Vertical Drainage May Improve Soil Salinity and Moisture

Total Page:16

File Type:pdf, Size:1020Kb

Vertical Drainage May Improve Soil Salinity and Moisture tion and government programs. Statis- tical analysis of cotton revenue over time reveals price variability to be the Vertical drainage may improve primary source of income risk, while yield variability contributed very little soil salinity and moisture to income risk. The proper choice of risk-management tools then targets price risk rather than yield risk. The Abdul Karim Yusufzai D Mark E. Grismer two tools that focus on price risk are hedging and forward contracting. The survey results show that 25% of cotton growers use hedging as a risk-man- Existing drainage systems in lateral drainage systems may be exac- agement tool, while only 1.6%report many clay fields of the Imperial erbated by shallow fine-sand aquifers, using crop insurance. This illustrates Valley have failed to improve soil which are a source of artesian water that producers make appropriate salinity and to provide moisture into the clay. Lateral drainage systems choices among risk-management tools conditions favorable to crop were not designed for these condi- when the source of risk has been iden- growth. In some fields, these tions, although several drainage stud- tified and several risk-management al- problems are exacerbated by ies from the 1940s and 1950s describe ternatives exist. the widespread occurrence of the fine- saline artesian water from a sand aquifer. This artesian water re- shallow sand aquifer. This pilot- Awareness increasing sults in relatively high soil moisture in Awareness of risk issues is increas- scale field study in the Imperial the clay soil profile, and in progressive ing among California producers. Al- Valley indicates that vertical salinization of the root zone. though producers regard many drainage is more effective than Although they have been only sources of risk as relevant, it appears traditional tile systems in briefly considered as an alternative in from their responses that the attention reducing artesian water levels and the Imperial Valley, vertical drainage of lenders is making financial risk the overlying clay soil moisture, systems have been successfully in- paramount among the current risk and should over time also reduce stalled in other semiarid to arid re- concerns. The tools available to pro- the salinity of these soils. The gions such as the Patterson area of ducers to help manage particular risk cost of a widely spaced drainage Stanislaus County, the Salt River Val- sources vary in their effectiveness and well system appears comparable ley of Arizona, and parts of the Red availability, and therefore in popular- to “splitting” existing drainlines. River Valley of North Dakota. This re- ity of use. Many producers indicated port evaluates the potential for and that they would be interested in using Drainage systems are commonly used feasibility of developing a shallow ver- some of the less available tools, such in arid irrigated regions to promote tical or well drainage system for the as hedging and crop insurance, if the crop growth by controlling water-table clay soils overlying fine-sand aquifers tools were available for their crop or depth, root zone salinity and soil aera- in the Imperial Valley as a means of livestock enterprise. This indicates la- tion. The Imperial Valley is extensively reclaiming or improving these soils for tent demand for these tools. drained with both open ditches and crop production. We also compare the The limited availability of effective lateral (tile) drainage systems that are costs associated with lateral and well risk-management tools severely limits designed to provide relief from shal- drainage systems and consider some many producers’ ability to mitigate low water tables. As a result of low of the benefits and drawbacks associ- risk. At a time when California pro- permeability, the lateral drainage sys- ated with each system. ducers as a whole are becoming more tems are relatively ineffective in many aware of risk concerns, this shortage of the heavy clay soils that make up Imperial Valley setting poses obstacles to risk management. over 40% of the irrigated valley (Cali- The Imperial Valley is a highly Until tools like crop insurance and fu- fornia Agriculture, May-June 1988). Im- stratified alluvial valley with an arid tures markets are better tailored to the proving such drainage systems may be climate characterized by an average needs of producers in California, and unfeasible because of the high costs as- annual rainfall of approximately 3 until producers become better in- sociated with narrowly spaced inches, high summer temperatures, formed about managing income risk, drainlines. Nevertheless, during the low relative humidity and abundant the state’s agricultural sector will face past 3 decades growers in parts of the sunshine. The near-surface layers to unnecessarily high levels of financial valley have ”split” the original drain depths of 300 feet alternate between stress. spacing in the clay soils in an effort to sands, silts and clays that interfinger improve their efficacy, with little and are cross-bedded in formation. S.C. Blank is Extension Economist and 1. documentation that any improvement Soil boring by the USGS near the city McDonald is Research Assistant, Depart- was achieved. of El Centro indicates that the silty ment ofAgricultura1 Economics, UC In our previous work in the area, clay and clay surface soils of the area Davis. we found that the poor performance of are underlain by sands at depths rang- 12 CALIFORNIA AGRICULTURE, VOLUME 49, NUMBER 2 ing from 13 to 55 feet of land surface and thicknesses of no more than 180 feet. Development of this sand aquifer as a potential domestic or industrial source of water is limited by the rela- tively high salinity of the groundwater (5 to 10 times that of available Colo- rado River water) and the lack of need for additional water supplies. How- ever, it was found that the transmissi- bility of the sand aquifer is moderately high, on the order of 100 to 10,000 gal- lons per day per foot (gpd/ft), and that production wells could easily yield in excess of 100 gallons per minute (gpm). Similarly, in a detailed study at the UC Desert Research and Extension Center (DREC),referred to locally as the Meloland area, we found a fine-sand aquifer underlying the clay soil at depths of less than 6 feet of land surface, with a thickness in excess of 20 feet and a transmissibility of roughly 1,500 gpd/ft. The salinity of the shallow groundwater ranged from 5 to 6 dS/m (decisiemens per meter equivalent to the old unit of millimhos per centimeter). In both cases the transmissibility of the sand aquifer, although not excep- tionally large, is sufficient to develop vertical drainage systems. However, the groundwater quality is relatively poor. With careful management this groundwater could be applied to salt- tolerant crops, or blended with Colo- In many clay fields of the Imperial Valley, vertical drainage systems may be more effec- rado River water, but eventually the tive than existing lateral drainage systems. This pilot vertical drainage system was less expensive to install and its net annual cost was comparable to traditional tile drainage pumped groundwater would require systems. disposal via the surface drainage ca- nals to the Salton Sea. which to compare the performance of From the salinity control perspec- This study was prompted in part by different vertical and lateral drainage tive, it is appropriate to gauge the per- the fact that soil salinity in a clay field systems. formance of the drainage system in (area 70 of the UC DREC) has re- terms of the efficiency with which the mained practically invariant over the Drainage system Performance system extracts root zone drainage, past 30 years of record despite con- The design objective of both lateral where root zone drainage is that frac- tinuous lateral drainage at a depth of 6 and vertical drainage systems is to im- tion of the applied water not used by feet and several leaching studies in- prove root-zone soil aeration and salin- the crop or lost by evaporation. This volving continuous and intermittent ity through control of the water-table efficiency depends on several factors ponding and excess irrigations. The depth in the soil. The performance of related to the hydrogeologic setting of soil profile salinity reaches a maxi- these systems is typically evaluated in a lateral drainage system, such as mum value at a depth of roughly 5 terms of the extent to which control of drain depth and spacing, soil perme- feet, corresponding to the pressure the water table at a desirable depth for ability and aquifer depth. The drain- head (water elevation) of the artesian crop production is achieved. Unfortu- age efficiency of lateral drainage sys- aquifer. Because we had a consider- nately, the criterion of water-table tems can be very low, with the larger able data set for this site and we found depth may not adequately describe the fraction of the root zone drainage by- it to be representative of many areas in performance of the drainage system in passing the drainlines. In a vertical the valley, we used the characteristics terms of salinity control (Culiforniu Ag- drainage system, the extraction wells of this site as our base conditions with riculture, November-December 1990). control the shallow groundwater sys- CALIFORNIA AGRICULTURE, MARCH-APRIL 1995 13 tem in such a fashion as to capture the Although similar in concept to the creasing spacing, and the design prob- root zone drainage, as well as some re- lateral system design, vertical or well lem becomes one of selecting a system gional groundwater flows. Despite the drainage-system design involves more with adequate performance in terms of differences in performance, both lat- complex equations or computer mod- water table and salinity control for the eral and vertical drainage systems de- eling and the choice of either different least cost.
Recommended publications
  • Outlettingdrainagesystems
    MINNESOTA WETLAND RESTORATION GUIDE OUTLETTING DRAINAGE SYSTEMS TECHNICAL GUIDANCE DOCUMENT Document No.: WRG 4A-3 Publication Date: 10/14/2015 Table of Contents Introduction Application Design Considerations Construction Requirements Other Considerations Cost Maintenance Additional References INTRODUCTION be possible. However, strategies to address incoming drainage systems as part of restoration In Minnesota, wetlands planned for restoration are do exist and should be considered, when feasible. commonly drained by surface drainage ditches and These strategies include rerouting incoming subsurface drainage tile. These drainage systems drainage systems away from or around planned often extend upstream from planned restoration wetland restorations or when possible, outletting sites and provide drainage to neighboring lands them directly into planned wetlands or other not part of a restoration project. suitable areas within the restoration site. The restoration of wetlands in these types of APPLICATION drainage scenarios provides a number of design and construction challenges and may not always This Technical Guidance Document focuses on strategies to design effective and functional outlets within restoration sites for neighboring upstream drainage systems. The design of drainage system outlets will primarily be dependent on the type, location, elevation and grade of the drainage system as it approaches and enters the restoration site. If the approaching drainage system is steep enough in grade, then it may be possible to modify it and construct an effective and functional outlet directly onto the restoration site. The design will also be influenced by the general landscape of the planned outlet’s location and, if part of a wetland restoration, the type of wetland being restored. Figure 1.
    [Show full text]
  • Tile Drainage and Phosphorus Losses from Agricultural Land
    TECHNICALTECHNICAL REPORTREPORT NO.NO. 8377 Literature Review: Tile Drainage and Phosphorus Losses from Agricultural Land November 2016 Final Report Prepared by: Julie Moore Stone Environmental, Inc. For: The Lake Champlain Basin Program and New England Interstate Water Pollution Control Commission This report was funded and prepared under the authority of the Lake Champlain Special Designation Act of 1990, P.L. 101-596 and subsequent reauthorization in 2002 as the Daniel Patrick Moynihan Lake Champlain Basin Program Act, H. R. 1070, through the United States Environmental Protection Agency (US EPA grant #EPA LC- 96133701-0). Publication of this report does not signify that the contents necessarily reflect the views of the states of New York and Vermont, the Lake Champlain Basin Program, or the US EPA. The Lake Champlain Basin Program has funded more than 80 technical reports and research studies since 1991. For complete list of LCBP Reports please visit: http://www.lcbp.org/media-center/publications-library/publication-database/ NEIWPCC Job Code: 0100-310-002 Project Code: L-2016-060 Literature Review: Tile Drainage and Phosphorus Losses from Agricultural Land PROJECT NO. PREPARED FOR: SUBMITTED BY: 15-309 Eric Howe / Basin Program Manager Julie Moore, P.E. / Senior Engineer Lake Champlain Basin Program Stone Environmental, Inc. 54 West Shore Road 535 Stone Cutters Way Grand Isle, VT 05458 Montpelier, VT 05602 [email protected] 802.229.1881 Executive Summary Tile drainage works by providing an open pathway for soil water to drain away, lowering the water table and allowing the upper soil layers to dry out. For farmers, tile drainage has multiple benefits: better growing conditions, improved soil structure, enhanced trafficability, more timely planting and harvest, and improved yields.
    [Show full text]
  • Water Balances
    On website waterlog.info Agricultural hydrology is the study of water balance components intervening in agricultural water management, especially in irrigation and drainage/ Illustration of some water balance components in the soil Contents • 1. Water balance components • 1.1 Surface water balance 1.2 Root zone water balance 1.3 Transition zone water balance 1.4 Aquifer water balance • 2. Speficic water balances 2.1 Combined balances 2.2 Water table outside transition zone 2.3 Reduced number of zones 2.4 Net and excess values 2.5 Salt Balances • 3. Irrigation and drainage requirements • 4. References • 5. Internet hyper links Water balance components The water balance components can be grouped into components corresponding to zones in a vertical cross-section in the soil forming reservoirs with inflow, outflow and storage of water: 1. the surface reservoir (S) 2. the root zone or unsaturated (vadose zone) (R) with mainly vertical flows 3. the aquifer (Q) with mainly horizontal flows 4. a transition zone (T) in which vertical and horizontal flows are converted The general water balance reads: • inflow = outflow + change of storage and it is applicable to each of the reservoirs or a combination thereof. In the following balances it is assumed that the water table is inside the transition zone. If not, adjustments must be made. Surface water balance The incoming water balance components into the surface reservoir (S) are: 1. Rai - Vertically incoming water to the surface e.g.: precipitation (including snow), rainfall, sprinkler irrigation 2. Isu - Horizontally incoming surface water. This can consist of natural inundation or surface irrigation The outgoing water balance components from the surface reservoir (S) are: 1.
    [Show full text]
  • Monitoring and Modeling the Effect of Agricultural Drainage and Recent
    water Article Monitoring and Modeling the Effect of Agricultural Drainage and Recent Channel Incision on Adjacent Groundwater-Dependent Ecosystems Philip J. Gerla Harold Hamm School of Geology and Geological Engineering, University of North Dakota, 81 Cornell Street, Stop 8358, Grand Forks, ND 58202-8358, USA; [email protected]; Tel.: +1-701-777-3305 Received: 8 February 2019; Accepted: 20 April 2019; Published: 25 April 2019 Abstract: Channel incision isolates flood plains, disrupts sediment transport, and degrades riparian ecology. Reactivation and periodicity of incision may affect the water table and hydrological conditions far beyond the stream margin. Long-term incision and its recent acceleration along Iron Springs Creek, North Dakota, USA, has affected adjacent ecosystems. An agricultural surface drain empties directly into the original spring-fed source of the creek, which triggered channel erosion both up- and downstream. Historical maps, recent LiDAR, and field surveying were used to characterize incision since ditch excavation in 1911. Although the soils are sandy, small hydrological gradients impede natural drainage in the surrounding stabilized dunes. Incision resulting from expanded drainage and increased precipitation has been as much as 5 m. Numerical models of lateral groundwater profiles corroborated with field measurements show that the nearby water table responds quickly, becoming deeper and less variable. With 1 m of recent incision, model evapotranspiration rates are decreased 50% to 15% from the channel margin to 1 km, respectively, and the hydropattern disrupted >1 km. Species diversity is reduced and floristic quality is 25% less near the drain. A near-channel solution to erosion—fencing out cattle—failed to mitigate the problem because a broader watershed approach was necessary.
    [Show full text]
  • Chapter 14 Water Management (Drainage)
    Title 210 – National Engineering Handbook Part 650 Engineering Field Handbook National Engineering Handbook Chapter 14 Water Management (Drainage) (210-650-H, 2nd Ed., Feb 2021) Title 210 – National Engineering Handbook Issued February 2021 In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA's TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English. To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at How to File a Program Discrimination Complaint and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992.
    [Show full text]
  • Subsurface Drainage Manual for Pavements in Minnesota
    Subsurface Drainage Manual for Pavements in Minnesota 2009-17 Take the steps... Research ...K no wle dge...Innovativ e S olu ti on s! Transportation Research Technical Report Documentation Page 1. Report No. 2. 3. Recipients Accession No. MN/RC 2009-17 4. Title and Subtitle 5. Report Date Subsurface Drainage Manual for Pavements in Minnesota June 2009 6. 7. Author(s) 8. Performing Organization Report No. Caleb N. Arika, Dario J. Canelon, John L. Nieber 9. Performing Organization Name and Address 10. Project/Task/Work Unit No. Department of Bioproducts and Biosystems Engineering University of Minnesota 11. Contract (C) or Grant (G) No. Biosystems and Agricultural Engineering Building (c) 89261 (wo) 10 1390 Eckles Avenue St. Paul, Minnesota 55108 12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Minnesota Department of Transportation Final Report 395 John Ireland Boulevard Mail Stop 330 14. Sponsoring Agency Code St. Paul, Minnesota 55155 15. Supplementary Notes http://www.lrrb.org/PDF/200917.pdf 16. Abstract (Limit: 250 words) A guide for evaluation of highway subsurface drainage needs and design of subsurface drainage systems for highways has been developed for application to Minnesota highways. The guide provides background information on the benefits of subsurface drainage, methods for evaluating the need for subsurface drainage at a given location, selection of the type of drainage system to use, design of the drainage system, guidelines on how to construct/install the subsurface drainage systems for roads, and guidance on the value of maintenance and how to maintain such drainage systems. 17. Document Analysis/Descriptors 18.
    [Show full text]
  • Best Management Practices for Agricultural Ditch Management in the Phase 6 Chesapeake Bay Watershed Model
    CBP/TRS-326-19 Best Management Practices for Agricultural Ditch Management in the Phase 6 Chesapeake Bay Watershed Model DRAFT for CBP partnership review and feedback: September 4, 2019 Prepared for Chesapeake Bay Program 410 Severn Avenue Annapolis, MD 21403 Prepared by Agricultural Ditch Management BMP Expert Panel: Ray Bryant, PhD, Panel Chair, USDA Agricultural Research Service Ann Baldwin, PE, USDA Natural Resources Conservation Service Brooks Cahall, PE, Delaware Department of Natural Resources and Environmental Control Laura Christianson, PhD PE, University of Illinois Dan Jaynes, PhD, USDA Agricultural Research Service Chad Penn, PhD, USDA Agricultural Research Service Stuart Schwartz, PhD, University of Maryland Baltimore County With: Clint Gill, Delaware Department of Agriculture Jeremy Hanson, Virginia Tech Loretta Collins, University of Maryland Mark Dubin, University of Maryland Brian Benham, PhD, Virginia Tech Allie Wagner, Chesapeake Research Consortium Lindsey Gordon, Chesapeake Research Consortium Support Provided by EPA Grant No. CB96326201 Acknowledgements The panel wishes to acknowledge the contributions of Andy Ward, PhD (Ohio State University, retired). Suggested Citation Bryant, R., Baldwin, A., Cahall, B., Christianson, L., Jaynes, D., Penn, C., and S. Schwartz. (2019). Best Management Practices for Agricultural Ditch Management in the Phase 6 Chesapeake Bay Watershed Model. Collins, L., Hanson, J. and C. Gill, editors. CBP/TRS-326-19. [Approved by the CBP WQGIT Month DD, YYYY. <URL to report on CBP website>] Cover image: Sabrina Klick, Univ. of Maryland Eastern Shore. Executive Summary The Agricultural Ditch Management BMP Expert Panel convened in 2016 and deliberated to develop the recommendations described in this report in response to the Charge provided to the panel by the Agriculture Workgroup (Appendix D: Panel Charge and Scope of Work).
    [Show full text]
  • Basic Equations
    - The concentration of salt in the groundwater; - The concentration of salt in the soil layers above the watertable (i.e. in the unsaturated zone); - The spacing and depth of the wells; - The pumping rate of the wells; i - The percentage of tubewell water removed from the project area via surface drains. The first two of these factors are determined by the natural conditions and the past use of the project area. The remaining factors are engineering-choice variables (i.e. they can be adjusted to control the salt build-up in the pumped aquifer). A common practice in this type of study is to assess not only the project area’s total water balance (Chapter 16), but also the area’s salt balance for different designs of the tubewell system and/or other subsurface drainage systems. 22.4 Basic Equations Chapter 10 described the flow to single wells pumping extensive aquifers. It was assumed that the aquifer was not replenished by percolating rain or irrigation water. In this section, we assume that the aquifer is replenished at a constant rate, R, expressed as a volume per unit surface per unit of time (m3/m2d = m/d). The well-flow equations that will be presented are based on a steady-state situation. The flow is said to be in a steady state as soon as the recharge and the discharge balance each other. In such a situation, beyond a certain distance from the well, there will be no drawdown induced by pumping. This distance is called the radius of influence of the well, re.
    [Show full text]
  • The Basics of Agricultural Tile Drainage
    The Basics of Agricultural Tile Drainage Basic Engineering Principals 2 John Panuska PhD, PE Natural Resources Extension Specialist Biological Systems Engineering Department UW Madison ASABE Tile Drain Standards Design Standard ASAE EP480 MAR1998 (R2008) Design of subsurface Drains in Humid Climates ASABE Tile Drain Standards Construction Standard ASAE EP481 FEB03 Construction of subsurface Drains in Humid Areas Drain Design Procedure I. Determine if and where an adequate outlet can be installed! II. Estimate hydraulic conductivity (K) based on soil type. III. Select drainage coefficient (Dc) based on crop and soil type. Drain Design Procedure IV. Select suitable depth for drains o Typical range 3 to 6 ft. o Cover greater than 2.5 ft o Depth / spacing balance to minimize cost V. Determine spacing o Use soil textural table guidelines o Use NRCS Web calculator. Drain Design Procedure VI. Size laterals and mains to accommodate the design flow. – Maintain minimum velocity to clean pipe. (0.5 ft / s - No silt; 1.4 ft / sec - w/silt) – Match pipe size to design flow. (telescoping the size of main) – Properly design outlet. Design Challenges The design process results in a design for a 2 to 5 year event, controlling larger events too costly. Every soil will be different and crop type matters. Costs/benefits will vary from year to year. Climate trends are unpredictable. Drain Tile Installation Equipment Tractor Backhoe Tile Plow Chain Trencher Wheel Trencher Drain Tile Materials Clay Tile (organic soils) Concrete Tile (mineral soils) Drain Pipe Materials - Polyethylene Plastic - Single wall corrugated Dual wall (smooth wall) Water enters the pipe through slots in wall I.
    [Show full text]
  • A Study on Agricultural Drainage Systems
    International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected] Volume 4, Issue 5, May 2015 ISSN 2319 - 4847 A Study On Agricultural Drainage Systems 1T.Subramani , K.Babu2 1Professor & Dean, Department of Civil Engineering, VMKV Engg. College, Vinayaka Missions University, Salem, India 2PG Student of Irrigation Water Management and Resources Engineering , Department of Civil Engineering in VMKV Engineering College, Department of Civil Engineering, VMKV Engg. College, Vinayaka Missions University, Salem, India ABSTRACT Integration of remote sensing data and the Geographical Information System (GIS) for the exploration of groundwater resources has become an innovation in the field of groundwater research, which assists in assessing, monitoring, and conserving groundwater resources. In the present paper, groundwater potential zones for the assessment of groundwater availability in Salem and Namakkal districts of TamilNadu have been delineated using remote sensing and GIS techniques. The spatial data are assembled in digital format and properly registered to take the spatial component referenced. The namely sensed data provides more reliable information on the different themes. Hence in the present study various thematic maps were prepared by visual interpretation of satellite imagery, SOI Top sheet. All the thematic maps are prepared 1:250,000, 1:50,000 scale. For the study area, artificial recharge sites had been identified based on the number of parameters loaded such as 4, 3, 2, 1 & 0 parameters. Again, the study area was classified into priority I, II, III suggested for artificial recharge sites based on the number of parameters loaded using GIS integration. These zones are then compared with the Land use and Land cover map for the further adopting the suitable technique in the particular artificial recharge zones.
    [Show full text]
  • Comparing Drain and Well Spacings in Deep Semi-Confined Aquifers for Water Table and Soil Salinity Control R.J
    Comparing drain and well spacings in deep semi-confined aquifers for water table and soil salinity control R.J. Ooosterbaan, 16-09-2019. On www.waterlog.info public domain Abstract For the control of the water table in a thick soil layer with low hydraulic conductivity underlain by a deep aquifer with high hydraulic conductivity, it may be recommendable to use a pumped well drainage system (vertical drainage) instead of a horizontal subsurface drainage system by ditches, tiles or pipes owing to the relatively large well spacings compared to the drain spacings. The drainage by wells can also help in soil salinity control. This article shows the calculation of the required well and drain spacings in the kind of semi confined aquifer described. In those aquifers the drainage by wells may be more economical due to the large spacings, but when the horizontal drainage can be done by gravity, the well drainage system has the disadvantage of pumping costs. Contents 1. Introduction 2. Horizontal drainage 3. Vertical drainage 4. Comparison 5. Conclusion 6. References 1. Introduction Subsurface drainage systems are used for the control of the water table in otherwise waterlogged soils. They are also used to control the soil salinity by evacuating saline soil moisture. Subsurface drainage is usually done by horizontally placing drain pipes at some depth below the soil surface ,often around 1 to 1.2 m depth, but sometimes also shallower or deeper than that. The water removed by the drainage system may have a gravity outlet, but in low lands pumping may be required to evacuate the drainage water.
    [Show full text]
  • Continuous Simulation of an Infiltration Trench Best Management Practice
    Villanova University The Graduate School Department of Civil and Environmental Engineering Continuous Simulation of an Infiltration Trench Best Management Practice A Thesis in Civil Engineering by Hans M. Benford Submitted in partial fulfillment of the requirements for the degree of Master of Science in Water Resources and Environmental Engineering May 2009 Continuous Simulation of an Infiltration Trench Best Management Practice By Hans Benford May 2009 Robert G. Traver, Ph.D., P.E. Date Professor of Civil and Environmental Engineering Bridget M. Wadzuk, Ph.D. Date Assistant Professor of Civil and Environmental Engineering Ronald A. Chadderton, Ph.D., P.E. Date Chairman, Department of Civil and Environmental Engineering Gary A. Gabriele, Ph.D. Date Dean, College of Engineering A copy of this thesis is available for research purposes at Falvey Memorial Library. Acknowledgements I would like to thank those who have supported me in my academic and personal life during my time at Villanova University as a graduate student. Without their continual support, I would not have been able to complete this study. First of all, I have to thank Dr. Traver for giving me the opportunity to join the Villanova Urban Stormwater Partnership as a graduate student. His ability to motivate and organize people of all types has shown the value of strong leadership as it pertains to progress, specifically in the field of stormwater. In addition to Dr. Traver, I need to thank the entire Villanova University Civil Engineering faculty and staff for my undergraduate education. Dr. Wadzuk, thank you for your valuable advice and guidance through my graduate studies.
    [Show full text]