CRC River Plume Final Report

Total Page:16

File Type:pdf, Size:1020Kb

CRC River Plume Final Report Modelling the impact of the Burdekin, Herbert, Tully and Johnstone River plumes on the Central Great Barrier Reef Brian King1, Felicity McAllister2, Terry Done2 1Asia-Pacific Applied Science Associates 2 Australian Institute of Marine Science Established and supported under the Australian Government’s Cooperative Research Centres Program www.reef.crc.org.au CRC REEF RESEARCH CENTRE TECHNICAL REPORT NO 44 CRC Reef Research Centre Ltd is a joint venture between: Association of Marine Park Tourism Operators, Australian Institute of Marine Science, Great Barrier Reef Marine Park Authority, Great Barrier Reef Research Foundation, James Cook University, Queensland Department of Primary industries, Queensland Seafood Industry Association and Sunfish Queensland Inc. CRC REEF RESEARCH CENTRE TECHNICAL REPORT NO 44 Modelling the impact of the Burdekin, Herbert, Tully and Johnstone River plumes on the Central Great Barrier Reef Brian King1, Felicity McAllister2, Terry Done2 1Asia-Pacific Applied Science Associates PO Box 1679, Surfers Paradise Qld 4217 Australia. Phone 61-7-5574 1112 2Australian Institute of Marine Science PMB #3 Townsville MC, Townsville Qld 4810, Australia. Phone: +61-7-4753 4444 A report funded by the CRC Reef Research Centre Ltd. The CRC Reef Research Centre was established and is supported under the Australian Government's Cooperative Research Centres Program. It is a knowledge-based partnership of coral reef managers, researchers and industry. Its mission is to plan, fund and manage world- leading science for the sustainable use of the Great Barrier Reef World He ritage Area. Members are: · Association of Marine Park Tourism Operators · Australian Institute of Marine Science · Great Barrier Reef Marine Park Authority · Great Barrier Reef Research Foundation · James Cook University · Queensland Department of Primary Industries · Queensland Seafood Industry Association · Sunfish Queensland Inc. CRC Reef Research Centre Ltd PO Box 772 Townsville Queensland 4810 Australia Website: www.reef.crc.org.au Ph: +61 7 4729 8400 Fax: +61 7 4729 8499 CRC Reef Research Centre Technical Report No 44 2 ã CRC Reef Research Centre Ltd. National Library of Australia Cataloguing-in-Publication entry King, Brian, 1964- . Modelling the impact of the Burdekin, Herbert, Tully and Johnstone River plumes on the central Great Barrier Reef. Bibliography. Includes index. ISBN 1 876054 53 0. 1. Plumes (Fluid dynamics). 2. Rivers - Queensland – Great Barrier Reef Region. 3. Runoff - Queensland – Great Barrier Reef Region. I. Done, T. J. (Terrance John), 1947- .II. McAllister, Felicity. III. Cooperative Research Centre for the Great Barrier Reef World Heritage Area. IV. Title. (Series : CRC Reef Research Centre technical report ; no. 44). 551.48809943 This publication should be cited as: King B, McAllister F, Done T. 2002.Modelling the impact of the Burdekin, Herbert, Tully and Johnstone River plumes on the Central Great Barrier Reef. CRC Reef Research Centre Technical Report No 44, CRC Reef Research Centre, Townsville. This work is copyright. The Copyright Act 1968 permits the making of a fair dealing for study, research, news reporting, criticism or review. Although the use of the pdf format causes the whole work to be downloaded, any subsequent use is restricted to the reproduction of selected passages constituting less than 10% of the whole work, or individual tables or diagrams for the fair dealing purposes. In each use the source must be properly acknowledged. Major extracts, or the entire document may not be reproduced by any process whatsoever without written permission of the Chief Executive Officer, CRC Reef Research Centre. While every effort has been made to ensure the accuracy and completeness of information in this report, CRC Reef Research Centre Ltd accepts no responsibility for losses, damage, costs and other consequences resulting directly or indirectly from its use. In some cases, the material may incorporate or summarise views, standards or recommendations of a third party. Such material is assembled in good faith but does not necessarily reflect the considered views of CRC Reef Research Centre Ltd or indicate a commitment to a particular course of action. Published by CRC Reef Research Centre Ltd., PO Box 772, Townsville, QLD 4810 Australia. CRC Reef Research Centre Technical Report No 44 3 TABLE OF CONTENTS INTRODUCTION..............................................................................................................................................................................5 GEOGRAPHIC SETTING................................................................................................................................................................6 RIVER DISCHARGE CHARACTERISTICS ...............................................................................................................................7 MODELLING RIVER PLUMES IN THE CENTRAL GBR...................................................................................................... 15 EXAMPLES FROM THE FLOOD SIMULATIONS................................................................................................................. 17 MINIMUM SALINITY ANALYSIS..............................................................................................................................................23 MINIMUM SALINITY PLOTS....................................................................................................................................................24 EXPOSURE TIMES.......................................................................................................................................................................29 SIMULATING THE 1974 FLOOD EVENT. .................................................................................................................................30 SIMULATING THE 1991 FLOOD EVENT. .................................................................................................................................32 SIMULATING THE 1979 FLOOD EVENT. .................................................................................................................................34 SIMULATING THE 1983 FLOOD EVENT. .................................................................................................................................36 SIMULATING THE 1977 FLOOD EVENT. .................................................................................................................................38 SIMULATING THE 1986 FLOOD EVENT. .................................................................................................................................40 RETURN PERIOD ESTIMATIONS OF PLUME IMPACTS..........................................................................................................42 CONCLUSION............................................................................................................................................................................... 48 DISCUSSION ................................................................................................................................................................................. 50 REFERENCES ................................................................................................................................................................................. 51 CRC Reef Research Centre Technical Report No 44 4 INTRODUCTION As part of the water cycle, rivers drain freshwater runoff from rainfall events over land. The runoff collects a variety of substances as it moves through the river’s catchment-lands and waterways including nutrients, sediments and contaminants depending on the catchment characteristics and land-use practices. Upon reaching the sea at the river’s mouth, the runoff drives a buoyant plume into coastal and shelf waters. The plume eventually spreads and mixes and moves around with the winds and currents. This mixing with ambient coastal waters will ultimately dilute the runoff plume as well as any concentrations of sediments, nutrients and contaminants carried within the plume. In the wet and dry tropical catchments adjoining the Great Barrier Reef (GBR), river discharges are highly seasonal and usually event-driven in nature and result from rainfall events associated with evolving monsoon troughs or passing tropical cyclones (Furnas and Mitchell 2000; Wolanski, 1994). Also, the unpredictable nature of rainfall and runoff events, and the unsteadiness and patchiness of the resulting plume intrusions in a complex region such as the GBR, has traditionally made data logistically difficult to collect. Further, direct rainfall inputs onto the shelf-waters can also lower surface salinity significantly (Wolanski, 1994) and at a time when river discharges are also significant. Thus large spatial mapping of salinities was needed to determine the origins of lower salinity events (< 34 ppt) within the reef matrix of the GBR. Historically, significant plume intrusions into the GBR have been observed. Data presented in the literature (Wolanski et al., 1997; Ayukai et al., 1997; Wolanski, 1994; O’Neill et al., 1992; Wolanski and Ruddick, 1981) report measurements of reduced salinities associated with particular events. Wolanski and Van Senden (1983) reported the most detailed survey todate, which covered the 1981 flood events from the Burdekin, Herbert, Tully, Johnstone and Barron Rivers. These studies have also provided some insight into the dynamics influencing
Recommended publications
  • Submission DR130
    To: Commissioner Dr Jane Doolan, Associate Commissioner Drew Collins Productivity Commission National Water Reform 2020 Submission by John F Kell BE (SYD), M App Sc (UNSW), MIEAust, MICE Date: 25 March 2021 Revision: 3 Summary of Contents 1.0 Introduction 2.0 Current Situation / Problem Solution 3.0 The Solution 4.0 Dam Location 5.0 Water channel design 6.0 Commonwealth of Australia Constitution Act – Section 100 7.0 Federal and State Responses 8.0 Conclusion 9.0 Acknowledgements Attachments 1 Referenced Data 2A Preliminary Design of Gravity Flow Channel Summary 2B Preliminary Design of Gravity Flow Channel Summary 3 Effectiveness of Dam Size Design Units L litres KL kilolitres ML Megalitres GL Gigalitres (Sydney Harbour ~ 500GL) GL/a Gigalitres / annum RL Relative Level - above sea level (m) m metre TEL Townsville Enterprise Limited SMEC Snowy Mountains Engineering Corporation MDBA Murray Darling Basin Authority 1.0 Introduction This submission is to present a practical solution to restore balance in the Murray Daring Basin (MDB) with a significant regular inflow of water from the Burdekin and Herbert Rivers in Queensland. My background is civil/structural engineering (BE Sydney Uni - 1973). As a fresh graduate, I worked in South Africa and UK for ~6 years, including a stint with a water consulting practice in Johannesburg, including relieving Mafeking as a site engineer on a water canal project. Attained the MICE (UK) in Manchester in 1979. In 1980 returning to Sydney, I joined Connell Wagner (now Aurecon), designing large scale industrial projects. Since 1990, I have headed a manufacturing company in the specialised field of investment casting (www.hycast.com.au) at Smithfield, NSW.
    [Show full text]
  • The Burdekin River
    The Burdekin River In March 1846, the Burdekin River was named by German During the wet season there is no shortage of water explorer and scientist, Ludwig Leichhardt after Mrs Thomas or wildlife surrounding the Burdekin River. As the wet Burdekin, who assisted Mr Leichhardt during his expedition. season progresses the native wildlife flourishes and the dry country comes alive with all types of flora and fauna. In 1859, George Dalrymple explored the area in search of good pastoral land. Two years later, in 1861, the land One of the major river systems in Australia, the along the Burdekin River was being settled and cattle Burdekin has a total catchment area of 130,000 sq km, properties and agricultural farms were established. which is similar in size to England or Greece. The Burdekin River is 740km long and the centrepiece to an entire network of rivers. Most of the water that flows through the Burdekin Ludwig River starts its journey slowly flowing through Leichhardt creeks and tributaries picking up more volume as it heads towards the Pacific Ocean. Information and photos courtesy of Lower Burdekin Water, CSIRO, SunWater and Lower Burdekin Historical Society Inc. Burdekin Falls Dam The site chosen for the Dam was the Burdekin Throughout the construction phase the As well as being a fantastic spot for camping, Falls, 159km from the mouth of the river. The weather had been very kind. There had this lake is also popular for fishing with Burdekin Dam required a huge volume of not been a wet season in the 2 ½ years schools of grunter, sleepy cod, silver perch concrete; it took 630,000 cubic metres for it had taken to construct the dam.
    [Show full text]
  • Burdekin Haughton Water Supply Scheme Resource Operations Licence
    Resource Operations Licence Water Act 2000 Name of licence Burdekin Haughton Water Supply Scheme Resource Operations Licence Holder SunWater Limited Water plan The licence relates to the Water Plan (Burdekin Basin) 2007. Water infrastructure The water infrastructure to which the licence relates is detailed in attachment 1. Authority to interfere with the flow of water The licence holder is authorised to interfere with the flow of water to the extent necessary to operate the water infrastructure to which the licence relates. Authority to use watercourses to distribute water The licence holder is authorised to use the following watercourses for the distribution of supplemented water— Burdekin River, from and including the impounded area of Burdekin Falls Dam (AMTD 159.3 km) downstream to the river mouth (AMTD 6.0 km); Burdekin River Anabranch, from its confluence with the Burdekin River (Burdekin River AMTD 10.0 km) downstream to the anabranch mouth (Burdekin River AMTD 4.0 km); Two Mile Lagoon, Leichhardt Lagoon and Cassidy Creek, from the Elliot Main Channel downstream to the Burdekin River confluence (Burdekin River AMTD 41.2 km); Haughton River, from the supplementation point (AMTD 42.0 km) to Giru Weir (AMTD 15.6 km), which includes the part of the river adjacent to the Giru Benefited Groundwater Area; and Gladys Lagoon, between Haughton Main Channel and Ravenswood Road. Conditions 1. Operating and supply arrangements 1.1. The licence holder must operate the water infrastructure and supply water in accordance with an approved operations manual made under this licence. 2. Environmental management rules 2.1. The licence holder must comply with the requirements as detailed in attachment 2.
    [Show full text]
  • Physical Processes and Biogeochemical Engineering
    Keppel Bay: physical processes and biogeochemical engineering L.C. Radke1, P.W. Ford2, I.T. Webster2, I. Atkinson1, K.Oubelkheir2 1 Geoscience Australia, Canberra, ACT 2 CSIRO Land and Water, Canberra, ACT 2006 Keppel Bay: physical processes and biogeochemical functioning Keppel Bay: physical processes and biogeochemical functioning Copyright © 2006: Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management Written by: L.C. Radke P.W. Ford I,T, Webster I. Atkinson K. Oubelkheir Published by the Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management (Coastal CRC) Indooroopilly Sciences Centre 80 Meiers Road Indooroopilly Qld 4068 Australia www.coastal.crc.org.au The text of this publication may be copied and distributed for research and educational purposes with proper acknowledgement. Disclaimer: The information contained in this report was current at the time of publication. While the report was prepared with care by the authors, the Coastal CRC and its partner organisations accept no liability for any matters arising from its contents. National Library of Australia Cataloguing-in-Publication data Keppel Bay: physical processes and biogeochemical functioning QNRM06356 ISBN 1 921017759 (print and online) Keppel Bay: physical processes and biogeochemical functioning Acknowledgements The work described in this report was funded by the CRC for Coastal Zone, Estuary and Waterway Management and relied on extensive inputs of data and ideas from members of other components of the Fitzroy Contaminants subproject (described in CRC Reports 34 to 37). We acknowledge and thank the following other people for their various contributions to this work: Kirrod Broadhurst, Graham Wassell, Paul Ridett and David Munro, the captain and deckhands of the Rum Rambler, managed navigation, shared local knowledge and provided assistance during the sampling.
    [Show full text]
  • Potential Enhanced Survivorship of Crown of Thorns Starfish Larvae Due to Near-Annual Nutrient Enrichment During Secondary Outbr
    diversity Review Potential Enhanced Survivorship of Crown of Thorns Starfish Larvae due to Near-Annual Nutrient Enrichment during Secondary Outbreaks on the Central Mid-Shelf of the Great Barrier Reef, Australia Jon Brodie 1,2,*, Michelle Devlin 3 and Stephen Lewis 4 1 ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia 2 Coasts, Climate, Oceans Consulting (C2O), Townsville, Queensland 4811, Australia 3 The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft NR33 0HT, UK; [email protected] 4 TropWATER, James Cook University, Townsville, Queensland 4811, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-407-127-030 Academic Editors: Sven Uthicke and Michael Wink Received: 7 December 2016; Accepted: 7 March 2017; Published: 12 March 2017 Abstract: The Great Barrier Reef (GBR) is currently experiencing widespread crown of thorns starfish (CoTS) outbreaks, as part of the fourth wave of outbreaks since 1962. It is believed that these outbreaks have become more frequent on the GBR and elsewhere in the Indo-Pacific and are associated with anthropogenic causes. The two widely accepted potential causes are (1) anthropogenic nutrient enrichment leading to the increased biomass of phytoplankton, the food of the planktonic stage of larval CoTS; and (2) the overfishing of predators in the juvenile to adult stages of CoTS, for example, commercially fished species such as coral trout. In this study, we show that the evidence for the nutrient enrichment causation hypothesis is strongly based on a large number of recent studies in the GBR. We also hypothesise that secondary outbreaks in the region between Cairns and Townsville can also be enhanced by nutrient enriched conditions associated with the annual nutrient discharge from Wet Tropics rivers.
    [Show full text]
  • BURDEKIN REGION Burdekin Catchment Water Quality Targets
    BURDEKIN REGION Burdekin catchment water quality targets Cape Richards Catchment profile Hinchinbrook Island Britomart He Cape Reef rb Trunk e Cardwell Sandwich iver rt Reef Under the Reef 2050 Water Quality Improvement Plan, water quality n R R ki iver rde Lucinda Great targets have been set for each catchment that drains to the Great u B Macknade Palm Barrier Reef. These targets (given over the page) consider land use and Trebonne Ingham Island South East Cape pollutant loads from each catchment. Burdekin Toobanna Forest Palm Island Catchment Beach 2 The Burdekin catchment covers 130,120 km (93% of the Burdekin Magnetic Island Greenvale Jalloonda Pallarenda Darley region). Rainfall averages 633 mm a year, which results in river Cleveland Cape Cleveland Deeragun Bay r Cape Woora Reef iv e discharges to the coast of about 9234 GL each year. R Cape Bowling Green Cape Bowling Old k e Townsville Bay Cla r Ferguson Green Reef U p p e r B u r d e k i n Net Giru Ayr Reef The extensive area of the Burdekin catchment is divided up into five S u b - c a t c h m e n t Rita Island er Brandon iv Home Hill Block R k major sub-catchments. The extent of the Burdekin catchment ranges t e l Cr e Peters Cape Upstart Hook Reef a am Clare a s ingh Island Reef from the upper tributaries of the Burdekin River in the north (behind B All Dalrymple Mingela k Cape Edgecumbe Bowen Hook the coastal ranges north-west of Townsville), to the west and south- ree B h C og Cape Island lwort ie Merinda Lo River GloucesterGloucester Whitsunday westerly reaches of the Cape and Belyando river sub-catchments Charters Island Island Towers Airlie and the southernmost reaches of the Suttor and Bowen rivers sub- Cannonvale Bax C Thalanga am Reef catchments.
    [Show full text]
  • Threats to Biodiversity in Australia's Burdekin River Basin
    Crimson Publishers Opinion Wings to the Research Threats to Biodiversity in Australia’s Burdekin River Basin Eric Wolanski* TropWater and College of Science and Engineering, James Cook University, Australia ISSN: 2637-7802 Opinion The Murray-Darling basin in Australia (Figure 1) is a prime example of a whole river basin suffering from environmental degradation from historical, haphazard developments without integrated planning [1]. A similar scenario is developing for the Burdekin River basin in North Queensland. The average flow of the Burdekin River is over 40% that of the Murray-Darling. The only of the watershed. It provides irrigation water for irrigated sugar farms in the lower Burdekin. existing large dam on the river is the Burdekin Falls Dam, constructed in 1987; it traps 88% For the environment and biodiversity, the key issues from dams are the impact on the river, the coast, and the Great Barrier Reef of the dams interfering with the sediment loads and the runoff from fertilized irrigated farms. There are currently business case studies for raising by 2m the Burdekin Falls Dam, and for three new dams (Figure 1): Hells Gates Dam, Urannah *Corresponding author: Eric Wolanski, Dam, and the Big Rocks Weir. The Hells Gates and the Urannah dams would double the existing TropWater and College of Science and extraction of water for irrigation. Engineering, James Cook University, Townsville, Queensland, Australia Submission: Published: February 17, 2021 February 22, 2021 Volume 1 - Issue 3 How to cite this article: Eric Wolanski. Threats to Biodiversity in Australia’s Burdekin River Basin. Biodiversity Online Copyright@J. 1(3).
    [Show full text]
  • AUSTRALIAN BIODIVERSITY RECORD ______2007 (No 2) ISSN 1325-2992 March, 2007 ______
    AUSTRALIAN BIODIVERSITY RECORD ______________________________________________________________ 2007 (No 2) ISSN 1325-2992 March, 2007 ______________________________________________________________ Some Taxonomic and Nomenclatural Considerations on the Class Reptilia in Australia. Some Comments on the Elseya dentata (Gray, 1863) complex with Redescriptions of the Johnstone River Snapping Turtle, Elseya stirlingi Wells and Wellington, 1985 and the Alligator Rivers Snapping Turtle, Elseya jukesi Wells 2002. by Richard W. Wells P.O. Box 826, Lismore, New South Wales Australia, 2480 Introduction As a prelude to further work on the Chelidae of Australia, the following considerations relate to the Elseya dentata species complex. See also Wells and Wellington (1984, 1985) and Wells (2002 a, b; 2007 a, b.). Elseya Gray, 1867 1867 Elseya Gray, Ann. Mag. Natur. Hist., (3) 20: 44. – Subsequently designated type species (Lindholm 1929): Elseya dentata (Gray, 1863). Note: The genus Elseya is herein considered to comprise only those species with a very wide mandibular symphysis and a distinct median alveolar ridge on the upper jaw. All members of the latisternum complex lack a distinct median alveolar ridge on the upper jaw and so are removed from the genus Elseya (see Wells, 2007b). This now restricts the genus to the following Australian species: Elseya albagula Thomson, Georges and Limpus, 2006 2006 Elseya albagula Thomson, Georges and Limpus, Chelon. Conserv. Biol., 5: 75; figs 1-2, 4 (top), 5a,6a, 7. – Type locality: Ned Churchwood Weir (25°03'S 152°05'E), Burnett River, Queensland, Australia. Elseya dentata (Gray, 1863) 1863 Chelymys dentata Gray, Ann. Mag. Natur. Hist., (3) 12: 98. – Type locality: Beagle’s Valley, upper Victoria River, Northern Territory.
    [Show full text]
  • Workshop on the Impacts of Flooding
    Workshop on the Impacts of Flooding Proceed/rigs of a Workshop held in Rockhamptori, Australia, 27 Septeinber 1991. , Edited by G.T. Byron Queensland Department of. ti Environment tand Heritage ’ Great Barrier Reef Marine Park Authority ‘, , ,’ @ Great Barrier Reef Marine Park Authority ISSN 0156-5842 ISBN 0 624 12044 7 Published by GBRMPA April 1992 The opinions expressed in th.is document are not necessarily those of the Great Barrier Reef Marine Park Authority or the Queensland Department of Env/ionment an!d Heritage. Great Barrier Reef Environment and P.O. Box 155 P.O. Box1379 North Quay , Townsville Queens’land 4002 Queensland 48 TABLE OF CONTENTS : PREFACE iv 1 EXECUTIVE SUMMARY V PART A: FORUM PAPERS Jim Pearce MLA Opening Address 1 Peter Baddiley Fitzroy River Basin 3 Rainfalls and The 1991 Flood Event Mike Keane Assessment of the 1991 16 Fitzroy River Flood How much water? J.P. O’Neill, G.T.Byron and Some Physical Characteristics 36 S.C.Wright and Movement of 1991 Fitzroy River flood plume PART B: WORKSHOP PAPERS GROUP A - WATER RELATED’ISSUES Jon E. Brodie and Nutrient Composition of 56 Alan Mitchell the January 1991 Fitzroy River Plume Myriam Preker The Effects of the 1991 75 Central Queensland Floodwaters around Heron Island, Great Barrier Reef i > d.T.Byron and J.P.O’Neill Flood Induced Coral Mortality 76 on Fringing Reefs in Keppel Bay J.S. Giazebrook and Effects of low salinity on 90 R. Van Woesik the tissues of hard corals Acropora spp., Pocillopora sp and Seriatopra sp from the Great Keppel region M.
    [Show full text]
  • MASARYK UNIVERSITY BRNO Diploma Thesis
    MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION DEPARTMENT OF ENGLISH LANGUAGE AND LITERATURE Presentation Sentences in Wikipedia: FSP Analysis Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský Declaration I declare that I have worked on this thesis independently, using only the primary and secondary sources listed in the bibliography. I agree with the placing of this thesis in the library of the Faculty of Education at the Masaryk University and with the access for academic purposes. Brno, 30th March 2018 …………………………………………. Bc. Lukáš Opavský Acknowledgements I would like to thank my supervisor, doc. Mgr. Martin Adam, Ph.D. for his kind help and constant guidance throughout my work. Bc. Lukáš Opavský OPAVSKÝ, Lukáš. Presentation Sentences in Wikipedia: FSP Analysis; Diploma Thesis. Brno: Masaryk University, Faculty of Education, English Language and Literature Department, 2018. XX p. Supervisor: doc. Mgr. Martin Adam, Ph.D. Annotation The purpose of this thesis is an analysis of a corpus comprising of opening sentences of articles collected from the online encyclopaedia Wikipedia. Four different quality categories from Wikipedia were chosen, from the total amount of eight, to ensure gathering of a representative sample, for each category there are fifty sentences, the total amount of the sentences altogether is, therefore, two hundred. The sentences will be analysed according to the Firabsian theory of functional sentence perspective in order to discriminate differences both between the quality categories and also within the categories.
    [Show full text]
  • Spatial and Temporal Patterns of Flood Plumes in the Great Barrier Reef, Australia
    Spatial and temporal patterns of flood plumes in the Great Barrier Reef, Australia Thesis submitted by Michelle Jillian Devlin BSc (Bendigo College of Advanced Education (Latrobe University) Msc (James Cook University) February 2005 Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Tropical Environment Studies and Geography Department, James Cook University. Spatial and temporal patterns of flood plumes in the Great Barrier Reef, Australia 1 STATEMENT OF ACCESS I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere. I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and; I do not wish to place any further restriction on access to this work. _________________________ ______________ Signature Date Spatial and temporal patterns of flood plumes in the Great Barrier Reef, Australia 2 STATEMENT OF SOURCES DECLARATION I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given. ____________________________________ ____________________ Signature Date Spatial and temporal patterns of flood plumes in the Great Barrier Reef, Australia 3 Papers arising from this thesis Devlin , M., Brodie, J, Waterhouse, J., Mitchell, A., Audas, D. and Haynes, D. (2003). Exposure of Great Barrier Reef inner-shelf reefs to river-borne contaminants.
    [Show full text]
  • The Development and Evolution of the Burdekin River Estuary Freshwater Plume During Cyclone Debbie (2017)
    The development and evolution of the Burdekin River estuary freshwater plume during Cyclone Debbie (2017) Yuanchi Xiao A thesis in fulfilment of the requirements for the degree of Master of Philosophy School of Physical, Environmental and Mathematical Sciences The University of New South Wales Canberra, ACT, 2600, Australia August 2018 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Xiao First name: Yuanchi Other name/s: Abbreviation for degree as given in the University calendar: MPhil School: School of Physical Environmental and Faculty: The University of New South Wales Mathematical Sciences Canberra Title: The development and evolution of the Burdekin River estuary freshwater plume during Cyclone Debbie (2017) Abstract 350 words maximum: (PLEASE TYPE) This thesis investigates the plume morphology and dynamics prior to and after the landfall of Cyclone Debbie (2017). The heavy rainfall and flooding produced a large buoyant coastal current, which moved southward after the cyclone made landfall then advected northward with the prevailing southerly wind. The plume is simulated using the eReef GBR1 1-km model and a passive tracer is used to investigate the plume behaviour. Based on the concentration of river tracers from the Burdekin River, the plume propagated over 100 km to the north during the 23 days after the cyclone made landfall. Statistical analysis indicates that the longshore wind stress, x , is the dominant forcing for the freshwater plume from the Burdekin River. Under weak downwelling wind forcing (-0.1 Pa < < 0 Pa), the plume thickness is sensitive to river discharge and tides. With stronger downwelling wind forcing ( <= -0.1 Pa), vertical mixing is generated, the plume is restricted to the coast, and high river discharge affects the thickness of the plume, but not its width.
    [Show full text]