • Recovery can be protracted despite haemofiltration. intake. Admission bloods showed severe lactic acidosis and Acute Kidney Injury (AKI). • Suspect digoxin toxicity in patients on warfarin with acute kidney injury, who develop cardiac manifes- The patient was initially managed with fluid resus- tations. citation in A&E, but there was no improvement in her acid/base balance or AKI. The Intensive Care team were Case Description asked to review the patient and she was subsequently The patient presented to the Emergency Depart- admitted to ICU for planned haemofiltration. ment with a 3 day history of feeling unwell with poor This case presented multiple complex concurrent oral intake. On examination, her heart rate was 48 with issues. Despite haemofiltration, acidosis persisted for blood pressure 139/32.
    [Show full text]
  • Acid-Base Physiology & Anesthesia
    ACID-BASE PHYSIOLOGY & ANESTHESIA Lyon Lee DVM PhD DACVA Introductions • Abnormal acid-base changes are a result of a disease process. They are not the disease. • Abnormal acid base disorder predicts the outcome of the case but often is not a direct cause of the mortality, but rather is an epiphenomenon. • Disorders of acid base balance result from disorders of primary regulating organs (lungs or kidneys etc), exogenous drugs or fluids that change the ability to maintain normal acid base balance. • An acid is a hydrogen ion or proton donor, and a substance which causes a rise in H+ concentration on being added to water. • A base is a hydrogen ion or proton acceptor, and a substance which causes a rise in OH- concentration when added to water. • Strength of acids or bases refers to their ability to donate and accept H+ ions respectively. • When hydrochloric acid is dissolved in water all or almost all of the H in the acid is released as H+. • When lactic acid is dissolved in water a considerable quantity remains as lactic acid molecules. • Lactic acid is, therefore, said to be a weaker acid than hydrochloric acid, but the lactate ion possess a stronger conjugate base than hydrochlorate. • The stronger the acid, the weaker its conjugate base, that is, the less ability of the base to accept H+, therefore termed, ‘strong acid’ • Carbonic acid ionizes less than lactic acid and so is weaker than lactic acid, therefore termed, ‘weak acid’. • Thus lactic acid might be referred to as weak when considered in relation to hydrochloric acid but strong when compared to carbonic acid.
    [Show full text]
  • Internationaljournalo Fnutrition
    Freely Available Online INTERNATIONAL JOURNAL OF NUTRITION ISSN NO: 2379-7835 Review DOI: 10.14302/issn.2379-7835.ijn-20-3159 Pyruvate Research and Clinical Application Outlooks A Revolutionary Medical Advance Zhou Fang-Qiang1,* 1Shanghai Sandai Pharmaceutical R&D Co. Ltd., Shanghai, 200127 China Abstract Pyruvate holds superior biomedical properties in increase of hypoxia tolerance, correction of severe acidosis, exertion of anti-oxidative stress and protection of mitochondria against apoptosis, so that it improves multi-organ function in various pathogenic insults. Particularly, pyruvate preserves key enzyme: pyruvate dehydrogenase (PDH) activity through direct inhibition of pyruvate dehydrogenase kinas (PDK), as a PDH activator, in hypoxia. Therefore, pyruvate is robustly beneficial for cell/organ function over citrate, acetate, lactate, bicarbonate and chloride as anions in current medical fluids. Pyruvate-enriched oral rehydration salt/solution (Pyr-ORS) and pyruvate-based intravenous (IV) fluids would be more beneficial than WHO-ORS and current IV fluids in both crystalloids and colloids, respectively. Pyruvate-containing fluids as the new generation would be not only a volume expander, but also a therapeutic agent simultaneously in fluid resuscitation in critical care patients. Pyruvate may be also beneficial in prevent and treatment of diabetes, aging and even cancer. Pyruvate clinical applications indicates a new revolutionary medical advance, following the WHO-ORS prevalence, this century. Corresponding author: Zhou FQ, Shanghai Sandai Pharmaceutical R&D Co., Ltd., Shanghai, 200127 China; current address: 200 W. Sahara Ave, Unit 604, Las Vegas, NV 89102 USA; Tel: 1-708-785-3568. Running title: Pyruvate in medical advance Keywords: Aging, Cancer, Diabetes, Fluid Therapy, Hypoxic Lactic Acidosis, Oral Rehydration Salt, Pyruvate, Resuscitation Received: Jan 01, 2020 Accepted: Jan 07, 2020 Published: Jan 14, 2020 Editor: Godwin Ajayi, Prenatal Diagnosis and Therapy Centre, College of Medicine, University of Lagos, Nigeria.
    [Show full text]
  • The Role of Bicarbonate and Base Precursors in Treatment of Acute Gastroenteritis
    Arch Dis Child: first published as 10.1136/adc.62.1.91 on 1 January 1987. Downloaded from Archives of Disease in Childhood, 1987, 62, 91-95 Current topic The role of bicarbonate and base precursors in treatment of acute gastroenteritis E J ELLIOTT, J A WALKER-SMITH, AND M J G FARTHING Departments of Child Health and Gastroenterology, St Bartholomew's Hospital, London Widespread use of oral glucose-electrolyte rehydra- tion as to whether rehydration with base was tion solutions (ORS) has resulted in a dramatic superior to rehydration with saline alone. decrease in the morbidity and mortality associated The use of parenteral bicarbonate was not without with childhood gastroenteritis, regardless of its its problems. In the 1940s Rapoport et al recom- aetiology. Nevertheless, diarrhoeal disease remains mended vigorous rehydration with saline containing the most common cause of death of children in sodium bicarbonate but without potassium and developing countries, and current research efforts reported a 'post-acidotic state' in children whose are directed towards optimising the efficacy of ORS, diarrhoea had improved and in whom recovery aiming for both simplicity and economy. Con- seemed imminent. The clinical syndrome he de- troversy regarding the 'ideal' sodium and glucose scribed of lethargy, irritability, abnormal cardiac concentration continues to the extent that different function, intracranial haemorrhage, generalised copyright. formulations are now recommended in the develop- oedema, and tetany can be attributed to the ing and industrialised world. The inclusion of alkalosis and electrolyte disturbance (hypoka- bicarbonate or a base precursor (citrate, acetate, or laemia, hypocalcaemia, hypophosphataemia, and lactate) in ORS is generally assumed to be neces- hypernatraemia) after excessive rapid administra- sary, both for promotion of water and sodium tion of sodium and alkali.
    [Show full text]
  • Lactic Acidosis Update for Critical Care Clinicians
    J Am Soc Nephrol 12: S15–S19, 2001 Lactic Acidosis Update for Critical Care Clinicians FRIEDRICH C. LUFT Franz Volhard Clinic and Max Delbrück Center for Molecular Medicine, Medical Faculty of the Charité Humboldt University of Berlin, Berlin, Germany. Abstract. Lactic acidosis is a broad-anion gap metabolic aci- involves patients with underlying severe renal and cardiac dosis caused by lactic acid overproduction or underutilization. dysfunction. Drugs used to treat lactic acidosis can aggravate The quantitative dimensions of these two mechanisms com- the condition. NaHCO3 increases lactate production. Treatment monly differ by 1 order of magnitude. Overproduction of lactic of type A lactic acidosis is particularly unsatisfactory. acid, also termed type A lactic acidosis, occurs when the body NaHCO3 is of little value. Carbicarb is a mixture of Na2CO3 must regenerate ATP without oxygen (tissue hypoxia). Circu- and NaHCO3 that buffers similarly to NaHCO3 but without net latory, pulmonary, or hemoglobin transfer disorders are com- generation of CO2. The results from animal studies are prom- monly responsible. Overproduction of lactate also occurs with ising; however, clinical trials are sparse. Dichloroacetate stim- cyanide poisoning or certain malignancies. Underutilization ulates pyruvate dehydrogenase and improves laboratory val- involves removal of lactic acid by oxidation or conversion to ues, but unfortunately not survival rates, among patients with glucose. Liver disease, inhibition of gluconeogenesis, pyruvate lactic acidosis. Hemofiltration has been advocated for the dehydrogenase (thiamine) deficiency, and uncoupling of oxi- treatment of lactic acidosis, on the basis of anecdotal experi- dative phosphorylation are the most common causes. The ences. However, kinetic studies of lactate removal do not kidneys also contribute to lactate removal.
    [Show full text]
  • D-Lactic Acidosis: a Review of Clinical Presentation, Biochemical Features, and Pathophysiologic Mechanisms [Article]
    Ovid: Uribarri: Medicine (Baltimore), Volume 77(2).March 1998.73-82 Page 1 of 20 © Williams & Wilkins 1998. All Rights Reserved. Volume 77(2), March 1998, pp 73-82 D-Lactic Acidosis: A Review of Clinical Presentation, Biochemical Features, and Pathophysiologic Mechanisms [Article] Uribarri, Jaime MD; Oh, Man S. MD; Carroll, Hugh J. MD From the Department of Medicine (JU), Mount Sinai Medical Center, New York, New York; and Department of Medicine (MSO, HJC), State University of New York Health Science Center at Brooklyn, Brooklyn, New York. Address reprint requests to: Jaime Uribarri, MD, Mount Sinai Medical Center, One Gustave Levy Place, New York, NY 10029. Fax: 212-369- 9330. Introduction D-lactic acidosis as a disease of humans was first described in 1979 [51], although it had been known as a disease of ruminants for decades [22]. Following this initial report, numerous other cases of this syndrome have been described [6,8,13,16,24,28,29,31,33,35,36,37,39,40,41,45,46,48,49,54,55,58,59,60,61,63,64,67]. The clinical presentation is characterized by episodes of encephalopathy and metabolic acidosis which are thought to be due to the absorption of d-lactic acid and other unidentified chemicals produced by bacterial fermentation in the colon. Initially d-lactic acidosis was thought to be due solely to overproduction of d-lactic acid because it was thought that d-lactic acid was not metabolized by humans [64]. The subsequent finding that normal subjects have an enormous capacity to metabolize d-lactic acid suggests, however, that the development of d-lactic acidosis requires impaired ability to metabolize d-lactic acid in addition to excessive production [52].
    [Show full text]
  • Acid-Base Balance
    Intensive Care Nursery House Staff Manual Acid-Base Balance INTRODUCTION: The newborn infant is subject to numerous conditions that may disturb acid-base homeostasis. Management of ventilation, which controls the respiratory component of acid-base balance, is discussed in the section on Respiratory Support (P. 10). This section is a brief discussion of the metabolic aspects of acid-base balance. METABOLIC ACIDOSIS, defined as a base deficit >5 mEq/L on the first day and >4 mEq/L thereafter, occurs from: •Loss of buffer (mainly bicarbonate) or •Excess production of acid or decreased excretion of acid The anion gap is a useful calculation in assessing metabolic acidosis. + - - Anion gap = [Na ] – ([Cl ] + [HCO3 ]) Loss of buffer has no effect on anion gap. Accumulation of organic acid (e.g., lactic acid) causes an increase in anion gap. Normal anion gap: <15 mEq/L Increased anion gap: >15 mEq/L in LBW infants (<2,500 g) >18 mEq/L in ELBW infants (<1,000 g) Newborn infants normally have a base deficit of 1 to 3 mEq/L. Common causes of metabolic acidosis: •Bicarbonate loss, especially via immature kidney or from GI tract •Lactic acidosis from inadequate tissue perfusion and oxygenation (e.g., from asphyxia, shock, severe anemia, hypoxemia, PDA, NEC, excessive ventilator pressures with ↓ cardiac output) •Hypothermia •Organic acidemia due to an inborn error of metabolism (see P. 155) •Excessive Cl in IV fluids •Renal failure •Excessive acid load from high protein formula in preterm (late metabolic acidosis of prematurity ) - •Excretion of HCO3 as metabolic compensation for respiratory alkalosis Dilution acidosis is caused by excessive volume expansion (with saline, Ringer’s lactate or dextrose solutions).
    [Show full text]
  • Pyruvate in Potential Supportive Therapy in Critical Covid-19
    SCIREA Journal of Clinical Medicine ISSN: 2706-8870 http://www.scirea.org/journal/CM August 16, 2020 Volume 5, Issue 3, June 2020 Pyruvate in Potential Supportive Therapy in Critical Covid-19 Zhou, Fang-Qiang Fresenius Medical Care, Dialysis Centers in Chicago, IL., 60008 USA Shanghai Sandai Pharmaceutical R&D Co., Ltd., Pudong, Shanghai 200127 China Corresponding author: Zhou FQ US Office: 200 W Sahara Ave, #604, Las Vegas, NV 89102 USA e-mail: [email protected]; phone: 1-708-785-3568 Highlights Pyruvate protects organ metabolism and function, which anions in current fluids do not. Clinical studies showed oral or intravenous pyruvate in large doses were safe. Pyruvate may be a powerful supportive therapy in treating critical care patients. Oral and intravenous pyruvate solutions may be compassionately used in Covid-19. 50 Abstract The focus of present review is on the proposal that pyruvate may be a potential candidate in treating critical care patients with Covid-19 virus infection. The pyruvate anion has beneficial properties to protect organ function by increase of hypoxia/anoxia tolerance, correction of hypoxic lactic acidosis, exertion of anti-oxidative stress/inflammation, protection of mitochondrial function and inhibition of apoptosis. The key effect is reactivation of depressed pyruvate dehydrogenase in various pathogenic insults. These benefits are unparalleled with anions in current medical fluids. Pyruvate in intravenous or oral rehydration salt (ORS) may be a powerful supportive care in treatment of severe virus infection with Covid-19 and critical care patients. Recent studies demonstrate that intravenous pyruvate is superior to regular fluids and pyruvate-enriched ORS (Pyr-ORS) is advantageous over WHO-ORS in organ protection, acidosis correction and survival improvement in severe shock resuscitation in animals.
    [Show full text]
  • Lactic Acidosis
    Lactic Acidosis Color index: Doctors slides Doctor’s notes Extra information Highlights Cardiovascular block EDITING FILE Objectives: ● Define metabolic acid-base disorders including lactic acidosis ● Understand the causes and clinical effects of metabolic acidosis and alkalosis ● Recall the lactate metabolism in the body ● Differentiate between the types of lactic acidosis ● Understand the clinical significance of measuring anion gap ● Discuss the causes and diagnosis of lactic acidosis in conditions such as myocardial infarction 2 Overview ● Introduction to metabolic acid-base disorders ○ Metabolic acidosis and alkalosis ● Lactic acidosis ○ Definition ○ Lactate metabolism in tissue ○ Mechanisms involved in lactic acidosis ○ Types and causes of lactic acidosis ○ Diagnosis and treatment 3 Introduction and Some Concepts: ● Acid based disorders can be either acidosis or alkalosis ● Acidosis: increase in the acidity of body fluid, decrease in PH ● Alkalosis: increase in the alkaline condition of body fluids, increase in PH ● Acidosis/ alkalosis can be respiratory or metabolic ● Respiratory: depends on the PCO2 ● Increase in PCO2 causes respiratory acidosis ● Metabolic: depends on the conc. Of bicarbonate ions [HCO3-] ● The body can compensate for metabolic acidosis by respiratory mechanisms, since both respiration and metabolism have effect on the acidity of body fluids 4 Metabolic Acid-base Disorders ● Changes in bicarbonate HCO3 conc. in the extracellular fluid (ECF) cause acid-base disorders ● Occur due to: high concentration or loss
    [Show full text]
  • A Case of Lactic Acidosis After Resumption of Metformin and SGLT2 Inhibitors
    Case Report Annals of Clinical Case Reports Published: 09 Mar, 2021 A Case of Lactic Acidosis after Resumption of Metformin and SGLT2 Inhibitors Takashi Tominaga*, Midori Ozaki, Mai Kanda, Ryutaro Maeda, Haruka Otuka, Kaori Otake and Yoh Ariyoshi Department of Endocrinology and Diabetes, JA Aichi Konan Kosei Hospital, Japan Abstract Despite being uncommon among patients with diabetes mellitus, lactic acidosis may occasionally develop among metformin-treated patients. Alternatively, although SGLT2 inhibitors are known to cause ketosis, their association with lactic acidosis has been rarely reported. Accordingly, both metformin and SGLT2 inhibitors have been prioritized for use in diabetes treatment guidelines and are often concurrently administered. We herein report a case involving lactic acidosis after resumption of metformin and SGLT2 inhibitors. Thus, lactic acidosis and euglycemic ketoacidosis or their overlap should be carefully considered among ill patients receiving these agents. Keywords: Diabetes mellitus; Lactic acidosis; Metformin; SGLT2 inhibitors Introduction Lactic acidosis is characterized by the accumulation of excess lactic acid in the blood. With the discontinuation of phenformin therapy in the United States, lactic acidosis has become uncommon in patients with diabetes mellitus. However, it may occasionally occur in metformin-treated patients and must still be considered among acidotic patients, particularly in those who are seriously ill [1]. Most of the cases of metformin-associated lactic acidosis have occurred in patients having contraindications for metformin use, particularly renal failure [2,3]. Recent medical treatment OPEN ACCESS guidelines for diabetes have recommended the combined use of metformin and SGLT2 inhibitors. *Correspondence: We herein report a case involving lactic acidosis after resumption of metformin and SGLT2 Takashi Tominaga, Department of inhibitors.
    [Show full text]
  • Lactic Acidosis
    Shortness of breath – a symptom not always understood ❧ Case Conference March 18, 2014 Andrea Caballero Chief Complaint ❧ ❧ DOE x 1 week HPI – 1st presentation ❧ 54 year-old woman with PMHx of HIV (CD4 count 485; 30.6%), DM2, HTN and CKD stage 3 who presented with DOE. Four days prior to presentation, she experienced an episode of SOB while walking in the Dollar Store. She returned to her car and sat down for a while and her SOB resolved. Dyspnea progressively worsened => exacerbated with exertion and improved with rest. ❧ No CP, diaphoresis, headache, dizziness, N/V ❧ At baseline she could ambulate a little over a block before getting SOB. On presentation she would get SOB after 50ft. ❧ Baseline 3 pillow orthopnea; no PND ❧ Decreased PO intake, but still urinating 5-6 times/day due to the furosemide she takes for pedal edema (at baseline). ❧ No fever, chills, cough or calf pain/redness/swelling. HPI ❧ ❧ Earlier that day: ❧ Pt was seen at diabetes clinic and metformin was discontinued due to increase in Creatinine from baseline of 1-1.4 (GFR 50-59) to 2.6 (GFR<30). ❧ Patient did not complain of any symptoms Past Medical History ❧ ❧ HIV (diagnosed on 3/2013– CD4 391 / 24.3% and on 7/13- 485 / 30.6%). ❧ Hypertension ❧ Diabetes mellitus type 2 (A1C 7.8 on day of admit) ❧ CKD stage 3 ❧ Dyslipidemia ❧ Iron Deficiency Anemia ❧ Vitamin D deficiency ❧ Central Retinal Vein Occlusion with Cystoid Macular Edema Past Surgical History ❧ ❧ Cone biopsy ❧ Hysteroscopy w/ polypectomy Medications ❧ ❧ Lamivudine-Zidovudine ❧ Furosemide 40mg Qday 150-300mg
    [Show full text]