Artificial Ventilation: History, Equipment and Techniques 755

Total Page:16

File Type:pdf, Size:1020Kb

Artificial Ventilation: History, Equipment and Techniques 755 Thorax 1990;45:753-758 753 Assisted ventilation 1 Series editor: John Moxham Artificial ventilation: history, equipment and Thorax: first published as 10.1136/thx.45.10.753 on 1 October 1990. Downloaded from techniques J D Young, M K Sykes A brief history of artificial ventilators expedited research into powered mechanical ventilators. An artificial ventilator is essentially a device that replaces or augments the function of the Classification of artificial ventilators inspiratory muscles, providing the necessary The lungs can be artificially ventilated either energy to ensure a flow of gas into the alveoli by reducing the ambient pressure around the during inspiration. When this support is thorax (negative pressure ventilation) or by removed gas is expelled as the lung and chest increasing the pressure within the airways wall recoil to their original volume; exhalation (positive pressure ventilation). Negative pres- is a passive process. In the earliest reports of sure ventilators use a rigid chamber that artificial ventilation this energy was provided encloses either the thorax (cuirass) or the by the respiratory muscles of another person, whole body below the neck (tank respirator or as expired air resuscitation. Baker' has traced "iron lung"). The pressure in the chamber is references to expired air resuscitation in the reduced cyclically by means of a large volume newborn as far back as 1472, and in adults displacement pump, thus causing the lungs to there is a report of an asphyxiated miner being expand and contract. Negative pressure ven- revived with mouth to mouth resuscitation in tilation is fully discussed in article 5 of this 1744. In the eighteenth century artificial ven- series. These ventilators were used extensively tilation became the accepted first line treat- for poliomyelitis victims, and are still in use ment for drowning victims, though the use of for long term respiratory support or overnight bellows replaced mouth to mouth resus- support for patients with respiratory muscle citation.2 Automatic artificial ventilators that weakness, Tank ventilators occupy much http://thorax.bmj.com/ did not require a human as a power source space, access to the patient is poor, and the took another 150 years to appear, being first neck seal can create problems. They are not suggested by Fell3 and then made available suitable for use in general intensive care units. commercially by Draeger4 in 1907. These There has been a recent revival in interest in were still devices for resuscitation, for the negative pressure ventilators in paediatric Draeger company at that time was noted for intensive care units to avoid the need for its mine rescue apparatus. endotracheal intubation.5 The introduction of artificial ventilators The basic classification of positive pressure on September 25, 2021 by guest. Protected copyright. into anaesthesia proceeded slowly until sur- artificial ventilators was first proposed by geons ventured into the chest. During Mapleson.6 Artificial ventilators are devices thoracic surgery on spontaneously breathing that control inspiration; expiration is usually patients the inevitable pneumothoraces and passive, and so the classification is based on mediastinal shift ("mediastinal flap") that the mechanism of gas delivery during inspira- occurred as the pleural cavity was opened tion. There are two types of machine. A flow caused a high mortality, which was generator produces a known pattern of gas substantially reduced when positive pressure flow during inspiration, and the lungs fill at a ventilation was used. A further boost to the rate entirely controlled by the ventilator and development of automatic artificial ventilators independent of any effect of lung mechanics. occurred in 1952, when a catastrophic A pressure generator produces a preset pres- poliomyelitis epidemic struck Denmark. sure in the airway and the rate of lung infla- There was a very high incidence of bulbar tion depends not only on the pressure gen- lesions and 316 out of 866 patients with erated by the ventilator but also on the res- paralysis admitted over a period of 19 weeks piratory resistance and compliance, which required postural drainage, tracheostomy, or determine the time constant of the lungs. respiratory support. By using tracheostomy With a square wave pattern of pressure the Nuffield Department of Anaesthetics, John and manual positive pressure ventilation the lungs fill in an exponential fashion. The Radcliffe Hospital, Danish physicians reduced the mortality from effects of the two types of ventilator on ins- Oxford poliomyelitis from 80% at the beginning of piratory flow and lung volume are shown in J D Young M K Sykes the epidemic to 23% at the end. The artificial figure 1. ventilation was entirely by hand, a total of In general, the flow generator ventilator is Address for reprint requests: Dr J D Young, 1400 university students working in shifts to used for adults and the pressure generator Nuffield Department of keep the patients ventilated. The fear that ventilator for children, or adults when control Anaesthetics, John Radcliffe Hospital, Oxford OX3 9DU. another epidemic might afflict Europe of peak airway pressure is important. The 754 Young, Sykes Thorax: first published as 10.1136/thx.45.10.753 on 1 October 1990. Downloaded from C) 0 co._ U) La 0 Figure 1 Lung volume and gasflow during one respiratory cycle with pressure andflowgenerator ventilators. pressure generator is particularly useful in controlled by a pair of scissor valves and children where uncuffed endotracheal tubes monitored with pressure and flow sensors. are used and there is a leak of gas around the The control unit adjusted the scissor valves to endotracheal tube during inspiration. A pres- ensure that the flow patterns measured by the http://thorax.bmj.com/ sure generator tends to compensate for this sensors corresponded to those selected by the leak by increasing the flow into the airway, operator. This method of control is termed a whereas with a flow generator a proportion of servo or feedback system and is very flexible. the tidal volume is lost. Potentially one machine could mimic all the A ventilator must also have a mechanism to previously described categories of ventilator. cause it to cycle between inspiration and expiration. Ventilators are usually subclas- Modern intensive care unit ventilators sified as time cycled, pressure cycled, or Most modern intensive care unit ventilators on September 25, 2021 by guest. Protected copyright. volume cycled machines. Time cycled ven- use similar technology. A simplified diagram of tilators switch between inspiration and expira- such a ventilator is shown in figure 2. The tion after a preset time interval, pressure respiratory gas is held in a pressurised reservoir cycled ventilators switch when a preset airway and delivered to the patient via an inspiratory pressure threshold has been reached, and valve. The inspiratory valve and hence the volume cycled ventilators cycle when a preset inspiratory flow is controlled by the electronic tidal volume has been delivered. Cycling from control unit. The airway pressure and flow of expiration to inspiration is usually effected by gas into the patient are monitored by the a timing mechanism or by a patient triggering pressure and inspiratory flow sensors. The device that senses the subatmospheric pres- expiratory flow can also be monitored to check sure or the flow generated in the inspiratory for leaks and disconnection of the patient from tube by the patient's inspiratory effort. the ventilator. This design enables the ven- This traditional classification was devised tilator to be used as either a flow or a pressure during a period when ventilators were totally generator. For example, ifthe operator selects a mechanical, and driven either by compressed constant flow during inspiration the ventilator gas or by an electrically powered piston or will open the inspiratory valve until the flow bellows. By 1954, however, Donald had used sensor measures the required flow. If the an electronic trigger that initiated inspiration inspiratory flow decreases the inspiratory valve and in 1958 an electronic timing device was will be opened further to compensate, and vice incorporated in the Barnet ventilator.7 In 1971 versa. If the operator wishes the ventilator to the Siemens-Elema company introduced the act as a constant pressure generator, the ven- Servo 900 ventilator, which combined a sim- tilator will open the inspiratory valve until the ple pneumatic system with a sophisticated pressure sensor indicates that the desired pres- electronic measuring and control unit.8 Gas sure has been reached. The ventilator will then flow to and from the patient's lungs was maintain the airway pressure at the desired Artificial ventilation: history, equipment and techniques 755 manage and suffered complications.9 To min- imise these problems many ventilated patients are sedated, and in some cases paralysed with neuromuscular blocking agents (for example, To pancuronium). In the early 1980s paralysis of Thorax: first published as 10.1136/thx.45.10.753 on 1 October 1990. Downloaded from patient ventilated patients was very common in British intensive care units,1011 and sedation was used to dissociate the patients from their surround- ings. Over the last decade the amount of sedative and paralysing drugs given to inten- sive care patients has been reduced consider- ably. Paralysis ofventilated patients is not without risks.'2 The paralysed patient is unable to make any spontaneous respiratory effort, so a discon- nection from the ventilator is rapidly fatal. The patient may be aware ofhis or her surroundings Figure 2 A block diagram of a modern ventilator. The shaded area indicates the gas but is unable to communicate, and the risk of path during inspiration. pulmonary embolus is probably increased. Even sedative drugs are not without risk,'3 as shown by the substantial increase in mortality level by opening or closing the inspiratory in trauma patients given etomidate infusions. valve. The bulk of a modern ventilator is now This was subsequently shown to be caused by the electronic unit and the pneumatic units are suppression of adrenal activity by the drug.
Recommended publications
  • The Gastrointestinal Tract and Ventilator-Associated Pneumonia
    The Gastrointestinal Tract and Ventilator-Associated Pneumonia Richard H Kallet MSc RRT FAARC and Thomas E Quinn MD Introduction The Role of Gastric pH on the Incidence of VAP Enteral Feeding and Nosocomial Pneumonia Gastric Residual Volumes Gastric Versus Post-Pyloric Feeding Acidification of Enteral Feedings Selective Decontamination of the Digestive Tract Microbiologic Ecology of the GI Tract Rationale for SDD Technique Clinical Evidence: Efficacy of SDD SDD and the Incidence of VAP SDD and Mortality SDD in Specific Sub-Groups SDD and ICU Length of Stay, Hospital Costs, and Antibiotic Usage/Costs Unresolved Aspects of SDD Therapy Uncertainties Regarding the Gastropulmonary Hypothesis Uncertainties Regarding Colonization Resistance SDD and Selection for Drug-Resistant Microorganisms Summary and Recommendations The gastrointestinal tract is believed to play an important role in ventilator-associated pneumonia (VAP), because during critical illness the stomach often is colonized with enteric Gram-negative bacteria. These are the same bacteria that frequently are isolated from the sputum of patients with VAP. Interventions such as selective decontamination of the digestive tract (SDD), use of sucralfate for stress ulcer prophylaxis, and enteral feeding strategies that preserve gastric pH, or lessen the likelihood of pulmonary aspiration, are used to decrease the incidence of VAP. A review of both meta-analyses and large randomized controlled trials providing Level I evidence on these topics has led to the following conclusions. First, SDD substantially decreases the incidence of VAP and may have a modest positive effect on mortality. However, there is strong contravening evidence that SDD promotes infections by Gram-positive bacteria. In the context of an emerging public health crisis from the steady rise in drug-resistant Gram-positive bacteria, we cannot endorse the general use of SDD to prevent VAP.
    [Show full text]
  • From Mechanical Ventilation to Intensive Care Medicine: a Challenge &For Bosnia and Herzegovina
    FROM MECHANICAL VENTILATION TO INTENSIVE CARE MEDICINE: A CHALLENGE &FOR BOSNIA AND HERZEGOVINA Guillaume Thiéry1,2,3*, Pedja Kovačević2,4, Slavenka Štraus5, Jadranka Vidović2, Amer Iglica1, Emir Festić6, Ognjen Gajić7 ¹ Medical Intensive Care Unit, Clinical Centre University of Sarajevo, Bolnička , Sarajevo, Bosnia and Herzegovina ² Medical Intensive Care Unit, Clinical Center Banja Luka, Banja Luka, Bosnia and Hercegovina ³ Medical Intensive Care Unit, St Louis Hospital, University Denis Diderot, avenue Claude Vellefaux, Paris, France ⁴ Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Hercegovina 5 Heart Center, Clinical Centre University of Sarajevo, Bolnička , Sarajevo, Bosnia and Herzegovina 6 Department of Critical Care Medicine, Mayo Clinic, Jacksonville, FL, USA 7 Division of Pulmonary and Critical Care, Multidisciplinary Epidemiology and Translational Research in Intensive Care (METRIC) Mayo Clinic, Rochester, MN, United States * Corresponding author Abstract Intensive care medicine is a relatively new specialty, which was created in the ’s, after invent of mechanical ventilation, which allowed caring for critically ill patients who otherwise would have died. First created for treating mechanically ventilated patients, ICUs extended their scope and care to all patients with life threatening conditions. Over the years, intensive care medicine developed further and became a truly multidisciplinary speciality, encompassing patients from various fi elds of medicine and involving special- ists from a range of base specialties, with additional (subspecialty) training in intensive care medicine. In Bosnia and Herzegovina, the founding of the society of intensive care medicine in , the introduction of non invasive ventilation in , and opening of a multidisciplinary ICUs in Banja Luka and Sarajevo heralded a new age of intensive care medicine.
    [Show full text]
  • Weaning and Discontinuing Ventilatory Support (2002)
    Special Articles Evidence-Based Guidelines for Weaning and Discontinuing Ventilatory Support A Collective Task Force Facilitated by the American College of Chest Physicians, the American Association for Respiratory Care, and the American College of Critical Care Medicine Introduction Pathophysiology of Ventilator Dependence Criteria to Assess Ventilator Dependence Managing the Patient Who Has Failed a Spontaneous Breathing Test Role of Tracheotomy in Ventilator-Dependent Patients The Role of Long-Term Facilities [Respir Care 2002;47(1):69–90] Introduction quickly as possible. Although this process often is termed “ventilator weaning” (implying a gradual process), we pre- The discontinuation or withdrawal process from me- fer the more encompassing term “discontinuation.” chanical ventilation is an important clinical issue.1,2 Pa- tients are generally intubated and placed on mechanical SEE THE RELATED EDITORIAL ON PAGE 29 ventilators when their own ventilatory and/or gas exchange capabilities are outstripped by the demands placed on them Unnecessary delays in this discontinuation process in- from a variety of diseases. Mechanical ventilation also is crease the complication rate from mechanical ventilation required when the respiratory drive is incapable of initi- (eg, pneumonia, airway trauma) as well as the cost. Ag- ating ventilatory activity, either because of disease pro- gressiveness in removing the ventilator, however, must be cesses or drugs. As the conditions that warranted placing balanced against the possibility that premature discontin- the patient on the ventilator stabilize and begin to resolve, uation may occur. Premature discontinuation carries its attention should be placed on removing the ventilator as own set of problems, including difficulty in reestablishing artificial airways and compromised gas exchange.
    [Show full text]
  • Noninvasive Positive Pressure Ventilation in the Home
    Technology Assessment Program Noninvasive Positive Pressure Ventilation in the Home Final Technology Assessment Project ID: PULT0717 2/4/2020 Technology Assessment Program Project ID: PULT0717 Noninvasive Positive Pressure Ventilation in the Home (with addendum) Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov Contract No: HHSA290201500013I_HHSA29032004T Prepared by: Mayo Clinic Evidence-based Practice Center Rochester, MN Investigators: Michael Wilson, M.D. Zhen Wang, Ph.D. Claudia C. Dobler, M.D., Ph.D Allison S. Morrow, B.A. Bradley Beuschel, B.S.P.H. Mouaz Alsawas, M.D., M.Sc. Raed Benkhadra, M.D. Mohamed Seisa, M.D. Aniket Mittal, M.D. Manuel Sanchez, M.D. Lubna Daraz, Ph.D Steven Holets, R.R.T. M. Hassan Murad, M.D., M.P.H. Key Messages Purpose of review To evaluate home noninvasive positive pressure ventilation (NIPPV) in adults with chronic respiratory failure in terms of initiation, continuation, effectiveness, adverse events, equipment parameters and required respiratory services. Devices evaluated were home mechanical ventilators (HMV), bi-level positive airway pressure (BPAP) devices, and continuous positive airway pressure (CPAP) devices. Key messages • In patients with COPD, home NIPPV as delivered by a BPAP device (compared to no device) was associated with lower mortality, intubations, hospital admissions, but no change in quality of life (low to moderate SOE). NIPPV as delivered by a HMV device (compared individually with BPAP, CPAP, or no device) was associated with fewer hospital admissions (low SOE). In patients with thoracic restrictive diseases, HMV (compared to no device) was associated with lower mortality (low SOE).
    [Show full text]
  • Evaluation and Management of the Polytraumatized Patient in Various Centers
    World J. Surg. 7, 143-148, 1983 Wor Journal of Stirgery Evaluation and Management of the Polytraumatized Patient in Various Centers S. Olerud, M.D., and M. Allg6wer, M.D. The Akademiska Sjukhuset Uppsala, Sweden, and the Department of Surgery, Kantonsspital, Basel, Switzerland A questionnaire was sent to the following 6 trauma centers: Paris: Two or more peripheral, visceral, or com- University Hospital for Accident Surgery, Hannover, Fed- plex injuries with respiratory and circulatory fail- eral Republic of Germany (Prof. H. Tscherne); University ure. (This excludes patients who only have sus- of Munich, Department of Surgery, Klinikum Grossha- tained fractures.) dern, Munich, Federal Republic of Germany (Prof. G. Dallas: Multiply injured patient presenting le- Heberer); Akademiska Sjukhuset Uppsala, Sweden (Prof. sions to 2 cavities, associated with 2 or more long S. Olerud); University Hospital, Department of Surgery, bone failures; lesions to 1 cavity associated with 2 Basel, Switzerland (Prof. M. Allgiiwer); H6pital de la Piti~, or more long bone failures; or lesions to multiple Paris, France (Prof. R. Roy-Camille); and University of extremities (at minimum, 3 long bone failures). Texas Southwestern Medical School, Dallas, Texas, U.S.A. (Prof. B. Claudi). Their answers have been summarized in a few short paragraphs where tabulation was not possible, Do You Grade Polytrauma, and If So, How? and then mainly in tabular form for convenient comparison among the various centers. There seems to be considerable international agreement on the main points of early aggres- Hannover: Yes, with our own grading system along sive cardiopulmonary management to prevent multiple with ISS and AIS.
    [Show full text]
  • Infection in Patients Under Artificial Ventilation
    ISSN: 1981-8963 DOI: 10.5205/reuol.3188-26334-1-LE.0704201307 Batista JF, Santos IBC, Leite KNS et al. Infection In patients under artificial… ORIGINAL ARTICLE INFECTION IN PATIENTS UNDER ARTIFICIAL VENTILATION: UNDERSTANDING AND PREVENTIVE MEASURES ADOPTED BY NURSING STUDENTS INFECÇÃO EM PACIENTES SOB VENTILAÇÃO ARTIFICIAL: COMPREENSÃO E MEDIDAS PREVENTIVAS ADOTADAS POR ESTUDANTES DE ENFERMAGEM INFECCIÓN EN LOS PACIENTES POR VENTILACIÓN ARTIFICIAL: COMPRENSIÓN Y MEDIDAS PREVENTIVAS ADOPTADAS POR ESTUDIANTES DE ENFERMERÍA Joyce Ferreira Batista1, Iolanda Beserra da Costa Santos2, Kamila Nethielly Souza Leite3, Ana Aline Lacet Zaccara4, Smalyanna Sgren da Costa Andrade5, Sergio Ribeiro dos Santos6 ABSTRACT Objective: to investigate the understanding of nursing students about the prevention of infection in patients under artificial ventilation in the Intensive Care Unit (ICU). Method: an exploratory field study with a quantitative approach. 30 students participated. It was used a questionnaire to collect the data that were then processed and analyzed manually, from statistical software, with results shown in tables and figures. The research project was approved by the Ethics Committee in Research, with CAEE 0539.0.126.000-10. Results: 67% did not attend patients suffering from hospital infections. It was mentioned as preventive measures: 28 (24%), the education of the healthcare team, 10 (23%) cited the use of aseptic techniques, 9 (20.0%) say they do not know what actions should be taken. Conclusion: the study showed that the majority of the students cited as preventive measures the continuous education in service and the use of aseptic techniques. Descriptors: Nursing Students; Infection; Intensive Care Units. RESUMO Objetivo: investigar a compreensão de estudantes de enfermagem sobre a prevenção de infecção em pacientes sob ventilação artificial na Unidade de Terapia Intensiva (UTI).
    [Show full text]
  • Evidence on Measures for the Prevention of Ventilator-Associated Pneumonia
    Eur Respir J 2007; 30: 1193–1207 DOI: 10.1183/09031936.00048507 CopyrightßERS Journals Ltd 2007 REVIEW Evidence on measures for the prevention of ventilator-associated pneumonia L. Lorente*, S. Blot# and J. Rello",+ AFFILIATIONS ABSTRACT: Ventilator-associated pneumonia (VAP) continues to be an important cause of *Intensive Care Unit, Hospital morbidity and mortality in ventilated patients. Universitario de Canarias, La Laguna, Evidence-based guidelines have been issued since 2001 by the European Task Force on Tenerife, "Intensive Care Dept, Joan XXIII ventilator-associated pneumonia, the Centers for Disease Control and Prevention, the Canadian University Hospital, and Critical Care Society, and also by the American Thoracic Society and Infectious Diseases Society +University Rovira i Virgili Medical of America, which have produced a joint set of recommendations. School, Pere Virgili Health Institut, The present review article is based on a comparison of these guidelines, together with an Tarragona, Spain. #Critical Care Dept, Ghent University update of further publications in the literature. The 100,000 Lives campaign, endorsed by leading Hospital, Ghent, Belgium. US agencies and societies, states that all ventilated patients should receive a ventilator bundle to reduce the incidence of VAP. CORRESPONDENCE The present review article is useful for identifying evidence-based processes that can be L. Lorente Intensive Care Unit modified to improve patients’ safety. Hospital Universitario de Canarias C/ Ofra s/n KEYWORDS: Ventilator-associated pneumonia La Laguna Tenerife 38320 entilator-associated pneumonia (VAP) tracheal suctioning system’’, ‘‘open tracheal Spain Fax: 34 22662245 suctioning system’’, ‘‘change of closed tracheal continues to be an important cause of E-mail: [email protected] V morbidity and mortality in critically ill suctioning system’’, ‘‘sterilization’’, ‘‘disinfec- patients [1–3].
    [Show full text]
  • The Basics of Ventilator Management Overview How We Breath
    3/23/2019 The Basics of Ventilator Management What are we really trying to do here Peter Lutz, MD Pulmonary and Critical Care Medicine Pulmonary Associates, Mobile, Al Overview • Approach to the physiology of the lung and physiological goals of mechanical Ventilation • Different Modes of Mechanical Ventilation and when they are indicated • Ventilator complications • Ventilator Weaning • Some basic trouble shooting How we breath http://people.eku.edu/ritchisong/301notes6.htm 1 3/23/2019 How a Mechanical Ventilator works • The First Ventilator- the Iron Lung – Worked by creating negative atmospheric pressure around the lung, simulating the negative pressure of inspiration How a Mechanical Ventilator works • The Modern Ventilator – The invention of the demand oxygen valve for WWII pilots if the basis for the modern ventilator https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRI5v-veZULMbt92bfDmUUW32SrC6ywX1vSzY1xr40aHMdsCVyg6g How a Mechanical Ventilator works • The Modern Ventilator – How it works Inspiratory Limb Flow Sensor Ventilator Pressure Sensor Expiratory Limb 2 3/23/2019 So what are the goals of Mechanical Ventilation • What are we trying to control – Oxygenation • Amount of oxygen we are getting into the blood – Ventilation • The movement of air into and out of the lungs, mainly effects the pH and level of CO 2 in the blood stream Lab Oxygenation Ventilation Pulse Ox Saturation >88-90% Arterial Blood Gas(ABG) Po 2(75-100 mmHg) pCO 2(40mmHg) pH(~7.4) Oxygenation How do we effect Oxygenation • Fraction of Inspired Oxygen (FIO 2) – Percentage of the gas mixture given to the patient that is Oxygen • Room air is 21% • On the vent ranges from 30-100% • So if the patient’s blood oxygen levels are low, we can just increase the amount of oxygen we give them 3 3/23/2019 How do we effect Oxygenation • Positive End Expiratory Pressure (PEEP) – positive pressure that will remains in the airways at the end of the respiratory cycle (end of exhalation) that is greater than the atmospheric pressure in mechanically ventilated patients.
    [Show full text]
  • Posttraumatic Stress Disorder (PTSD)
    Child and Adolescent Psychiatry and Mental Health BioMed Central Research Open Access Posttraumatic stress disorder (PTSD) in children after paediatric intensive care treatment compared to children who survived a major fire disaster Madelon B Bronner*1, Hendrika Knoester2, Albert P Bos2, Bob F Last1,3 and Martha A Grootenhuis1 Address: 1Psychosocial Department, Emma Children's Hospital Academic Medical Center, University of Amsterdam, The Netherlands, 2Department of Paediatric Intensive Care, Emma Children's Hospital Academic Medical Center, University of Amsterdam, The Netherlands and 3Department of Developmental Psychology, Vrije Universiteit, Amsterdam, The Netherlands Email: Madelon B Bronner* - [email protected]; Hendrika Knoester - [email protected]; Albert P Bos - [email protected]; Bob F Last - [email protected]; Martha A Grootenhuis - [email protected] * Corresponding author Published: 20 May 2008 Received: 23 January 2008 Accepted: 20 May 2008 Child and Adolescent Psychiatry and Mental Health 2008, 2:9 doi:10.1186/1753-2000-2-9 This article is available from: http://www.capmh.com/content/2/1/9 © 2008 Bronner et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The goals were to determine the presence of posttraumatic stress disorder (PTSD) in children after paediatric intensive care treatment, to identify risk factors for PTSD, and to compare this data with data from a major fire disaster in the Netherlands.
    [Show full text]
  • Guidelines for Preventing Health-Care-Associated Pneumonia, 2003
    GUIDELINES FOR PREVENTING HEALTH-CARE-ASSOCIATED PNEUMONIA, 2003 Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee Accessible version: https://www.cdc.gov/infectioncontrol/guidelines/pneumonia/index.html Prepared By: Ofelia C. Tablan, M.D.1 Larry J. Anderson, M.D.2 Richard Besser, M.D.3 Carolyn Bridges, M.D.2 Rana Hajjeh, M.D.3 1Division of Healthcare Quality Promotion, National Center for Infectious Diseases , CDC 2Division of Viral and Rickettsial Diseases, NCID, CDC 3Division of Bacterial and Mycotic Diseases, NCID, CDC The material in this report originated in the National Center for Infectious Diseases, James M. Hughes, M.D., Director, Division of Healthcare Quality Promotion, Denise M. Cardo, M.D., Director, and the Division of Bacterial and Mycotic Diseases, Mitchell L. Cohen, M.D., Director. HEALTHCARE INFECTION CONTROL PRACTICES ADVISORY COMMITTEE Chair: Robert A. Weinstein, M.D., Cook County Hospital, Chicago, Illinois Co-Chair: Jane D. Siegel, M.D., University of Texas Southwestern Medical Center, Dallas, Texas Executive Secretary: Michele L. Pearson, M.D., CDC, Atlanta, Georgia Members: Raymond Y.W. Chinn, M.D., Sharp Memorial Hospital, San Diego, California; Alfred DeMaria, Jr., M.D., Massachusetts Department of Public Health, Jamaica Plains, Massachusetts; Elaine L. Larson, R.N., Ph.D., Columbia University School of Nursing, New York, New York; James T. Lee, M.D.,Ph.D., Veterans Affairs Medical Center, University of Minnesota, St. Paul, Minnesota; Ramon E. Moncada, M.D.,Coronado Physician’s Medical Center Coronado, California; William A. Rutala, Ph.D.; University of North Carolina School of Medicine, Chapel Hill, North Carolina; William E.
    [Show full text]
  • Comparison Between Intermittent Mandatory Ventilation And
    0021-7557/09/85-01/15 Jornal de Pediatria Copyright © 2009 by Sociedade Brasileira de Pediatria ARTIGO ORIGINAL Comparison between intermittent mandatory ventilation and synchronized intermittent mandatory ventilation with pressure support in children Comparação entre ventilação mandatória intermitente e ventilação mandatória intermitente sincronizada com pressão de suporte em crianças Marcos A. de Moraes1, Rossano C. Bonatto2, Mário F. Carpi2, Sandra M. Q. Ricchetti3, Carlos R. Padovani4, José R. Fioretto5 Resumo Abstract Objetivo: Comparar a ventilação mandatória intermitente (IMV) Objective: Tocompare intermittent mandatory ventilation (IMV) com a ventilação mandatória intermitente sincronizada com pressão with synchronized intermittent mandatory ventilation plus pressure de suporte (SIMV+PS) quanto à duração da ventilação mecânica, support (SIMV+PS) in terms of time on mechanical ventilation, desmame e tempo de internação na unidade de terapia intensiva duration of weaning and length of stay in a pediatric intensive care pediátrica (UTIP). unit (PICU). Métodos: Estudo clínico randomizado que incluiu crianças entre Methods: This was a randomized clinical trial that enrolled 28 dias e 4 anos de idade, admitidas na UTIP no período children aged 28 days to 4 years who were admitted to a PICU correspondente entre 10/2005 e 06/2007, que receberam ventilação between October of 2005 and June of 2007 and put on mechanical mecânica (VM) por mais de 48 horas. Os pacientes foram alocados, ventilation (MV) for more than 48 hours. These patients were por meio de sorteio, em dois grupos: grupo IMV (GIMV;n=35)e allocated to one of two groups by drawing lots: IMV group (IMVG; n grupo SIMV+PS (GSIMV; n = 35).
    [Show full text]
  • Tracheotomy in Ventilated Patients with COVID19
    Tracheotomy in ventilated patients with COVID-19 Guidelines from the COVID-19 Tracheotomy Task Force, a Working Group of the Airway Safety Committee of the University of Pennsylvania Health System Tiffany N. Chao, MD1; Benjamin M. Braslow, MD2; Niels D. Martin, MD2; Ara A. Chalian, MD1; Joshua H. Atkins, MD PhD3; Andrew R. Haas, MD PhD4; Christopher H. Rassekh, MD1 1. Department of Otorhinolaryngology – Head and Neck Surgery, University of Pennsylvania, Philadelphia 2. Department of Surgery, University of Pennsylvania, Philadelphia 3. Department of Anesthesiology, University of Pennsylvania, Philadelphia 4. Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia Background The novel coronavirus (COVID-19) global pandemic is characterized by rapid respiratory decompensation and subsequent need for endotracheal intubation and mechanical ventilation in severe cases1,2. Approximately 3-17% of hospitalized patients require invasive mechanical ventilation3-6. Current recommendations advocate for early intubation, with many also advocating the avoidance of non-invasive positive pressure ventilation such as high-flow nasal cannula, BiPAP, and bag-masking as they increase the risk of transmission through generation of aerosols7-9. Purpose Here we seek to determine whether there is a subset of ventilated COVID-19 patients for which tracheotomy may be indicated, while considering patient prognosis and the risks of transmission. Recommendations may not be appropriate for every institution and may change as the current situation evolves. The goal of these guidelines is to highlight specific considerations for patients with COVID-19 on an individual and population level. Any airway procedure increases the risk of exposure and transmission from patient to provider.
    [Show full text]