Noninvasive Positive Pressure Ventilation in the Home

Total Page:16

File Type:pdf, Size:1020Kb

Noninvasive Positive Pressure Ventilation in the Home Technology Assessment Program Noninvasive Positive Pressure Ventilation in the Home Final Technology Assessment Project ID: PULT0717 2/4/2020 Technology Assessment Program Project ID: PULT0717 Noninvasive Positive Pressure Ventilation in the Home (with addendum) Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov Contract No: HHSA290201500013I_HHSA29032004T Prepared by: Mayo Clinic Evidence-based Practice Center Rochester, MN Investigators: Michael Wilson, M.D. Zhen Wang, Ph.D. Claudia C. Dobler, M.D., Ph.D Allison S. Morrow, B.A. Bradley Beuschel, B.S.P.H. Mouaz Alsawas, M.D., M.Sc. Raed Benkhadra, M.D. Mohamed Seisa, M.D. Aniket Mittal, M.D. Manuel Sanchez, M.D. Lubna Daraz, Ph.D Steven Holets, R.R.T. M. Hassan Murad, M.D., M.P.H. Key Messages Purpose of review To evaluate home noninvasive positive pressure ventilation (NIPPV) in adults with chronic respiratory failure in terms of initiation, continuation, effectiveness, adverse events, equipment parameters and required respiratory services. Devices evaluated were home mechanical ventilators (HMV), bi-level positive airway pressure (BPAP) devices, and continuous positive airway pressure (CPAP) devices. Key messages • In patients with COPD, home NIPPV as delivered by a BPAP device (compared to no device) was associated with lower mortality, intubations, hospital admissions, but no change in quality of life (low to moderate SOE). NIPPV as delivered by a HMV device (compared individually with BPAP, CPAP, or no device) was associated with fewer hospital admissions (low SOE). In patients with thoracic restrictive diseases, HMV (compared to no device) was associated with lower mortality (low SOE). In patients with neuromuscular diseases, home BPAP (compared to no device) was associated with lower mortality and better quality of life (low SOE). In patients with obesity hypoventilation syndrome, HMV/BPAP mix (compared to no device) was associated with lower mortality (low SOE). BPAP (compared to no device) was associated with improved sleep quality. • Current evidence is insufficient to assess the comparative effectiveness of many NIPPV device capabilities on patient outcomes; particularly comparing HMV to BPAP. Future studies should address which device capabilities are associated with improved patient outcomes. • Criteria to initiate home NIPPV and home respiratory services were summarized in this report but varied and were not validated in comparative studies. • Incidence of non-serious adverse events such as facial rash, dry eyes, mucosal dryness, and mask discomfort across devices was approximately 0.3 events over a median duration of device used of 6 months. The most commonly reported serious adverse event was acute respiratory failure. Based on direct comparisons, we found no statistically significant differences in number of treatment withdrawals or adverse events when comparing different devices or when comparing device use with no device use. iii Preface The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-based Practice Centers (EPCs), sponsors the development of evidence reports and technology assessments to assist public- and private-sector organizations in their efforts to improve the quality of health care in the United States. The Centers for Medicare & Medicaid Services requested this report from the EPC Program at AHRQ. AHRQ assigned this report to the following EPC: Mayo Clinic Evidence-based Practice Center (Contract Number: HHSA290201500013I_ HHSA29032004T). The reports and assessments provide organizations with comprehensive, evidence-based information on common medical conditions and new health care technologies and strategies. They also identify research gaps in the selected scientific area, identify methodological and scientific weaknesses, suggest research needs, and move the field forward through an unbiased, evidence-based assessment of the available literature. The EPCs systematically review the relevant scientific literature on topics assigned to them by AHRQ and conduct additional analyses when appropriate prior to developing their reports and assessments. To bring the broadest range of experts into the development of evidence reports and health technology assessments, AHRQ encourages the EPCs to form partnerships and enter into collaborations with other medical and research organizations. The EPCs work with these partner organizations to ensure that the evidence reports and technology assessments they produce will become building blocks for health care quality improvement projects throughout the Nation. The reports undergo peer review and public comment prior to their release as a final report. AHRQ expects that the EPC evidence reports and technology assessments, when appropriate, will inform individual health plans, providers, and purchasers as well as the health care system as a whole by providing important information to help improve health care quality. If you have comments on this evidence report, they may be sent by mail to the Task Order Officer named below at: Agency for Healthcare Research and Quality, 5600 Fishers Lane, Rockville, MD 20857, or by email to [email protected] Gopal Khanna, M.B.A. Arlene Bierman, M.D., M.S. Director Director Agency for Healthcare Research and Quality Center for Evidence and Practice Improvement Agency for Healthcare Research and Quality Stephanie Chang, M.D., M.P.H. Lionel L. Bañez, M.D. Director Task Order Officer Evidence-based Practice Center Program Center for Evidence and Practice Improvement Center for Evidence and Practice Improvement Agency for Healthcare Research and Quality Agency for Healthcare Research and Quality Elise Berliner, PhD Task Order Officer Center for Evidence and Practice Improvement Agency for Healthcare Research and Quality iv A draft of this technology assessment was distributed solely for the purpose of public and peer review. This final report does not represent and should not be construed to represent an AHRQ determination or policy. This report is based on research conducted by the Mayo Clinic Evidence-based Practice Center (Contract Number: HHSA290201500013I_HHSA29032004T). The findings and conclusions in this document are those of the author(s) who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ and CMS. No statement in this article should be construed as an official position of AHRQ, CMS, or the U.S. Department of Health and Human Services. None of the investigators has any affiliations or financial involvement related to the material presented in this report. Persons using assistive technology may not be able to fully access information in this report. For assistance, contact [email protected]. Suggested citation: Wilson M, Wang Z, Dobler C, Morrow A, Beuschel B, Alsawas M, Benkhadra R, Seisa M, Mittal A, Sanchez M, Daraz L, Holets S, Murad MH. Noninvasive Positive Pressure Ventilation in the Home. Project ID: PULT0717 (Prepared by the Mayo Clinic Evidence-Based Practice Center under Contract No. HHSA290201500013I_HHSA29032004T). Rockville, MD: Agency for Healthcare Research and Quality. March 2019. http://www.ahrq.gov/ clinic/epcix.htm. v Acknowledgments The authors gratefully acknowledge the following individuals for their contributions to this project: from the Agency for Healthcare Research and Quality our task order officers, Lionel Bañez, M.D. and Elise Berliner, Ph.D., from Centers for Medicare and Medicaid Services Susan M. Miller, M.D and James Rollins, M.D. Key Informants In designing the study questions, the EPC consulted several Key Informants who represent the end-users of research. The EPC sought the Key Informant input on the priority areas for research and synthesis. Key Informants are not involved in the analysis of the evidence or the writing of the report. Therefore, in the end, study questions, design, methodological approaches, and/or conclusions do not necessarily represent the views of individual Key Informants. Key Informants must disclose any financial conflicts of interest greater than $5,000 and any other relevant business or professional conflicts of interest. Because of their role as end-users, individuals with potential conflicts may be retained. The TOO and the EPC work to balance, manage, or mitigate any conflicts of interest. The list of Key Informants who provided input to this report follows: Key Informants Mark Calmes Sairam Parthasarathy, MD* ALS Association University of Arizona Decatur, IL Tucson, AZ Gerard Criner, MD Temple University Lora Reineck, MD Philadelphia, PA National Heart, Lung, and Blood Institute Bethesda, MD Marny Eulberg, MD Easter Seals Colorado Steven Ziegler Westminster, CO ALS Association St. Louis, MO Louis Libby, MD* The Oregon Clinic Portland, OR * This Key Informant also provided input on the draft report. vi Peer Reviewers Prior to publication of the final evidence report, EPCs sought input from independent Peer Reviewers without financial conflicts of interest. However, the conclusions and synthesis of the scientific literature presented in this report does not necessarily represent the views of individual reviewers. Peer Reviewers must disclose any financial conflicts of interest greater than $5,000 and any other relevant business or professional conflicts of interest. Because of their unique clinical or content expertise, individuals with potential non-financial conflicts may be retained. The TOO and the EPC work to balance,
Recommended publications
  • The Basics of Ventilator Management Overview How We Breath
    3/23/2019 The Basics of Ventilator Management What are we really trying to do here Peter Lutz, MD Pulmonary and Critical Care Medicine Pulmonary Associates, Mobile, Al Overview • Approach to the physiology of the lung and physiological goals of mechanical Ventilation • Different Modes of Mechanical Ventilation and when they are indicated • Ventilator complications • Ventilator Weaning • Some basic trouble shooting How we breath http://people.eku.edu/ritchisong/301notes6.htm 1 3/23/2019 How a Mechanical Ventilator works • The First Ventilator- the Iron Lung – Worked by creating negative atmospheric pressure around the lung, simulating the negative pressure of inspiration How a Mechanical Ventilator works • The Modern Ventilator – The invention of the demand oxygen valve for WWII pilots if the basis for the modern ventilator https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRI5v-veZULMbt92bfDmUUW32SrC6ywX1vSzY1xr40aHMdsCVyg6g How a Mechanical Ventilator works • The Modern Ventilator – How it works Inspiratory Limb Flow Sensor Ventilator Pressure Sensor Expiratory Limb 2 3/23/2019 So what are the goals of Mechanical Ventilation • What are we trying to control – Oxygenation • Amount of oxygen we are getting into the blood – Ventilation • The movement of air into and out of the lungs, mainly effects the pH and level of CO 2 in the blood stream Lab Oxygenation Ventilation Pulse Ox Saturation >88-90% Arterial Blood Gas(ABG) Po 2(75-100 mmHg) pCO 2(40mmHg) pH(~7.4) Oxygenation How do we effect Oxygenation • Fraction of Inspired Oxygen (FIO 2) – Percentage of the gas mixture given to the patient that is Oxygen • Room air is 21% • On the vent ranges from 30-100% • So if the patient’s blood oxygen levels are low, we can just increase the amount of oxygen we give them 3 3/23/2019 How do we effect Oxygenation • Positive End Expiratory Pressure (PEEP) – positive pressure that will remains in the airways at the end of the respiratory cycle (end of exhalation) that is greater than the atmospheric pressure in mechanically ventilated patients.
    [Show full text]
  • Respiratory Insufficiency in Patients with ALS at Or Near the End of Life
    Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease causing progressive paralysis and eventual death, usually from respiratory failure. Treatment for ALS is focused primarily on optimal symptom manage- ment because there is no known cure. Respiratory symptoms that occur are related to the disease process and can be very distressing for patients and their loved ones. Recommendations on the management of respira- tory insufficiency are provided to help guide clinicians caring for patients with ALS. Hospice and Palliative Care Feature The Management of Andrea L. Torres, APN, CNP Respiratory Insufficiency in Patients With ALS at or Near the End of Life 186 Home Healthcare Nurse www.homehealthcarenurseonline.com Copyright © 2012 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. Introduction 2007). By the time most patients are definitively Amyotrophic lateral sclerosis (ALS) is a devastat- diagnosed, they are often already in an advanced ing motor neuron disease characterized by pro- stage of the disease (Wood-Allum & Shaw, 2010). gressive muscle weakness eventually leading to Life expectancy is typically 3-5 years from the paralysis and death. The onset typically occurs onset of symptoms (Elman et al., 2007). in late middle age, with men slightly more af- fected than women (Wood-Allum & Shaw, 2010). Palliative Care Approaches for ALS Patients The majority of cases of ALS have no known Due to the progressive nature of ALS, early pal- cause; about 10% of ALS cases are linked to a fa- liative care is an essential component in the milial trait (Ferguson & Elman, 2007). Treatment treatment plan, and should begin as soon as the is primarily focused on optimal symptom man- diagnosis of ALS is confirmed (Elman et al., 2007).
    [Show full text]
  • CT Children's CLASP Guideline
    CT Children’s CLASP Guideline Chest Pain INTRODUCTION . Chest pain is a frequent complaint in children and adolescents, which may lead to school absences and restriction of activities, often causing significant anxiety in the patient and family. The etiology of chest pain in children is not typically due to a serious organic cause without positive history and physical exam findings in the cardiac or respiratory systems. Good history taking skills and a thorough physical exam can point you in the direction of non-cardiac causes including GI, psychogenic, and other rare causes (see Appendix A). A study performed by the New England Congenital Cardiology Association (NECCA) identified 1016 ambulatory patients, ages 7 to 21 years, who were referred to a cardiologist for chest pain. Only two patients (< 0.2%) had chest pain due to an underlying cardiac condition, 1 with pericarditis and 1 with an anomalous coronary artery origin. Therefore, the vast majority of patients presenting to primary care setting with chest pain have a benign etiology and with careful screening, the patients at highest risk can be accurately identified and referred for evaluation by a Pediatric Cardiologist. INITIAL INITIAL EVALUATION: Focused on excluding rare, but serious abnormalities associated with sudden cardiac death EVALUATION or cardiac anomalies by obtaining the targeted clinical history and exam below (red flags): . Concerning Pain Characteristics, See Appendix B AND . Concerning Past Medical History, See Appendix B MANAGEMENT . Alarming Family History, See Appendix B . Physical exam: - Blood pressure abnormalities (obtain with manual cuff, in sitting position, right arm) - Non-innocent murmurs . Obtain ECG, unless confident pain is musculoskeletal in origin: - ECG’s can be obtained at CT Children’s main campus and satellites locations daily (Hartford, Danbury, Glastonbury, Shelton).
    [Show full text]
  • Comparison Between Intermittent Mandatory Ventilation And
    0021-7557/09/85-01/15 Jornal de Pediatria Copyright © 2009 by Sociedade Brasileira de Pediatria ARTIGO ORIGINAL Comparison between intermittent mandatory ventilation and synchronized intermittent mandatory ventilation with pressure support in children Comparação entre ventilação mandatória intermitente e ventilação mandatória intermitente sincronizada com pressão de suporte em crianças Marcos A. de Moraes1, Rossano C. Bonatto2, Mário F. Carpi2, Sandra M. Q. Ricchetti3, Carlos R. Padovani4, José R. Fioretto5 Resumo Abstract Objetivo: Comparar a ventilação mandatória intermitente (IMV) Objective: Tocompare intermittent mandatory ventilation (IMV) com a ventilação mandatória intermitente sincronizada com pressão with synchronized intermittent mandatory ventilation plus pressure de suporte (SIMV+PS) quanto à duração da ventilação mecânica, support (SIMV+PS) in terms of time on mechanical ventilation, desmame e tempo de internação na unidade de terapia intensiva duration of weaning and length of stay in a pediatric intensive care pediátrica (UTIP). unit (PICU). Métodos: Estudo clínico randomizado que incluiu crianças entre Methods: This was a randomized clinical trial that enrolled 28 dias e 4 anos de idade, admitidas na UTIP no período children aged 28 days to 4 years who were admitted to a PICU correspondente entre 10/2005 e 06/2007, que receberam ventilação between October of 2005 and June of 2007 and put on mechanical mecânica (VM) por mais de 48 horas. Os pacientes foram alocados, ventilation (MV) for more than 48 hours. These patients were por meio de sorteio, em dois grupos: grupo IMV (GIMV;n=35)e allocated to one of two groups by drawing lots: IMV group (IMVG; n grupo SIMV+PS (GSIMV; n = 35).
    [Show full text]
  • A Case of Extreme Hypercapnia
    119 Emerg Med J: first published as 10.1136/emj.2003.005009 on 20 January 2004. Downloaded from CASE REPORTS A case of extreme hypercapnia: implications for the prehospital and accident and emergency department management of acutely dyspnoeic patients L Urwin, R Murphy, C Robertson, A Pollok ............................................................................................................................... Emerg Med J 2004;21:119–120 64 year old woman was brought by ambulance to the useful non-invasive technique to aid the assessment of accident and emergency department. She had been peripheral oxygen saturation. In situations of poor perfusion, Areferred by her GP because of increasing dyspnoea, movement and abnormal haemoglobin, however, this tech- cyanosis, and lethargy over the previous four days. On arrival nique may not reliably reflect PaO2 values. More importantly, of the ambulance crew at her home she was noted to be and as shown in our case, there is no definite relation tachycardic and tachypnoeic (respiratory rate 36/min) with a between SaO2 values measured by pulse oximetry and PaCO2 GCS of 5 (E 3, M 1, V 1). She was given oxygen at 6 l/min via values although it has been shown that the more oxygenated a Duo mask, and transferred to hospital. The patient arrived at the accident and emergency department 18 minutes later. In transit, there had been a clinical deterioration. The GCS was now 3 and the respiratory rate 4/min. Oxygen saturation, as measured by a pulse oximeter was 99%. The patient was intubated and positive pressure ventilation started. Arterial blood gas measurements taken at the time of intubation were consistent with acute on chronic respiratory failure (fig 1).
    [Show full text]
  • Prevention of Ventilator Associated Complications
    Prevention of Ventilator associated complications Authors: Dr Aparna Chandrasekaran* & Dr Ashok Deorari From: Department of Pediatrics , WHO CC AIIMS , New Delhi-110029 & * Neonatologist , Childs Trust Medical Research Foundation and Kanchi Kamakoti Childs Trust Hospital, Chennai -600034. Word count Text: 4890 (excluding tables and references) Figures: 1; Panels: 2 Key words: Ventilator associated complications, bronchopulmonary dysplasia Abbreviations: VAP- Ventilator associated pneumonia , BPD- Bronchopulmonary dysplasia, ELBW- Extremely low birth weight, VLBW- Very low birth weight, ROP- Retinopathy of prematurity, CPAP- Continuous positive airway pressure, I.M.- intramuscular, CI- Confidence intervals, PPROM- Preterm prelabour rupture of membranes, RCT- Randomised control trial, RR- Relative risk, PEEP- Peak end expiratory pressure Background: The last two decades have witnessed a dramatic reduction in neonatal mortality from 4.4 million newborn deaths annually in 1990 to 2.9 million deaths yearly in the year 2012, a reduction by 35%. In India, neonatal mortality has decreased by 42% during the same period. (1) With the increasing survival and therapeutic advances, the new paradigm is now on providing best quality of care and preventing complications related to therapy. Assisted ventilation dates back to 1879, when the Aerophone Pulmonaire, the world’s earliest ventilator was developed. This was essentially a simple tube connected to a rubber bulb. The tube was placed in the infant’s airway and the bulb was alternately compressed and released to produce inspiration and expiration. (2) With better understanding of pulmonary physiology and mechanics , lung protective strategies have evolved in the last two decades, with new resuscitation devices that limit pressure (T-piece resuscitator), non-invasive ventilation, microprocessors that allow synchronised breaths and regulate volume and high frequency oscillators/ jet ventilators.
    [Show full text]
  • Chapter 17 Dyspnea Sabina Braithwaite and Debra Perina
    Chapter 17 Dyspnea Sabina Braithwaite and Debra Perina ■ PERSPECTIVE Pathophysiology Dyspnea is the term applied to the sensation of breathlessness The actual mechanisms responsible for dyspnea are unknown. and the patient’s reaction to that sensation. It is an uncomfort- Normal breathing is controlled both centrally by the respira- able awareness of breathing difficulties that in the extreme tory control center in the medulla oblongata, as well as periph- manifests as “air hunger.” Dyspnea is often ill defined by erally by chemoreceptors located near the carotid bodies, and patients, who may describe the feeling as shortness of breath, mechanoreceptors in the diaphragm and skeletal muscles.3 chest tightness, or difficulty breathing. Dyspnea results Any imbalance between these sites is perceived as dyspnea. from a variety of conditions, ranging from nonurgent to life- This imbalance generally results from ventilatory demand threatening. Neither the clinical severity nor the patient’s per- being greater than capacity.4 ception correlates well with the seriousness of underlying The perception and sensation of dyspnea are believed to pathology and may be affected by emotions, behavioral and occur by one or more of the following mechanisms: increased cultural influences, and external stimuli.1,2 work of breathing, such as the increased lung resistance or The following terms may be used in the assessment of the decreased compliance that occurs with asthma or chronic dyspneic patient: obstructive pulmonary disease (COPD), or increased respira- tory drive, such as results from severe hypoxemia, acidosis, or Tachypnea: A respiratory rate greater than normal. Normal rates centrally acting stimuli (toxins, central nervous system events).
    [Show full text]
  • Mechanical Ventilation Page 1 of 5
    UTMB RESPIRATORY CARE SERVICES Policy 7.3.53 PROCEDURE - Mechanical Ventilation Page 1 of 5 Mechanical Ventilation Effective: 10/26/95 Formulated: 11/78 Revised: 04/11/18 Mechanical Ventilation Purpose Mechanical Artificial Ventilation refers to any methods to deliver volumes of gas into a patient's lungs over an extended period of time to remove metabolically produced carbon dioxide. It is used to provide the pulmonary system with the mechanical power to maintain physiologic ventilation, to manipulate the ventilatory pattern and airway pressures for purposes of improving the efficiency of ventilation and/or oxygenation, and to decrease myocardial work by decreasing the work of breathing. Scope Outlines the procedure of instituting mechanical ventilation and monitoring. Accountability • Mechanical Ventilation may be instituted by a qualified licensed Respirator Care Practitioner (RCP). • To be qualified the practitioner must complete a competency based check off on the ventilator to be used. • The RCP will have an understanding of the age specific requirements of the patient. Physician's Initial orders for therapy must include a mode (i.e. mandatory Order Ventilation/Assist/Control, pressure control etc., a Rate, a Tidal Volume, and an Oxygen concentration and should include a desired level of Positive End Expiratory Pressure, and Pressure Support if applicable. Pressure modes will include inspiratory time and level of pressure control. In the absence of a complete follow up order reflecting new ventilator changes, the original ventilator settings will be maintained in compliance with last order until physician is contacted and the order is clarified. Indications Mechanical Ventilation is generally indicated in cases of acute alveolar hypoventilation due to any cause, acute respiratory failure due to any cause, and as a prophylactic post-op in certain patients.
    [Show full text]
  • Chest Auscultation: Presence/Absence and Equality of Normal/Abnormal and Adventitious Breath Sounds and Heart Sounds A
    Northwest Community EMS System Continuing Education: January 2012 RESPIRATORY ASSESSMENT Independent Study Materials Connie J. Mattera, M.S., R.N., EMT-P COGNITIVE OBJECTIVES Upon completion of the class, independent study materials and post-test question bank, each participant will independently do the following with a degree of accuracy that meets or exceeds the standards established for their scope of practice: 1. Integrate complex knowledge of pulmonary anatomy, physiology, & pathophysiology to sequence the steps of an organized physical exam using four maneuvers of assessment (inspection, palpation, percussion, and auscultation) and appropriate technique for patients of all ages. (National EMS Education Standards) 2. Integrate assessment findings in pts who present w/ respiratory distress to form an accurate field impression. This includes developing a list of differential diagnoses using higher order thinking and critical reasoning. (National EMS Education Standards) 3. Describe the signs and symptoms of compromised ventilations/inadequate gas exchange. 4. Recognize the three immediate life-threatening thoracic injuries that must be detected and resuscitated during the “B” portion of the primary assessment. 5. Explain the difference between pulse oximetry and capnography monitoring and the type of information that can be obtained from each of them. 6. Compare and contrast those patients who need supplemental oxygen and those that would be harmed by hyperoxia, giving an explanation of the risks associated with each. 7. Select the correct oxygen delivery device and liter flow to support ventilations and oxygenation in a patient with ventilatory distress, impaired gas exchange or ineffective breathing patterns including those patients who benefit from CPAP. 8. Explain the components to obtain when assessing a patient history using SAMPLE and OPQRST.
    [Show full text]
  • Mechanical Ventilation
    Fundamentals of MMeecchhaanniiccaall VVeennttiillaattiioonn A short course on the theory and application of mechanical ventilators Robert L. Chatburn, BS, RRT-NPS, FAARC Director Respiratory Care Department University Hospitals of Cleveland Associate Professor Department of Pediatrics Case Western Reserve University Cleveland, Ohio Mandu Press Ltd. Cleveland Heights, Ohio Published by: Mandu Press Ltd. PO Box 18284 Cleveland Heights, OH 44118-0284 All rights reserved. This book, or any parts thereof, may not be used or reproduced by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review. First Edition Copyright 2003 by Robert L. Chatburn Library of Congress Control Number: 2003103281 ISBN, printed edition: 0-9729438-2-X ISBN, PDF edition: 0-9729438-3-8 First printing: 2003 Care has been taken to confirm the accuracy of the information presented and to describe generally accepted practices. However, the author and publisher are not responsible for errors or omissions or for any consequences from application of the information in this book and make no warranty, express or implied, with respect to the contents of the publication. Table of Contents 1. INTRODUCTION TO VENTILATION..............................1 Self Assessment Questions.......................................................... 4 Definitions................................................................................
    [Show full text]
  • Community-Acquired Pneumonia in Adults: Diagnostic Reliability of Physical Examination Techniques and Their Teaching in Academia
    James Madison University JMU Scholarly Commons Physician Assistant Capstones The Graduate School Fall 12-14-2018 Community-acquired pneumonia in adults: Diagnostic reliability of physical examination techniques and their teaching in academia Amber Tordoff James Madison University Lauren A. Williams James Madison University Follow this and additional works at: https://commons.lib.jmu.edu/pacapstones Part of the Bacteria Commons, Bacterial Infections and Mycoses Commons, Diagnosis Commons, Investigative Techniques Commons, Medical Pathology Commons, Respiratory Tract Diseases Commons, Virus Diseases Commons, and the Viruses Commons Recommended Citation Tordoff AL, Williams LA. Community-Acquired Pneumonia in Adults: Diagnostic Reliability of Physical Examination Techniques and their Teaching in Academia. JMU Scholarly Commons Physician Assistant Capstones. https://commons.lib.jmu.edu/pacapstones/44/. Published December 12, 2018. This Presentation is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in Physician Assistant Capstones by an authorized administrator of JMU Scholarly Commons. For more information, please contact [email protected]. Community-Acquired Pneumonia in Adults: Diagnostic Reliability of Physical Examination Techniques and their Teaching in Academia Amber Tordoff, PA-S and Lauren Williams, PA-S, James Madison University, Harrisonburg, Virginia _____________________________________________________________________________________ ABSTRACT Background:
    [Show full text]
  • Chapter 11 Dyspnea, Orthopnea, and Paroxysmal Nocturnal Dyspnea
    2/12/2015 Dyspnea, Orthopnea, and Paroxysmal Nocturnal Dyspnea ­ Clinical Methods ­ NCBI Bookshelf NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. Walker HK, Hall WD, Hurst JW, editors. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition. Boston: Butterworths; 1990. Chapter 11 Dyspnea, Orthopnea, and Paroxysmal Nocturnal Dyspnea Vaskar Mukerji. Definition Dyspnea refers to the sensation of difficult or uncomfortable breathing. It is a subjective experience perceived and reported by an affected patient. Dyspnea on exertion (DOE) may occur normally, but is considered indicative of disease when it occurs at a level of activity that is usually well tolerated. Dyspnea should be differentiated from tachypnea, hyperventilation, and hyperpnea, which refer to respiratory variations regardless of the patients" subjective sensations. Tachypnea is an increase in the respiratory rate above normal; hyperventilation is increased minute ventilation relative to metabolic need, and hyperpnea is a disproportionate rise in minute ventilation relative to an increase in metabolic level. These conditions may not always be associated with dyspnea. Orthopnea is the sensation of breathlessness in the recumbent position, relieved by sitting or standing. Paroxysmal nocturnal dyspnea (PND) is a sensation of shortness of breath that awakens the patient, often after 1 or 2 hours of sleep, and is usually relieved in the upright position. Two uncommon types of breathlessness are trepopnea and platypnea. Trepopnea is dyspnea that occurs in one lateral decubitus position as opposed to the other. Platypnea refers to breathlessness that occurs in the upright position and is relieved with recumbency. Technique A patient with dyspnea may say: "I feel short of breath," "I"m having difficulty breathing," "I can"t catch my breath," "I feel like I"m suffocating." Because it is a subjective phenomenon, the perception of dyspnea and its interpretation vary from patient to patient.
    [Show full text]