Rehabilitate Large Alluvial Gullies Like This

Total Page:16

File Type:pdf, Size:1020Kb

Rehabilitate Large Alluvial Gullies Like This Before Rehabilitate large alluvial gullies like this: After the key to significant water quality improvements Take a picture to view our research page Damon Telfer RESULTS One down, 200 to go! v The effectiveness of large-scale alluvial gully Crocodile Station Strathalbyn Station rehabilitation in addressing Great Barrier Reef water quality Andrew Brooks1, 2, John Spencer1, Nic Doriean1, 2, Robin Thwaites1, Tim Pietsch1, James Daley1, Will Higham3, Mike Goddard4, Damon Telfer5, Lynise Wearne6 & Sunny Bezahdnia6 Erosion Deposition INTRO Sum Elevation Sum Elevation Change (m) Area Vol (m3) Change (m) Area Vol (m3)Net Gully erosion is the source of 40-50% of the sediment ‐4821.6 80.0 ‐12.05 9676 155.8 24.19 12.14 pollution entering the Great Barrier Reef lagoon. Hence to Percentage SSC reduction compared to control achieve GBR water quality improvement targets requires the rehabilitation of extensive areas of eroding gullies. This study tests the effectiveness of treating alluvial gullies using wholesale re-shaping, and various capping treatments at experimental sites on Crocodile Station in the Normanby River catchment and Strathalbyn Station on the lower Burdekin River, Queensland. < 2 METHODS 1. Gully treatments were undertaken using a Before- After Control-Impact (BACI) or semi-BACI design. 1. Treatment effectiveness > 80% Courtesy Greening Australia 2. “Before” erosion rates taken from a combination of for the < 20 µm sediment fraction historical airphotos and repeat airborne LiDAR. has been achieved within 2 years of 18 treatment 29 3. “After” treatment effectiveness was measured using a 104 13 15 967 combination of terrestrial LiDAR, high-resolution 2. Each site represents about 0.5% of 17 the WQ target for each catchment 5 airborne LiDAR and water-quality monitoring at 3094 3. Hence treatment of around 200 treatment and control sites. sites of similar magnitude will Sediment eroded (t) - 10cm LiDAR DoD (2018/19) 1Griffith Centre for Coastal Management, Griffith University, Australia, 2 School of Environment and Science, Griffith University. achieve the WQ targets in each 3Sugar Research Australia, Greenvale, Qld, Australia. 4Cape York Natural Resource Management Group, Atherton, Qld, Australia. 5Fruition Environmental, Townsville, Qld, Australia, 6Greening Australia, Brisbane, Qld, Australia. catchment.
Recommended publications
  • Laura-Normanby Catchment Management Strategy
    LAURA-NORMANBY CATCHMENT MANAGEMENT STRATEGY C. Howley and K. Stephan, Environmental Consultants November 2005 ACKNOWLEDGEMENTS Many people have been involved in the production of this report. Thank you first of all to the members of the community who have completed surveys and discussed local issues with the Project Officers (Cathy Waldron and Ian Adcock). The local knowledge and concerns of the community have provided the content and direction for this report, and the strategies to address local issues have been directly chosen by the community members. The final report producers, Christina Howley and Kim Stephan (Howley & Stephan Environmental Consultants), would also like to thank the following persons, all of whom been extremely helpful in providing information regarding resources and concerns within the Catchment: Jamie Molyneuax (CYWAFAP); Graeme Elmes; Sam Dibella, Andrew Hartwig and Barry Lyons (QPWS); Geoff Mills, Graeme Herbert, Anthony McLoughlin and Stephen Parker (DNR&M); Miles Furnas (AIMS); Stuart Hyland and John Russell (DPI&F); Peter Thompson (CYPDA); Victor Stephanson (Traditional Knowledge Recording Project) and John Farrington (Quinkan & Regional Cultural Centre). Thank you also to Michael Stephan for his generous assistance with technical matters and to Jean Stephan for editing. Finally, thank you to the members of the Laura-Normanby Catchment Management Group. 2 TABLE OF CONTENTS EXECUTIVE SUMMARY ................................................................................................... 7 1.0 INTRODUCTION
    [Show full text]
  • Normanby River Basin
    143°30'E ! 144°E 144°30'E 145°E King Island Stanley Waters in National Parks, Cape Flinders Pipon Island conservation estate Island Cape Melville Blackwood Flinders Island Island DRAFT 13 Normanby estuarine e Denham Island n waters (incl. Bizant, i l Bathurst Bay Normanby, Saltwater G Temple o Ck r and others adjacent ge e C k m Princess Charlotte Bay) ! Princess u ¬12 «¬14 l « Ebagoola Charlotte P Stewart Basin Bay «¬13 Annie R iver «¬13 Bewick Island Ba t M t e D 14 Princess Charlotte Bay r in B k a k e S n r S ' y e ' C e e C iza r r 0 r n e 0 3 e r r C 3 ° r ek 13 t C ° i 4 e «¬ e a 4 e t k 1 d 1 k R t Cape Bowen o i n v o R u e k . m a a 13 r r «¬ r W teen a Fif Mile 01 11 C «¬ «¬ B Coleman r k e Birt r h e C d e vi r k a 11 e R k «¬ y t Basin C k a e k ic e W k 11 D w r «¬ C e e o C s e r t r t H i e y Nymph Island t C h a k w r ile C lt e W c Five M reek a B o e i S k r R r k t F e k h e our M r e Cree d v ile C r a i te er y R iv 12 C ie a R ¬ « r tw e n l n n a an e H k a Sa ter Creek S e ltwa J k N ee k r k 11 C C o «¬ C e r m s le l te i i i t eek r h r a A k C Be ttie J e a n n i e B a s i n M C M e K e re s k r k n C South Five Mile Cree e n e r k e e o e e nt in C t te urpe H Port v f T n i i h e S n i cke F ig r tt ta r R R iv of Cape E e e a e n .
    [Show full text]
  • Submission DR130
    To: Commissioner Dr Jane Doolan, Associate Commissioner Drew Collins Productivity Commission National Water Reform 2020 Submission by John F Kell BE (SYD), M App Sc (UNSW), MIEAust, MICE Date: 25 March 2021 Revision: 3 Summary of Contents 1.0 Introduction 2.0 Current Situation / Problem Solution 3.0 The Solution 4.0 Dam Location 5.0 Water channel design 6.0 Commonwealth of Australia Constitution Act – Section 100 7.0 Federal and State Responses 8.0 Conclusion 9.0 Acknowledgements Attachments 1 Referenced Data 2A Preliminary Design of Gravity Flow Channel Summary 2B Preliminary Design of Gravity Flow Channel Summary 3 Effectiveness of Dam Size Design Units L litres KL kilolitres ML Megalitres GL Gigalitres (Sydney Harbour ~ 500GL) GL/a Gigalitres / annum RL Relative Level - above sea level (m) m metre TEL Townsville Enterprise Limited SMEC Snowy Mountains Engineering Corporation MDBA Murray Darling Basin Authority 1.0 Introduction This submission is to present a practical solution to restore balance in the Murray Daring Basin (MDB) with a significant regular inflow of water from the Burdekin and Herbert Rivers in Queensland. My background is civil/structural engineering (BE Sydney Uni - 1973). As a fresh graduate, I worked in South Africa and UK for ~6 years, including a stint with a water consulting practice in Johannesburg, including relieving Mafeking as a site engineer on a water canal project. Attained the MICE (UK) in Manchester in 1979. In 1980 returning to Sydney, I joined Connell Wagner (now Aurecon), designing large scale industrial projects. Since 1990, I have headed a manufacturing company in the specialised field of investment casting (www.hycast.com.au) at Smithfield, NSW.
    [Show full text]
  • The Burdekin River
    The Burdekin River In March 1846, the Burdekin River was named by German During the wet season there is no shortage of water explorer and scientist, Ludwig Leichhardt after Mrs Thomas or wildlife surrounding the Burdekin River. As the wet Burdekin, who assisted Mr Leichhardt during his expedition. season progresses the native wildlife flourishes and the dry country comes alive with all types of flora and fauna. In 1859, George Dalrymple explored the area in search of good pastoral land. Two years later, in 1861, the land One of the major river systems in Australia, the along the Burdekin River was being settled and cattle Burdekin has a total catchment area of 130,000 sq km, properties and agricultural farms were established. which is similar in size to England or Greece. The Burdekin River is 740km long and the centrepiece to an entire network of rivers. Most of the water that flows through the Burdekin Ludwig River starts its journey slowly flowing through Leichhardt creeks and tributaries picking up more volume as it heads towards the Pacific Ocean. Information and photos courtesy of Lower Burdekin Water, CSIRO, SunWater and Lower Burdekin Historical Society Inc. Burdekin Falls Dam The site chosen for the Dam was the Burdekin Throughout the construction phase the As well as being a fantastic spot for camping, Falls, 159km from the mouth of the river. The weather had been very kind. There had this lake is also popular for fishing with Burdekin Dam required a huge volume of not been a wet season in the 2 ½ years schools of grunter, sleepy cod, silver perch concrete; it took 630,000 cubic metres for it had taken to construct the dam.
    [Show full text]
  • Surface Water Resources of Cape York Peninsula
    CAPE YORK PENINSULA LAND USE STRATEGY LAND USE PROGRAM SURFACE WATER RESOURCES OF CAPE YORK PENINSULA A.M. Horn Queensland Department of Primary Industries 1995 r .am1, a DEPARTMENT OF, PRIMARY 1NDUSTRIES CYPLUS is a joint initiative of the Queensland and Commonwealth Governments CAPE YORK PENINSULA LAND USE STRATEGY (CYPLUS) Land Use Program SURFACE WATER RESOURCES OF CAPE YORK PENINSULA A.M.Horn Queensland Department of Primary Industries CYPLUS is a joint initiative of the Queensland and Commonwealth Governments Recommended citation: Horn. A. M (1995). 'Surface Water Resources of Cape York Peninsula'. (Cape York Peninsula Land Use Strategy, Office of the Co-ordinator General of Queensland, Brisbane, Department of the Environment, Sport and Territories, Canberra and Queensland Department of Primary Industries.) Note: Due to the timing of publication, reports on other CYPLUS projects may not be fully cited in the BIBLIOGRAPHY section. However, they should be able to be located by author, agency or subject. ISBN 0 7242 623 1 8 @ The State of Queensland and Commonwealth of Australia 1995. Copyright protects this publication. Except for purposes permitted by the Copyright Act 1968, - no part may be reproduced by any means without the prior written permission of the Office of the Co-ordinator General of Queensland and the Australian Government Publishing Service. Requests and inquiries concerning reproduction and rights should be addressed to: Office of the Co-ordinator General, Government of Queensland PO Box 185 BRISBANE ALBERT STREET Q 4002 The Manager, Commonwealth Information Services GPO Box 84 CANBERRA ACT 2601 CAPE YORK PENINSULA LAND USE STRATEGY STAGE I PREFACE TO PROJECT REPORTS Cape York Peninsula Land Use Strategy (CYPLUS) is an initiative to provide a basis for public participation in planning for the ecologically sustainable development of Cape York Peninsula.
    [Show full text]
  • Burdekin Haughton Water Supply Scheme Resource Operations Licence
    Resource Operations Licence Water Act 2000 Name of licence Burdekin Haughton Water Supply Scheme Resource Operations Licence Holder SunWater Limited Water plan The licence relates to the Water Plan (Burdekin Basin) 2007. Water infrastructure The water infrastructure to which the licence relates is detailed in attachment 1. Authority to interfere with the flow of water The licence holder is authorised to interfere with the flow of water to the extent necessary to operate the water infrastructure to which the licence relates. Authority to use watercourses to distribute water The licence holder is authorised to use the following watercourses for the distribution of supplemented water— Burdekin River, from and including the impounded area of Burdekin Falls Dam (AMTD 159.3 km) downstream to the river mouth (AMTD 6.0 km); Burdekin River Anabranch, from its confluence with the Burdekin River (Burdekin River AMTD 10.0 km) downstream to the anabranch mouth (Burdekin River AMTD 4.0 km); Two Mile Lagoon, Leichhardt Lagoon and Cassidy Creek, from the Elliot Main Channel downstream to the Burdekin River confluence (Burdekin River AMTD 41.2 km); Haughton River, from the supplementation point (AMTD 42.0 km) to Giru Weir (AMTD 15.6 km), which includes the part of the river adjacent to the Giru Benefited Groundwater Area; and Gladys Lagoon, between Haughton Main Channel and Ravenswood Road. Conditions 1. Operating and supply arrangements 1.1. The licence holder must operate the water infrastructure and supply water in accordance with an approved operations manual made under this licence. 2. Environmental management rules 2.1. The licence holder must comply with the requirements as detailed in attachment 2.
    [Show full text]
  • Potential Enhanced Survivorship of Crown of Thorns Starfish Larvae Due to Near-Annual Nutrient Enrichment During Secondary Outbr
    diversity Review Potential Enhanced Survivorship of Crown of Thorns Starfish Larvae due to Near-Annual Nutrient Enrichment during Secondary Outbreaks on the Central Mid-Shelf of the Great Barrier Reef, Australia Jon Brodie 1,2,*, Michelle Devlin 3 and Stephen Lewis 4 1 ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia 2 Coasts, Climate, Oceans Consulting (C2O), Townsville, Queensland 4811, Australia 3 The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft NR33 0HT, UK; [email protected] 4 TropWATER, James Cook University, Townsville, Queensland 4811, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-407-127-030 Academic Editors: Sven Uthicke and Michael Wink Received: 7 December 2016; Accepted: 7 March 2017; Published: 12 March 2017 Abstract: The Great Barrier Reef (GBR) is currently experiencing widespread crown of thorns starfish (CoTS) outbreaks, as part of the fourth wave of outbreaks since 1962. It is believed that these outbreaks have become more frequent on the GBR and elsewhere in the Indo-Pacific and are associated with anthropogenic causes. The two widely accepted potential causes are (1) anthropogenic nutrient enrichment leading to the increased biomass of phytoplankton, the food of the planktonic stage of larval CoTS; and (2) the overfishing of predators in the juvenile to adult stages of CoTS, for example, commercially fished species such as coral trout. In this study, we show that the evidence for the nutrient enrichment causation hypothesis is strongly based on a large number of recent studies in the GBR. We also hypothesise that secondary outbreaks in the region between Cairns and Townsville can also be enhanced by nutrient enriched conditions associated with the annual nutrient discharge from Wet Tropics rivers.
    [Show full text]
  • Surface Water Ambient Network (Water Quality) 2020-21
    Surface Water Ambient Network (Water Quality) 2020-21 July 2020 This publication has been compiled by Natural Resources Divisional Support, Department of Natural Resources, Mines and Energy. © State of Queensland, 2020 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence, visit https://creativecommons.org/licenses/by/4.0/. The information contained herein is subject to change without notice. The Queensland Government shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. Summary This document lists the stream gauging stations which make up the Department of Natural Resources, Mines and Energy (DNRME) surface water quality monitoring network. Data collected under this network are published on DNRME’s Water Monitoring Information Data Portal. The water quality data collected includes both logged time-series and manual water samples taken for later laboratory analysis. Other data types are also collected at stream gauging stations, including rainfall and stream height. Further information is available on the Water Monitoring Information Data Portal under each station listing.
    [Show full text]
  • BURDEKIN REGION Burdekin Catchment Water Quality Targets
    BURDEKIN REGION Burdekin catchment water quality targets Cape Richards Catchment profile Hinchinbrook Island Britomart He Cape Reef rb Trunk e Cardwell Sandwich iver rt Reef Under the Reef 2050 Water Quality Improvement Plan, water quality n R R ki iver rde Lucinda Great targets have been set for each catchment that drains to the Great u B Macknade Palm Barrier Reef. These targets (given over the page) consider land use and Trebonne Ingham Island South East Cape pollutant loads from each catchment. Burdekin Toobanna Forest Palm Island Catchment Beach 2 The Burdekin catchment covers 130,120 km (93% of the Burdekin Magnetic Island Greenvale Jalloonda Pallarenda Darley region). Rainfall averages 633 mm a year, which results in river Cleveland Cape Cleveland Deeragun Bay r Cape Woora Reef iv e discharges to the coast of about 9234 GL each year. R Cape Bowling Green Cape Bowling Old k e Townsville Bay Cla r Ferguson Green Reef U p p e r B u r d e k i n Net Giru Ayr Reef The extensive area of the Burdekin catchment is divided up into five S u b - c a t c h m e n t Rita Island er Brandon iv Home Hill Block R k major sub-catchments. The extent of the Burdekin catchment ranges t e l Cr e Peters Cape Upstart Hook Reef a am Clare a s ingh Island Reef from the upper tributaries of the Burdekin River in the north (behind B All Dalrymple Mingela k Cape Edgecumbe Bowen Hook the coastal ranges north-west of Townsville), to the west and south- ree B h C og Cape Island lwort ie Merinda Lo River GloucesterGloucester Whitsunday westerly reaches of the Cape and Belyando river sub-catchments Charters Island Island Towers Airlie and the southernmost reaches of the Suttor and Bowen rivers sub- Cannonvale Bax C Thalanga am Reef catchments.
    [Show full text]
  • Lands of the Mitchell-Normanby Area, Queensland
    IMPORTANT NOTICE © Copyright Commonwealth Scientific and Industrial Research Organisation (‘CSIRO’) Australia. All rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO Division of Land and Water. The data, results and analyses contained in this publication are based on a number of technical, circumstantial or otherwise specified assumptions and parameters. The user must make its own assessment of the suitability for its use of the information or material contained in or generated from the publication. To the extend permitted by law, CSIRO excludes all liability to any person or organisation for expenses, losses, liability and costs arising directly or indirectly from using this publication (in whole or in part) and any information or material contained in it. The publication must not be used as a means of endorsement without the prior written consent of CSIRO. NOTE This report and accompanying maps are scanned and some detail may be illegible or lost. Before acting on this information, readers are strongly advised to ensure that numerals, percentages and details are correct. This digital document is provided as information by the Department of Natural Resources and Water under agreement with CSIRO Division of Land and Water and remains their property. All enquiries regarding the content of this document should be referred to CSIRO Division of Land and Water. The Department of Natural Resources and Water nor its officers or staff accepts any responsibility for any loss or damage that may result in any inaccuracy or omission in the information contained herein.
    [Show full text]
  • Threats to Biodiversity in Australia's Burdekin River Basin
    Crimson Publishers Opinion Wings to the Research Threats to Biodiversity in Australia’s Burdekin River Basin Eric Wolanski* TropWater and College of Science and Engineering, James Cook University, Australia ISSN: 2637-7802 Opinion The Murray-Darling basin in Australia (Figure 1) is a prime example of a whole river basin suffering from environmental degradation from historical, haphazard developments without integrated planning [1]. A similar scenario is developing for the Burdekin River basin in North Queensland. The average flow of the Burdekin River is over 40% that of the Murray-Darling. The only of the watershed. It provides irrigation water for irrigated sugar farms in the lower Burdekin. existing large dam on the river is the Burdekin Falls Dam, constructed in 1987; it traps 88% For the environment and biodiversity, the key issues from dams are the impact on the river, the coast, and the Great Barrier Reef of the dams interfering with the sediment loads and the runoff from fertilized irrigated farms. There are currently business case studies for raising by 2m the Burdekin Falls Dam, and for three new dams (Figure 1): Hells Gates Dam, Urannah *Corresponding author: Eric Wolanski, Dam, and the Big Rocks Weir. The Hells Gates and the Urannah dams would double the existing TropWater and College of Science and extraction of water for irrigation. Engineering, James Cook University, Townsville, Queensland, Australia Submission: Published: February 17, 2021 February 22, 2021 Volume 1 - Issue 3 How to cite this article: Eric Wolanski. Threats to Biodiversity in Australia’s Burdekin River Basin. Biodiversity Online Copyright@J. 1(3).
    [Show full text]
  • AUSTRALIAN BIODIVERSITY RECORD ______2007 (No 2) ISSN 1325-2992 March, 2007 ______
    AUSTRALIAN BIODIVERSITY RECORD ______________________________________________________________ 2007 (No 2) ISSN 1325-2992 March, 2007 ______________________________________________________________ Some Taxonomic and Nomenclatural Considerations on the Class Reptilia in Australia. Some Comments on the Elseya dentata (Gray, 1863) complex with Redescriptions of the Johnstone River Snapping Turtle, Elseya stirlingi Wells and Wellington, 1985 and the Alligator Rivers Snapping Turtle, Elseya jukesi Wells 2002. by Richard W. Wells P.O. Box 826, Lismore, New South Wales Australia, 2480 Introduction As a prelude to further work on the Chelidae of Australia, the following considerations relate to the Elseya dentata species complex. See also Wells and Wellington (1984, 1985) and Wells (2002 a, b; 2007 a, b.). Elseya Gray, 1867 1867 Elseya Gray, Ann. Mag. Natur. Hist., (3) 20: 44. – Subsequently designated type species (Lindholm 1929): Elseya dentata (Gray, 1863). Note: The genus Elseya is herein considered to comprise only those species with a very wide mandibular symphysis and a distinct median alveolar ridge on the upper jaw. All members of the latisternum complex lack a distinct median alveolar ridge on the upper jaw and so are removed from the genus Elseya (see Wells, 2007b). This now restricts the genus to the following Australian species: Elseya albagula Thomson, Georges and Limpus, 2006 2006 Elseya albagula Thomson, Georges and Limpus, Chelon. Conserv. Biol., 5: 75; figs 1-2, 4 (top), 5a,6a, 7. – Type locality: Ned Churchwood Weir (25°03'S 152°05'E), Burnett River, Queensland, Australia. Elseya dentata (Gray, 1863) 1863 Chelymys dentata Gray, Ann. Mag. Natur. Hist., (3) 12: 98. – Type locality: Beagle’s Valley, upper Victoria River, Northern Territory.
    [Show full text]