Degradation of Benzene and Other Aromatic Hydrocarbons by Anaerobic Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

Degradation of Benzene and Other Aromatic Hydrocarbons by Anaerobic Bacteria Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria Sander A.B. Weelink Promotoren Prof. dr. ir. A.J.M. Stams Persoonlijk hoogleraar bij het Laboratorium voor Microbiologie Wageningen Universiteit Promotiecommissie Dr. ir. H.H.M. Rijnaarts TNO Bouw en Ondergrond/Deltares, Utrecht Prof. dr. P.C. de Ruiter Wageningen Universiteit Prof. dr. D. Springael Katholieke Universiteit Leuven, België Prof. dr. H.J. Laanbroek Nederlands Instituut voor Ecologie (NIOO-KNAW), Nieuwersluis Dit onderzoek is uitgevoerd binnen de onderzoekschool WIMEK/SENSE Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria Sander A.B. Weelink Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J. Kropff, in het openbaar te verdedigen op dinsdag 18 november 2008 des namiddags te vier uur in de Aula Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria Sander A.B. Weelink PhD thesis Wageningen University, Wageningen, The Netherlands (2008) 128 pages, with summary in Dutch ISBN 978-90-8585-239-1 Voor Pa en Ma Abstract Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in soils, sediments and groundwater. The mobility and toxicity of the BTEX compounds are of major concern. In situ bioremediation of BTEX by using naturally occurring microorganisms or introduced microorganisms is a very attractive option. BTEX compounds are known to be transformed (or degraded) by microorganisms under aerobic and anaerobic conditions. As BTEX compounds are often present in the anaerobic zones of the environment, anaerobic bioremediation is an attractive remediation technique. The bottleneck in the application of anaerobic techniques is the lack of knowledge about the anaerobic biodegradation of benzene. In particular, little is known about the bacteria involved in anaerobic benzene degradation and the anaerobic benzene degradation pathway has still not been elucidated. The aim of the research presented in this thesis was to gain more insight in the degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria. In particular, the physiology and phylogeny of the bacteria responsible for the degradation were studied and the results have been presented in this thesis. Anaerobic benzene and toluene degradation was studied with different electron acceptors in batch experiments inoculated with material from an aquifer polluted by BTEX-containing landfill leachate (Banisveld landfill near Boxtel, The Netherlands). Benzene was not degraded during one year of incubation. Toluene degradation, on the other hand, was observed with nitrate, MnO2 and Fe(III)NTA as electron acceptors. After further enrichment and several isolation attempts, a novel betaproteobacterial bacterium, strain G5G6, was obtained in pure culture. Strain G5G6 is able to grow with toluene as the sole electron donor and carbon source, and amorphous and soluble Fe(III)- species, nitrate and MnO2 as electron acceptors. Strain G5G6 has several other interesting physiological and phylogenetic characteristics, which will be subject of future research. Strain G5G6 represents a novel species in a novel genus for which we propose the name Georgfuchsia toluolica. In general, aerobic degradation of BTEX is a faster process than anaerobic BTEX degradation. However, for a number of reasons application of oxygen-dependent processes in the subsurface are technically and financially often not appealing. Therefore, an alternative bioremediation strategy would be to introduce oxygen in an alternative way, e.g. by in situ production. Chlorate reduction is a way to produce molecular oxygen in situ under anaerobic conditions. The formation of oxygen during chlorate reduction may result in rapid oxidation of compounds which are slowly degraded under anaerobic conditions; an example of such a compound is benzene. Therefore, benzene degradation coupled to - the reduction of chlorate (ClO3 ) was studied in this thesis. With mixed material from a wastewater treatment plant and soil samples obtained from a location contaminated with benzene, a benzene- degrading chlorate-reducing stable enrichment culture was obtained. This stable enrichment consisted of about five different bacterial species. Cross feeding involving interspecies oxygen transfer is a likely mechanism in this enrichment. One of these species, strain BC, was obtained in pure culture. Phylogenetic analysis showed that strain BC is a Alicycliphilus denitrificans strain. Strain BC is able to degrade benzene in conjunction with chlorate reduction. Oxygenase genes putatively encoding the enzymes performing the initial steps in aerobic degradation of benzene, were detected in strain BC. This demonstrates the existence of aerobic benzene bacterial biodegradation pathways under essentially anaerobic conditions. Thus, aerobic pathways can be employed under conditions where no external oxygen is supplied. The new insights into toluene degradation under anaerobic conditions and benzene degradation coupled to chlorate reduction, as described in this thesis, can be applied for the improvement or development of in situ bioremediation strategies for BTEX contamination. Table of contents Chapter 1 General introduction 1 Chapter 2 Anaerobic benzene and toluene biodegradation studies with different electron acceptors in contaminated aquifer microcosms 27 Chapter 3 Anaerobic degradation of aromatic hydrocarbons with Fe(III), Mn(IV) or nitrate by the Betaproteobacterium, Georgfuchsia toluolica, gen. nov., sp. nov. 41 Chapter 4 Physiological and phylogenetic characterization of a stable benzene-degrading, chlorate-reducing microbial community 59 Chapter 5 Isolation and characterization of Alicycliphilus denitrificans strain BC, which grows on benzene with chlorate as the electron acceptor 73 Chapter 6 Physiological characterization of two Alicycliphilus denitrificans strains 91 Chapter 7 General discussion and summary 95 Nederlandse samenvatting 106 References 110 List of publications 122 Curriculum vitae 123 Dankwoord 124 WIMEK/SENSE certificate 126 1 General introduction Sander A.B. Weelink, Miriam H.A. van Eekert and Alfons J. M. Stams 1 Chapter 1 1.1 Introduction Aromatic compounds are the second most abundant family of organic constituents present in nature after carbohydrates. The most important natural sources of aromatic compounds are poorly biodegradable polymers such as lignin, condensed tannins and humus (Field et al., 1995). Since the start of the industrial revolution a wide variety of aromatic compounds has also been introduced into the environment through anthropogenic activity. Millions of tons of aromatic compounds are manufactured worldwide each year. With such huge quantities of these compounds being made, transported and used, it is inevitable that a substantial amount will be lost in the environment. Aromatic compounds are important constituents of crude oil (petroleum) and oil derivatives, such as gasoline. Gasoline is rich in monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (BTEX) (Fig. 1). Furthermore, these compounds are used as industrial solvents and they provide the starting materials for the production of pharmaceuticals, agrochemicals, polymers, explosives and many other everyday products (Smith, 1990). Environmental contamination with these aromatic compounds can be found at many places and are a major concern because of the mobility and toxicity of these compounds. Therefore, the cleanup of BTEX pollution in soil and groundwater has gained much attention the last decades. BTEX compounds are known to be transformed (or degraded) by microorganisms and this is an interesting and promising cleanup strategy. In this chapter, the existing knowledge on the microbial degradation of BTEX compounds will be summarized and discussed in more detail. CH3 CH2CH3 CH3 CH3 CH3 CH3 CH3 CH3 Figure 1. Chemical structures of benzene, toluene, ethylbenzene, ortho-xylene, meta-xylene and para-xylene. 1.2 BTEX contamination It has been estimated that around 270,000 sites in the Netherlands are potentially heavily contaminated and that at around 11,000 sites urgently measurements have to be taken because of human or ecological risks or risks of spreading of the contaminants (RIVM, 2008). Contamination with BTEX compounds is often encountered at these sites. Accidental spills and industrial discharges have resulted in serious pollution of the environment with BTEX. Furthermore, gasoline leakage from underground storage tanks has been identified as an important source of groundwater contamination with BTEX. High concentrations of BTEX have been detected in soils, sediments and groundwater. The mobility and toxicity of the BTEX compounds are of major concern (several physical-chemical properties of BTEX compounds are summarized in Table 1). Compared with other oil hydrocarbons, BTEX are relatively water-soluble and therefore these compounds will rapidly produces a plume of contamination within the groundwater (Coates et al., 2002; Chakraborty and Coates, 2004). Benzene is the most hazardous of the BTEX compounds since it is a known human carcinogen (leukaemogenic potential) (Badham and Winn, 2007). Toluene and xylene are not carcinogenic, but toluene can enhance carcinogenesis
Recommended publications
  • Autotrophy in Groundwater Ecosystems
    Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München Autotrophy in Groundwater Ecosystems Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades vorgelegt von Claudia Sabine Kellermann aus München München im November 2008 1. Gutachter: Prof. Dr. Anton Hartmann, LMU München 2. Gutachter: Prof. Dr. Dirk Schüler, LMU München Tag der Abgabe: 06.11.2008 Tag des Promotionskolloquiums: 15.07.2009 Publications originating from this Thesis Chapter 2 Kellermann, C & Griebler, C (2008) Thiobacillus thiophilus D24TNT sp. nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments. International Journal of Systematic and Evolutionary Microbiology (IJSEM), 59: 583-588 Chapter 3 Kellermann, C, Selesi, D, Hartmann, A, Lee, N, Hügler, M, Esperschütz, J, & Griebler, C (2008) Chemolithoautotrophy in an organically polluted aquifer – Potential for CO2 fixation and in situ bacterial autotrophic activity. (in preparation) Contributions Chapter 3 Enzyme assays were performed in cooperation with Dr. Michael Hügler at the IFM- GEOMAR, Kiel, Germany. Chapter 4 FISH-MAR analysis was performed in cooperation with Prof. Dr. Natuschka Lee at the Technical University Munich, Germany. Enzyme assays were performed in cooperation with Dr. Michael Hügler at the IFM-GEOMAR, Kiel, Germany. PLFA analysis was performed by Dr. Jürgen Esperschütz at the Institute of Soil Ecology, Helmholtz Center Munich, Germany. I hereby confirm the above statements Claudia Kellermann Prof. Dr. Anton Hartmann Autotrophy in Groundwater Ecosystems Claudia Kellermann Abstract: The major role in global net CO2 fixation plays photosynthesis of green plants, algae and cyanobacteria, but other microorganisms are also important concerning autotrophy; i.e. autotrophic microorganisms can be found in most bacterial groups (Eubacteria) and there are even numerous representatives within the Archaea.
    [Show full text]
  • Isolation and Molecular Characterization of Novel
    University of Groningen Isolation and molecular characterization of novel glucarpidases Rashidi, Fatma B; AlQhatani, Alanod D; Bashraheel, Sara S; Shaabani, Shabnam; Groves, Matthew R; Dömling, Alexander; Goda, Sayed K Published in: PLoS ONE DOI: 10.1371/journal.pone.0196254 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Rashidi, F. B., AlQhatani, A. D., Bashraheel, S. S., Shaabani, S., Groves, M. R., Dömling, A., & Goda, S. K. (2018). Isolation and molecular characterization of novel glucarpidases: Enzymes to improve the antibody directed enzyme pro-drug therapy for cancer treatment. PLoS ONE, 13(4), [e0196254]. https://doi.org/10.1371/journal.pone.0196254 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Delftia Sp. LCW, a Strain Isolated from a Constructed Wetland Shows Novel Properties for Dimethylphenol Isomers Degradation Mónica A
    Downloaded from orbit.dtu.dk on: Sep 28, 2021 Delftia sp LCW, a strain isolated from a constructed wetland shows novel properties for dimethylphenol isomers degradation Vásquez-Piñeros, Mónica A.; Martinez-Lavanchy, Paula M.; Jehmlich, Nico; Pieper, Dietmar H.; Rincon, Carlos A.; Harms, Hauke; Junca, Howard; Heipieper, Hermann J. Published in: BMC Microbiology Link to article, DOI: 10.1186/s12866-018-1255-z Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Vásquez-Piñeros, M. A., Martinez-Lavanchy, P. M., Jehmlich, N., Pieper, D. H., Rincon, C. A., Harms, H., Junca, H., & Heipieper, H. J. (2018). Delftia sp LCW, a strain isolated from a constructed wetland shows novel properties for dimethylphenol isomers degradation. BMC Microbiology, 18, [108]. https://doi.org/10.1186/s12866- 018-1255-z General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Azoreductase: a Key Player of Xenobiotic Metabolism Santosh A
    Misal and Gawai Bioresour. Bioprocess. (2018) 5:17 https://doi.org/10.1186/s40643-018-0206-8 REVIEW Open Access Azoreductase: a key player of xenobiotic metabolism Santosh A. Misal1,2* and Kachru R. Gawai1* Abstract Azoreductases are diverse favoenzymes widely present among microorganisms and higher eukaryotes. They are mainly involved in the biotransformation and detoxifcation of azo dyes, nitro-aromatic, and azoic drugs. Reduction of azo bond and reductive activation of pro-drugs at initial level is a crucial stage in degradation and detoxifca- tion mechanisms. Using azoreductase-based microbial enzyme systems that are biologically accepted and ecof- riendly demonstrated complete degradation of azo dyes. Azoreductases are favin-containing or favin-free group of enzymes, utilizing the nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate as a reducing equivalent. Azoreductases from anaerobic microorganisms are highly oxygen sensitive, while azoreduc- tases from aerobic microorganisms are usually oxygen insensitive. They have variable pH, temperature stability, and wide substrate specifcity. Azo dyes, nitro-aromatic compounds, and quinones are the known substrates of azore- ductase. The present review gives an overview of recent developments in the known azoreductase enzymes from diferent microorganisms, its novel classifcation scheme, signifcant characteristics, and their plausible degradation mechanisms. Keywords: Azo dye, Azoreductase, Bioremediation, Biotransformation, Detoxifcation, Xenobiotics Introduction of physical, chemical, and biological treatment proce- Azo dyes and nitro-aromatic compounds are consid- dures are employed to degrade and detoxify the chemi- ered as potential xenobiotics. Tey are extensively used cal content and to remove color from dye-containing worldwide in textile, paint, printing, cosmetics, and phar- industrial wastewater.
    [Show full text]
  • Hydrogenophaga Electricum Sp. Nov., Isolated from Anodic Biofilms of an Acetate-Fed Microbial Fuel Cell
    J. Gen. Appl. Microbiol., 59, 261‒266 (2013) Full Paper Hydrogenophaga electricum sp. nov., isolated from anodic biofilms of an acetate-fed microbial fuel cell Zen-ichiro Kimura and Satoshi Okabe* Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060‒8628, Japan (Received October 25, 2012; Accepted April 2, 2013) A Gram-negative, non-spore-forming, rod-shaped bacterial strain, AR20T, was isolated from an- odic biofilms of an acetate-fed microbial fuel cell in Japan and subjected to a polyphasic taxo- nomic study. Strain AR20T grew optimally at pH 7.0‒8.0 and 25°C. It contained Q-8 as the pre- dominant ubiquinone and C16:0, summed feature 3 (C16:1ω7c and/or iso-C15:02OH), and C18:1ω7c as the major fatty acids. The DNA G+C content was 67.1 mol%. A neighbor-joining phylogenetic tree revealed that strain AR20T clustered with three type strains of the genus Hydrogenophaga (H. flava, H. bisanensis and H. pseudoflava). Strain AR20T exhibited 16S rRNA gene sequence similarity values of 95.8‒97.7% to the type strains of the genus Hydrogenophaga. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain AR20T is considered a novel species of the genus Hydrogenophaga, for which the name Hydrogenophaga electricum sp. nov. is pro- posed. The type strain is AR20T (= KCTC 32195T = NBRC 109341T). Key Words—Hydrogenophaga electricum; hydrogenotrophic exoelectrogen; microbial fuel cell Introduction the MFC was analyzed. Results showed that bacteria belonging to the genera Geobacter and Hydrogenoph- Microbial fuel cells (MFCs) are devices that are able aga were abundantly present in the anodic biofilm to directly convert the chemical energy of organic community (Kimura and Okabe, 2013).
    [Show full text]
  • Status Report on Innovative in Situ Treatment Technologies Available to Remediate Perchlorate- Contaminated Groundwater
    (ITRC, 2005) Status Report on Innovative In Situ Remediation Technologies Available to Treat Perchlorate-Contaminated Groundwater August 2006 Prepared By Jennifer Raye Hoponick National Network for Environmental Management Studies Fellow for U.S. Environmental Protection Agency Office of Superfund Remediation & Technology Innovation Technology Innovation & Field Services Division Washington, D.C. www.epa.gov www.clu-in.org Status Report on In Situ Treatment Technologies to Remediate Perchlorate-Contaminated Groundwater NOTICE This document was prepared by a National Network of Environmental Management studies grantee under a fellowship from the U.S. Environmental Protection Agency. This report was not subject to EPA peer review or technical review. The EPA makes no warranties, expressed or implied, including without limitation, warranty for completeness, accuracy, or usefulness of the information, warranties as to the merchantability, or fitness for a particular purpose. Moreover, the listing of any technology, corporation, company, person, or facility in this report does not constitute endorsement, approval, or recommendation by the EPA. The report contains information attained from a wide variety of currently available sources, including project documents, reports, periodicals, Internet websites, and personal communication with both academically and commercially employed sources. No attempts were made to independently confirm the resources used. It has been reproduced to help provide federal agencies, states, consulting engineering firms, private industries, and technology developers with information on the current status of this project. About the National Network for Environmental Management Studies The National Network for Environmental Management Studies (NNEMS) is a comprehensive fellowship program managed by the Environmental Education Division of EPA. The purpose of the NNEMS Program is to provide students with practical research opportunities and experiences.
    [Show full text]
  • Studies on Triphenylmethane, Azo Dye and Latex Rubber Biodegradation by Actinomycetes
    Studies on triphenylmethane, azo dye and latex rubber biodegradation by actinomycetes by Melissa Dalcina Chengalroyen Schoool of Molecular and Cellular Biology Faculty of Science University of Witwatersrand South Africa 2011 I. Declaration I declare that this research is my own unaided work unless otherwise specified. It is being submitted to the University of the Witwatersrand, Johannesburg for the degree of Doctor of Philosophy. It has not previously been submitted for any other degree or examination in this or any other university. Melissa Dalcina Chengalroyen 1st day of June 2011 i II. Acknowledgements I am grateful to my family who have made numerous sacrifices. I would like to thank Prof. E.R. Dabbs for his supervision. I am indebted to my lab colleagues for all their assistance. I would also like to acknowledge the National Research Foundation for financial support. The following were kindly provided for this research: pNV18 and pNV19 by J. Ishikawa, LATZ by the rubber research institute of Malaysia and Streptomycete strains by the John Innes Institute. This study comprises seven components and for clarity has been presented in separate chapters. This is the overall format of the thesis: Chapter I: Identification and characterization of a gene responsible for amido black decolorization isolated from A. orientalis Chapter II: Identification and characterization of genetic elements from Amycolatopsis species contributing to triphenylmethane decolorization Chapter III: Characterization of rubber degrading isolates and the cloning of DNA conferring an apparent latex degrading ability Chapter IV: Preliminary characterization of A. orientlis phytase activity Chapter V: Screening for antimicrobial compounds from soil isolates METHOD DEVELOPMENT Chapter VI: Construction of broad host range positive selection vectors Chapter VII: Adaptation of conventional Rhodococcus spp.
    [Show full text]
  • Physiology and Biochemistry of Aromatic Hydrocarbon-Degrading Bacteria That Use Chlorate And/Or Nitrate As Electron Acceptor
    Invitation for the public defense of my thesis Physiology and biochemistry of aromatic hydrocarbon-degrading of aromatic and biochemistry Physiology bacteria that use chlorate and/or nitrate as electron acceptor as electron nitrate and/or use chlorate that bacteria Physiology and biochemistry Physiology and biochemistry of aromatic hydrocarbon-degrading of aromatic hydrocarbon- degrading bacteria that bacteria that use chlorate and/or nitrate as electron acceptor use chlorate and/or nitrate as electron acceptor The public defense of my thesis will take place in the Aula of Wageningen University (Generall Faulkesweg 1, Wageningen) on December 18 2013 at 4:00 pm. This defense is followed by a reception in Café Carré (Vijzelstraat 2, Wageningen). Margreet J. Oosterkamp J. Margreet Paranimphs Ton van Gelder ([email protected]) Aura Widjaja Margreet J. Oosterkamp ([email protected]) Marjet Oosterkamp (911 W Springfield Ave Apt 19, Urbana, IL 61801, USA; [email protected]) Omslag met flap_MJOosterkamp.indd 1 25-11-2013 5:58:31 Physiology and biochemistry of aromatic hydrocarbon-degrading bacteria that use chlorate and/or nitrate as electron acceptor Margreet J. Oosterkamp Thesis-MJOosterkamp.indd 1 25-11-2013 6:42:09 Thesis committee Thesis supervisor Prof. dr. ir. A. J. M. Stams Personal Chair at the Laboratory of Microbiology Wageningen University Thesis co-supervisors Dr. C. M. Plugge Assistant Professor at the Laboratory of Microbiology Wageningen University Dr. P. J. Schaap Assistant Professor at the Laboratory of Systems and Synthetic Biology Wageningen University Other members Prof. dr. L. Dijkhuizen, University of Groningen Prof. dr. H. J. Laanbroek, University of Utrecht Prof.
    [Show full text]
  • Delftia Rhizosphaerae Sp. Nov. Isolated from the Rhizosphere of Cistus Ladanifer
    TAXONOMIC DESCRIPTION Carro et al., Int J Syst Evol Microbiol 2017;67:1957–1960 DOI 10.1099/ijsem.0.001892 Delftia rhizosphaerae sp. nov. isolated from the rhizosphere of Cistus ladanifer Lorena Carro,1† Rebeca Mulas,2 Raquel Pastor-Bueis,2 Daniel Blanco,3 Arsenio Terrón,4 Fernando Gonzalez-Andr es, 2 Alvaro Peix5,6 and Encarna Velazquez 1,6,* Abstract A bacterial strain, designated RA6T, was isolated from the rhizosphere of Cistus ladanifer. Phylogenetic analyses based on 16S rRNA gene sequence placed the isolate into the genus Delftia within a cluster encompassing the type strains of Delftia lacustris, Delftia tsuruhatensis, Delftia acidovorans and Delftia litopenaei, which presented greater than 97 % sequence similarity with respect to strain RA6T. DNA–DNA hybridization studies showed average relatedness ranging from of 11 to 18 % between these species of the genus Delftia and strain RA6T. Catalase and oxidase were positive. Casein was hydrolysed but gelatin and starch were not. Ubiquinone 8 was the major respiratory quinone detected in strain RA6T together with low amounts of ubiquinones 7 and 9. The major fatty acids were those from summed feature 3 (C16 : 1!7c/C16 : 1 !6c) and C16 : 0. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain RA6T should be considered as a representative of a novel species of genus Delftia, for which the name Delftia rhizosphaerae sp. nov. is proposed. The type strain is RA6T (=LMG 29737T= CECT 9171T). The genus Delftia comprises Gram-stain-negative, non- The strain was grown on nutrient agar (NA; Sigma) for 48 h sporulating, strictly aerobic rods, motile by polar or bipolar at 22 C to check for motility by phase-contrast microscopy flagella.
    [Show full text]
  • Enhanced Nitrous Oxide Production in Denitrifying Dechloromonas Aromatica Strain RCB Under Salt Or Alkaline Stress Conditions
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 6-5-2019 Enhanced Nitrous Oxide Production in Denitrifying Dechloromonas aromatica Strain RCB Under Salt or Alkaline Stress Conditions H Han BK Song Virginia Institute of Marine Science MJ Song S Yoon Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Microbiology Commons Recommended Citation Han, H; Song, BK; Song, MJ; and Yoon, S, "Enhanced Nitrous Oxide Production in Denitrifying Dechloromonas aromatica Strain RCB Under Salt or Alkaline Stress Conditions" (2019). VIMS Articles. 1668. https://scholarworks.wm.edu/vimsarticles/1668 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. fmicb-10-01203 June 3, 2019 Time: 16:1 # 1 ORIGINAL RESEARCH published: 05 June 2019 doi: 10.3389/fmicb.2019.01203 Enhanced Nitrous Oxide Production in Denitrifying Dechloromonas aromatica Strain RCB Under Salt or Alkaline Stress Conditions Heejoo Han1, Bongkeun Song1,2, Min Joon Song1 and Sukhwan Yoon1* 1 Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea, 2 Department of Biological Sciences, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, United States Salinity and pH have direct and indirect impacts on the growth and metabolic activities of microorganisms. In this study, the effects of salt and alkaline stresses on the kinetic balance between nitrous oxide (N2O) production and consumption in the denitrification Edited by: pathway of Dechloromonas aromatica strain RCB were examined.
    [Show full text]
  • Characterization of Azo Dye Reduction in Enterococcus Faecalis
    CHARACTERIZATION OF AZO DYE REDUCTION IN ENTEROCOCCUS FAECALIS By SUMIT PUNJ Bachelor of Science University of Mumbai, Mumbai, India 1998 Master of Science University of Mumbai Mumbai, India 2000 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 2008 CHARACTERIZATION OF AZO DYE REDUCTION IN ENTEROCOCCUS FAECALIS Dissertation Approved: Dr. Gilbert H. John Dissertation Adviser Dr. Robert L. Burnap Dr. Rolf A. Prade Dr. Babu Z. Fathepure Dr. Carol L. Bender Dr. A. Gordon Emslie Dean of the Graduate College ii ACKNOWLEDGMENTS I would like to express my gratitude to my adviser, Dr. Gilbert H. John who has been very patient and understanding throughout my years in the program. He has given me the opportunity to develop and execute my ideas and has always been very encouraging. I sincerely thank each one of my committee members; Dr. Robert Burnap, Dr. Rolf Prade, Dr. Babu Fathepure and Dr. Carol Bender who have all been instrumental in guiding me in my research and have always given me excellent suggestions to improve the quality of my work. My gratitude extends towards Susan Macwana and Cristee Wright who have been great laboratory colleagues and friends. It has been a pleasure to work with them and they have always been very supportive of me. I would like to thank all the present and past undergraduates who have contributed to the collegial environment in the laboratory. I am also very grateful to the faculty, staff and graduate students of the Microbiology and Molecular Genetics department at OSU who have been extremely helpful, supportive and encouraging.
    [Show full text]
  • Diaphorobacter Nitroreducens Gen. Nov., Sp. Nov., a Poly (3
    J. Gen. Appl. Microbiol., 48, 299–308 (2002) Full Paper Diaphorobacter nitroreducens gen. nov., sp. nov., a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge Shams Tabrez Khan and Akira Hiraishi* Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi 441–8580, Japan (Received August 12, 2002; Accepted October 23, 2002) Three denitrifying strains of bacteria capable of degrading poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were isolated from activated sludge and characterized. All of the isolates had almost identical phenotypic characteristics. They were motile gram-negative rods with single polar flagella and grew well with simple organic com- pounds, as well as with PHB and PHBV, as carbon and energy sources under both aerobic and anaerobic denitrifying conditions. However, none of the sugars tested supported their growth. The cellular fatty acid profiles showed the presence of C16:1w7cis and C16:0 as the major com- ponents and of 3-OH-C10:0 as the sole component of hydroxy fatty acids. Ubiquinone-8 was de- tected as the major respiratory quinone. A 16S rDNA sequence-based phylogenetic analysis showed that all the isolates belonged to the family Comamonadaceae, a major group of b-Pro- teobacteria, but formed no monophyletic cluster with any previously known species of this fam- (DSM 13225؍) ily. The closest relative to our strains was an unidentified bacterium strain LW1 (99.9% similarity), reported previously as a 1-chloro-4-nitrobenzene degrading bacterium. DNA- DNA hybridization levels among the new isolates were more than 60%, whereas those between our isolates and strain DSM 13225 were less than 50%.
    [Show full text]