Redalyc.Feeding Habits of Carabidae (Coleoptera) Associated With
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mitochondrial Genomes Resolve the Phylogeny of Adephaga
1 Mitochondrial genomes resolve the phylogeny 2 of Adephaga (Coleoptera) and confirm tiger 3 beetles (Cicindelidae) as an independent family 4 Alejandro López-López1,2,3 and Alfried P. Vogler1,2 5 1: Department of Life Sciences, Natural History Museum, London SW7 5BD, UK 6 2: Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot SL5 7PY, UK 7 3: Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Campus 8 Mare Nostrum, 30100, Murcia, Spain 9 10 Corresponding author: Alejandro López-López ([email protected]) 11 12 Abstract 13 The beetle suborder Adephaga consists of several aquatic (‘Hydradephaga’) and terrestrial 14 (‘Geadephaga’) families whose relationships remain poorly known. In particular, the position 15 of Cicindelidae (tiger beetles) appears problematic, as recent studies have found them either 16 within the Hydradephaga based on mitogenomes, or together with several unlikely relatives 17 in Geadeadephaga based on 18S rRNA genes. We newly sequenced nine mitogenomes of 18 representatives of Cicindelidae and three ground beetles (Carabidae), and conducted 19 phylogenetic analyses together with 29 existing mitogenomes of Adephaga. Our results 20 support a basal split of Geadephaga and Hydradephaga, and reveal Cicindelidae, together 21 with Trachypachidae, as sister to all other Geadephaga, supporting their status as Family. We 22 show that alternative arrangements of basal adephagan relationships coincide with increased 23 rates of evolutionary change and with nucleotide compositional bias, but these confounding 24 factors were overcome by the CAT-Poisson model of PhyloBayes. The mitogenome + 18S 25 rRNA combined matrix supports the same topology only after removal of the hypervariable 26 expansion segments. -
From Characters of the Female Reproductive Tract
Phylogeny and Classification of Caraboidea Mus. reg. Sci. nat. Torino, 1998: XX LCE. (1996, Firenze, Italy) 107-170 James K. LIEBHERR and Kipling W. WILL* Inferring phylogenetic relationships within Carabidae (Insecta, Coleoptera) from characters of the female reproductive tract ABSTRACT Characters of the female reproductive tract, ovipositor, and abdomen are analyzed using cladi stic parsimony for a comprehensive representation of carabid beetle tribes. The resulting cladogram is rooted at the family Trachypachidae. No characters of the female reproductive tract define the Carabidae as monophyletic. The Carabidac exhibit a fundamental dichotomy, with the isochaete tri bes Metriini and Paussini forming the adelphotaxon to the Anisochaeta, which includes Gehringiini and Rhysodini, along with the other groups considered member taxa in Jeannel's classification. Monophyly of Isochaeta is supported by the groundplan presence of a securiform helminthoid scle rite at the spermathecal base, and a rod-like, elongate laterotergite IX leading to the explosion cham ber of the pygidial defense glands. Monophyly of the Anisochaeta is supported by the derived divi sion of gonocoxa IX into a basal and apical portion. Within Anisochaeta, the evolution of a secon dary spermatheca-2, and loss ofthe primary spermathcca-I has occurred in one lineage including the Gehringiini, Notiokasiini, Elaphrini, Nebriini, Opisthiini, Notiophilini, and Omophronini. This evo lutionary replacement is demonstrated by the possession of both spermatheca-like structures in Gehringia olympica Darlington and Omophron variegatum (Olivier). The adelphotaxon to this sper matheca-2 clade comprises a basal rhysodine grade consisting of Clivinini, Promecognathini, Amarotypini, Apotomini, Melaenini, Cymbionotini, and Rhysodini. The Rhysodini and Clivinini both exhibit a highly modified laterotergite IX; long and thin, with or without a clavate lateral region. -
Diversity and Habitat Preferences of Carabidae and Staphylinidae (Coleoptera) in Two Agroecosystems
Diversity and habitat preferences of Carabidae and Staphylinidae (Coleoptera) in two agroecosystems Ivan Carlos Fernandes Martins (1*); Francisco Jorge Cividanes (2); Sergio Ide (3); Gianni Queiroz Haddad (2) (1) Universidade Federal Rural da Amazônia, Campus de Capanema, Rua João Pessoa s/n, 68700-030 Capanema (PA), Brasil. (2) UNESP, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Fitossanidade, Via de acesso Donato Castellane s/n, 14884-900 Jaboticabal (SP), Brasil. (3) Instituto Biológico, Centro de Pesquisa e Desenvolvimento de Sanidade Vegetal, Avenida Conselheiro Rodrigues Alves, 1252, 04014-002 São Paulo (SP), Brasil. (*) Corresponding author: [email protected] Received: Feb. 24, 2012; Accepted: Nov. 7, 2012 Abstract The present study had as objective determine the diversity and abundance of adults Carabidae and Staphylinidae in two ar- eas, constituted by forest fragment and soybean/corn crops under conventional tillage and no-tillage systems and to analyze the distribution and preference of those beetles for the habitat. The beetles were sampled with 48 pitfall traps. In both ex- perimental areas, two parallel transects of pitfall traps were installed. Each transect had 100 m in the crop and 100 m in the Article forest fragment. Four traps were close to each other (1 m) in the edge between the crop and the forest fragment, the other traps were installed each 10 m. The obtained data were submitted to the faunistic analysis and the preference of the spe- cies by habitat was obtained by cluster analysis. The results demonstrated that the type of crop system (conventional tillage or no-tillage) might have influenced the diversity of species of Carabidae and Staphylinidae. -
APPENDIX G3 Diflubenzuron Rejected by OPP and ECOTOX
APPENDIX G3 Diflubenzuron Rejected by OPP and ECOTOX Rejected Abgrall, J. F. (1999). Short and Medium Term Impact of Aerial Application of Insecticide Against the Winter Moth (Operophtera Brumata L.). Revue forestiere francaise (nancy) 50: 395-404. Chem Codes: Chemical of Concern: DFZ Rejection Code: NON-ENGLISH. Aguirre-Uribe, L. A., Lozoya-Saldana, A., Luis-Jauregui, A., Quinones-Luna, S., and Juarez-Ramos, F. (1991(1992)). Field Evaluation for the Population Control of Musca Domestica (Diptera: Muscidae) in Chicken Manure With Diflubenzuron. Folia entomol mex 0: 143-151. Chem Codes: Chemical of Concern: DFZ Rejection Code: NON-ENGLISH. Akanbi, M. O. and Ashiru, M. O. (1991). Towards Integrated Pest Management of Forest Defoliators the Nigerian Situation. Xviii international congress of entomology, vancouver, british columbia, canada, 1988. For ecol manage 39: 81-86. Chem Codes: Chemical of Concern: DFZ Rejection Code: REVIEW,CHEM METHODS. Akiyama, Y., Yoshioka, N., Yano, M., Mitsuhashi, T., Takeda, N., Tsuji, M., and Matsushita, S. (1997). Pesticide Residues in Agricultural Products (F.y. 1994-1996). J.Food Hyg.Soc.Jpn. 38: 381-389 (JPN) . Chem Codes: Chemical of Concern: FNT,ACP,DZ,DDVP,MTM,CYP,EFX,FNV,FVL,PMR,MOM,BFZ,IPD,TFZ,CYF,TFY,MLN,BPH,ILL,T BA,DPHP,ES,DM,BTN,FRM,IPD,MYC,TDF,TDM Rejection Code: NON-ENGLISH. Alho, C. Jr and Vieira, L. M. (1997). Fish and Wildlife Resources in the Pantanal Wetlands of Brazil and Potential Disturbances From the Release of Environmental Contaminants. Environmental toxicology and chemistry 16: 71-74. Chem Codes: Chemical of Concern: DFZ Rejection Code: REVIEW. Ali, A. -
A Genus-Level Supertree of Adephaga (Coleoptera) Rolf G
ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2008) 255–269 www.elsevier.de/ode A genus-level supertree of Adephaga (Coleoptera) Rolf G. Beutela,Ã, Ignacio Riberab, Olaf R.P. Bininda-Emondsa aInstitut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Germany bMuseo Nacional de Ciencias Naturales, Madrid, Spain Received 14 October 2005; accepted 17 May 2006 Abstract A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+ Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics. -
Coleoptera: Scarabaeidae: Scarabaeinae) De Colombia
CassolaBiota Colombiana & Pearson 2 (1) 3 - 24, 2001 Escarabajos Tigre del Neotropico -3 Neotropical Tiger Beetles (Coleoptera: Cicindelidae): Checklist and Biogeography Fabio Cassola1 and David L. Pearson2 1 Via Fulvio Tomassucci 12/20, 00144 Roma, Italy (Studies of Tiger Beetles. CXVII). [email protected] 2 Department of Biology, Arizona State University, Tempe, Arizona 85287-1510, U.S.A. [email protected] Key words: Coleoptera, Cicindelidae, Tiger Beetles, Neotropical Region, Species List The taxonomy and general biology of the Neotropical Systematics tiger beetle fauna is relatively well-known. We provide here a short review of the family, with a bibliography for the The family of tiger beetles (Coleoptera: Cicindelidae) beginner student. includes nearly 2500 species, and they occur worldwide except in Antarctica, the boreal regions above 65° latitude, The Neotropical Realm Tasmania, and some isolated oceanic islands like Hawaii and the Maldives. Ranging in altitude from sea level up to We follow Udvardy (1975) and define the Neotropics as the nearly 4,000 m, tiger beetles are primarily diurnal predators, whole South and Central America, and, in addition, most of active on soil surfaces but with some groups on leaves and the coastal and tropical areas of Mexico (Udvardy’s smaller branches of mid-strata tropical vegetation. They Sinaloan, Guerreran, Campechean and Yucatecan are especially numerous in the tropical and subtropical provinces), as well as Cuba and the West Indies, with some areas. Wiesner’s Catalogue (1992) indicated 340 species as minor modifications that exclude the Bermudan island occurring in the Neotropical realm, but a more recent complex and the Everglades in southern Florida. -
Additions to the Checklist of Wisconsin
66 THE GREAT LAKES ENTOMOLOGIST Vol. 47, Nos. 1 - 2 Additions to the Checklist of Wisconsin Ground Beetles (Coleoptera: Carabidae), Including the Adventive Harpalus rubripes (Duftschmid) Among Seven New State Records Peter W. Messer1 Abstract Sixteen species are added to the checklist of Wisconsin Geadephaga. Of these, seven species are reported here as new to Wisconsin. Nine taxa from the list are affected by new information resulting in the removal of six names. The Eurasian beetle Harpalus rubripes was discovered as early as 2009 on annu- ally surveyed beaches along Lake Michigan in southeastern Wisconsin. This discovery greatly extends the species distribution westward from its presence in northeastern North America where it was first recorded in 1981. ____________________ There appears no end to the current accelerated pace of published faunal records and regional checklists. The vast majority of such endeavors are based arbitrarily on political geographic units rather than on well-defined natural systems. The scientific and esthetic allure of the ground beetles has contrib- uted greatly to the surge in publications (e.g., Erwin 2007, 2011; Erwin and Pearson 2008) on Western Hemisphere Caraboidea, the catalogue of North American Geadephaga (Bousquet 2012), and the concerted effort among users of BugGuide.net to supplement the latter catalogue by archiving new records at http://bugguide.net/node/view/744417. Bousquet (2012) updated all 2678 valid North American Geadephaga species-group taxa along with consolidating everything known about their geographic-political distributions. The present contribution adheres to Bous- quet’s nomenclature, classification, and phylogenetic order of the tribes. The relevant hierarchal classification descends according to order Coleoptera: suborder Adephaga: superfamily Caraboidea = Geadephaga: families Trachy- pachidae, Rhysodidae, and Carabidae. -
Ground Beetles: Warriors on Your Farm
Fact Sheet 2018-01 Ground Beetles: Warriors on Your Farm Gladis Zinati1,*, Ph.D., Director of Vegetable Systems Trial Andrew Smith1, Ph.D., Chief Scientist Joe Ingerson-Mahar2, Ph.D., Vegetable IPM Program Coordinator 1Rodale Institute, 611 Siegfriedale Road, Kutztown, PA 19530 2Rutgers University, 104 Thompson Hall, 96 Lipman Dr.,New Brunswick, NJ 08901 *Contact information Email: [email protected] Many vegetable growers choose to use Life Cycle pesticides to keep pests from destroying their vegetable crops. Instead, farmers Ground beetles pass through four life stages: should consider the safe and sustainable egg, larva, pupa and adult. Eggs are laid in alternative: encouraging and enhancing moist soil. Upon hatching, the larvae dwell populations of pests’ natural enemies. in the soil. Larvae are elongated, and their Ground beetles (a.k.a. carabid beetles or heads are relatively large with distinct carabids) are a naturally-occurring pest mandibles. Larvae feed on soft-bodied, soil- control. dwelling insects and their eggs for two to four weeks, then pupate. Most species This fact sheet provides a quick guide to complete their life cycle from egg to adult in carabid beetles as beneficial insects that can one year. Adults overwinter in the soil and be populated on your farm. With good emerge again in the spring. management, they will become the warriors that feed on pests. Appreciating Ground Beetles Ground beetles are a diverse group of insects with 2,000 species inhabiting North America. They typically live in the soil and are usually active at night. Adult ground beetles range in size from about 1/8 inch to Harpalus pensylvanicus Chlaenius tricolor 1 ¼ inch (2mm to over 35mm). -
Issues in Agriculture the Newsletter About Integrated Pest Management for the El Paso Valley
Issues in Agriculture The Newsletter about Integrated Pest Management for the El Paso Valley Volume: 40 Salvador Vitanza, Ph.D. Issue: 8 Extension Agent- IPM Date: August 28, 2015 [email protected] El Paso County Ysleta Annex, 9521 Socorro Rd, Suite A2-Box 2, El Paso, TX 79927. Phone: (915) 860-2515. Fax: (915) 860-2536 Texas AgriLife Extension El Paso County: http://elp.tamu.edu/ Pecan IPM Pipe: http://pecan.ipmpipe.org/ TPMA www.tpma.org/ ANNOUNCEMENTS • NEW LOCATION! To better serve the community, El Paso Texas A&M Extension Service has moved to a new facility. Our new offices are outside the entrance of Ascarate Park on the right hand side: 301 Manny Martinez Sr. Dr., El Paso, TX 79905. Our contact information has also changed. Our new phone: (915) 771-2354 and fax: 915-771-2356. • EL PASO BUGS: I just started building a webpage called “El Paso Bugs”. It is a gallery of insects and related invertebrates that I have had the opportunity to photograph in this beautiful corner of Texas. My intention is to give the general public an increased awareness and appreciation of some of the fascinating arthropod species with which we share this land. To this day, this website displays only my photographs, but contributions of high-quality El Paso insect photos are most welcome. Of course, proper credit will be given by including the author’s name on the image. You can visit this site at: http://elp.tamu.edu/integrated-pest-management/el-paso-bugs/. We have a Facebook page too. -
Population Dynamics and Spatial Distribution of Abaris Basistriata
Ciência e Agrotecnologia 40(1):57-66, Jan/Feb. 2016 http://dx.doi.org/10.1590/S1413-70542016000100005 Population dynamics and spatial distribution of Abaris basistriata Chaudoir, 1873 (Coleoptera: Carabidae) Dinâmica populacional e distribuição espacial de Abaris basistriata Chaudoir, 1873 (Coleoptera: Carabidae) Ivan Carlos Fernandes Martins1*, Francisco Jorge Cividanes2, José Carlos Barbosa2, Joaquim Alves de Lima Junior1, Lourival Dias Campos1 1Universidade Federal Rural da Amazônia/UFRA, Capanema, PA, Brasil 2Universidade Estadual Paulista/UNESP, Faculdade de Ciências Agrárias e Veterinárias/FCAV, Jaboticabal, SP, Brasil *Corresponding author: [email protected] Received in june 4, 2015 and approved in october 18, 2015 ABSTRACT Abaris basistriata, a beetle species dominant in agroecosystems and natural habitats, may benefit from the establishment of nearby refuge areas or crop field centers. To confirm this hypothesis, we analyzed the spatial distribution of the species and verified the population dynamics of this predator in a soybean/corn rotation crop and a central refuge area. The 1-ha experimental area was divided in half by a range of herbaceous plants (2 m in width and 80 m in length). Beetle samples were collected using pitfall traps every fortnight during the in-season and every month during the off-season (a total of 27 sampling occurrences). Population fluctuation was analyzed by correlating the total number of specimens with plant phenology. We used multiple regression analysis with variable (stepwise) selection to examine the influence of meteorological factors on species occurrence. To determine the spatial distribution, data were analyzed using dispersion indices and probabilistic models based on the Coleoptera frequency distribution. -
Coleoptera: Carabidae) Peter W
30 THE GREAT LAKES ENTOMOLOGIST Vol. 42, Nos. 1 & 2 An Annotated Checklist of Wisconsin Ground Beetles (Coleoptera: Carabidae) Peter W. Messer1 Abstract A survey of Carabidae in the state of Wisconsin, U.S.A. yielded 87 species new to the state and incorporated 34 species previously reported from the state but that were not included in an earlier catalogue, bringing the total number of species to 489 in an annotated checklist. Collection data are provided in full for the 87 species new to Wisconsin but are limited to county occurrences for 187 rare species previously known in the state. Recent changes in nomenclature pertinent to the Wisconsin fauna are cited. ____________________ The Carabidae, commonly known as ‘ground beetles’, with 34, 275 described species worldwide is one of the three most species-rich families of extant beetles (Lorenz 2005). Ground beetles are often chosen for study because they are abun- dant in most terrestrial habitats, diverse, taxonomically well known, serve as sensitive bioindicators of habitat change, easy to capture, and morphologically pleasing to the collector. North America north of Mexico accounts for 2635 species which were listed with their geographic distributions (states and provinces) in the catalogue by Bousquet and Larochelle (1993). In Table 4 of the latter refer- ence, the state of Wisconsin was associated with 374 ground beetle species. That is more than the surrounding states of Iowa (327) and Minnesota (323), but less than states of Illinois (452) and Michigan (466). The total count for Minnesota was subsequently increased to 433 species (Gandhi et al. 2005). Wisconsin county distributions are known for 15 species of tiger beetles (subfamily Cicindelinae) (Brust 2003) with collection records documented for Tetracha virginica (Grimek 2009). -
Faunistic Analysis of Carabidae and Staphylinidae
Faunistic analysis of Carabidae and Staphylinidae (Coleoptera) in fi ve agroecosystems in northeastern São Paulo state, Brazil Francisco Jorge Cividanes (1) , José Carlos Barbosa (2) , Sérgio Ide (3) , Nelson Wanderlei Perioto (4) and Rogéria Inês Rosa Lara (4) (1) Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Fitossanidade, Via de Acesso Prof. Paulo Donato Castellane, s/n o, CEP 14884-900 Jaboticabal, SP, Brazil. E-mail: [email protected] (2) Unesp, FCAV, Departamento de Ciências Exatas. E-mail: [email protected] (3) Agência Paulista de Tecnologia dos Agronegócios (APTA), Avenida Conselheiro Rodrigues Alves, n o 1.252, CEP 04014-900 São Paulo, SP, Brazil. E-mail: [email protected] (4) APTA, Avenida Bandeirantes, n o 2.419, CEP 14030-670 Ribeirão Preto, SP, Brazil. E-mail: [email protected], [email protected] Abstract – The objective of this study was to determined species composition and community structure of Carabidae and Staphylinidae in fi ve areas of forest fragment and soybean/corn crops or orange orchard, from December 2004 to May 2007. Beetles were captured in pitfall traps distributed along two parallel transects of 200 m in length, placed across crop land/forest boundary fragment, with 100 m each. The Shannon-Wiener diversity and evenness indexes and Morisita similarity index were calculated. The carabids Abaris basistriatus Chaudoir, Calosoma granulatum Perty, Megacephala brasiliensis Kirby, Odontochila nodicornis (Dejean) and Selenophorus seriatoporus Putzeys. are dominant and are widely distributed in northeastern São Paulo state, Brazil. Point-scale species diversity was greatest at the transition between forest fragment and cultivated area.