By Michael C. Hansen and Educational Leaflet No. 9 Revised
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seismic Wavefield Imaging of Earth's Interior Across Scales
TECHNICAL REVIEWS Seismic wavefield imaging of Earth’s interior across scales Jeroen Tromp Abstract | Seismic full- waveform inversion (FWI) for imaging Earth’s interior was introduced in the late 1970s. Its ultimate goal is to use all of the information in a seismogram to understand the structure and dynamics of Earth, such as hydrocarbon reservoirs, the nature of hotspots and the forces behind plate motions and earthquakes. Thanks to developments in high- performance computing and advances in modern numerical methods in the past 10 years, 3D FWI has become feasible for a wide range of applications and is currently used across nine orders of magnitude in frequency and wavelength. A typical FWI workflow includes selecting seismic sources and a starting model, conducting forward simulations, calculating and evaluating the misfit, and optimizing the simulated model until the observed and modelled seismograms converge on a single model. This method has revealed Pleistocene ice scrapes beneath a gas cloud in the Valhall oil field, overthrusted Iberian crust in the western Pyrenees mountains, deep slabs in subduction zones throughout the world and the shape of the African superplume. The increased use of multi- parameter inversions, improved computational and algorithmic efficiency , and the inclusion of Bayesian statistics in the optimization process all stand to substantially improve FWI, overcoming current computational or data- quality constraints. In this Technical Review, FWI methods and applications in controlled- source and earthquake seismology are discussed, followed by a perspective on the future of FWI, which will ultimately result in increased insight into the physics and chemistry of Earth’s interior. -
As Passed by the House 125Th General Assembly Regular Session
As Passed by the House 125th General Assembly Regular Session Am. Sub. S. B. No. 189 2003-2004 Senators Harris, Amstutz, Carey, Armbruster, Austria, Coughlin, DiDonato, Mallory, Spada, Wachtmann, Zurz, Padgett, Miller, Robert Gardner, Mumper Representatives Calvert, D. Evans, Flowers, Peterson A B I L L To amend sections 9.24, 102.02, 123.01, 123.10, 1 124.15, 124.152, 124.181, 124.183, 124.382, 2 126.32, 152.09, 175.21, 1503.05, 3311.059, 3 3327.01, 3334.01, 3383.09, 3701.881, 3712.09, 4 3734.02, 3734.18, 3734.57, 3769.021, 3769.087, 5 3770.07, 3781.19, 4701.03, 4707.05, 4723.431, 6 4758.20, 4758.40, 4758.41, 4758.42, 4758.55, 7 4758.56, 4758.57, 4758.58, 4758.59, 4758.61, 8 5101.27, 5110.35, 5111.022, 5111.87, 5119.18, 9 5123.352, 5731.47, 5731.48, and 6301.03 and to 10 repeal sections 152.101 and 901.85 of the Revised 11 Code and to amend Section 11.04 of Am. Sub. H.B. 12 87 of the 125th General Assembly, as subsequently 13 amended; to amend Sections 8.04, 12, 38.12, 41.06, 14 41.13, 55, 59, 59.29, 66, 89, 89.04, 89.05, 89.08, 15 89.11, and 145 of Am. Sub. H.B. 95 of the 125th 16 General Assembly; and to amend Section 41.33 of 17 Am. Sub. H.B. 95 of the 125th General Assembly to 18 make capital reappropriations for the biennium 19 ending June 30, 2006, to make certain supplemental 20 and capital appropriations, and to provide 21 authorization and conditions for the operation of 22 state programs. -
Chapter 2 the Evolution of Seismic Monitoring Systems at the Hawaiian Volcano Observatory
Characteristics of Hawaiian Volcanoes Editors: Michael P. Poland, Taeko Jane Takahashi, and Claire M. Landowski U.S. Geological Survey Professional Paper 1801, 2014 Chapter 2 The Evolution of Seismic Monitoring Systems at the Hawaiian Volcano Observatory By Paul G. Okubo1, Jennifer S. Nakata1, and Robert Y. Koyanagi1 Abstract the Island of Hawai‘i. Over the past century, thousands of sci- entific reports and articles have been published in connection In the century since the Hawaiian Volcano Observatory with Hawaiian volcanism, and an extensive bibliography has (HVO) put its first seismographs into operation at the edge of accumulated, including numerous discussions of the history of Kīlauea Volcano’s summit caldera, seismic monitoring at HVO HVO and its seismic monitoring operations, as well as research (now administered by the U.S. Geological Survey [USGS]) has results. From among these references, we point to Klein and evolved considerably. The HVO seismic network extends across Koyanagi (1980), Apple (1987), Eaton (1996), and Klein and the entire Island of Hawai‘i and is complemented by stations Wright (2000) for details of the early growth of HVO’s seismic installed and operated by monitoring partners in both the USGS network. In particular, the work of Klein and Wright stands and the National Oceanic and Atmospheric Administration. The out because their compilation uses newspaper accounts and seismic data stream that is available to HVO for its monitoring other reports of the effects of historical earthquakes to extend of volcanic and seismic activity in Hawai‘i, therefore, is built Hawai‘i’s detailed seismic history to nearly a century before from hundreds of data channels from a diverse collection of instrumental monitoring began at HVO. -
Urban Forestry Program
URBAN FORESTRY PROGRAM The Ohio Urban Forestry Program provides leadership and scientific-based information to local communities to build capacity to develop and enhance self-sustaining urban forestry and tree care programs that maximize the environmental, economic, and social benefits trees provide for all Ohio residents. ODNR Division of Forestry’s Urban Foresters directly assist Ohio communities with the: Development of professionally-based resource assessments and management plans. Establishment and training of professional municipal forestry staff. Development and review of tree ordinances and policies. Establishment of new or enhancement of existing advisory organizations. 2015 Ohio Urban Forestry Statistics Total Urban Forestry Assists ............................................................ 492 Total Community Assists ................................................................. 421 Total Communities Assisted ............................................................ 135 Tree City USA Communities ........................................................... 241 Growth Awards .................................................................................. 36 Tree Campus USA ............................................................................. 13 Tree Line USA ..................................................................................... 5 Volunteer Hours .......................................................................... 56,665 Trees Planted ............................................................................. -
PEAT8002 - SEISMOLOGY Lecture 13: Earthquake Magnitudes and Moment
PEAT8002 - SEISMOLOGY Lecture 13: Earthquake magnitudes and moment Nick Rawlinson Research School of Earth Sciences Australian National University Earthquake magnitudes and moment Introduction In the last two lectures, the effects of the source rupture process on the pattern of radiated seismic energy was discussed. However, even before earthquake mechanisms were studied, the priority of seismologists, after locating an earthquake, was to quantify their size, both for scientific purposes and hazard assessment. The first measure introduced was the magnitude, which is based on the amplitude of the emanating waves recorded on a seismogram. The idea is that the wave amplitude reflects the earthquake size once the amplitudes are corrected for the decrease with distance due to geometric spreading and attenuation. Earthquake magnitudes and moment Introduction Magnitude scales thus have the general form: A M = log + F(h, ∆) + C T where A is the amplitude of the signal, T is its dominant period, F is a correction for the variation of amplitude with the earthquake’s depth h and angular distance ∆ from the seismometer, and C is a regional scaling factor. Magnitude scales are logarithmic, so an increase in one unit e.g. from 5 to 6, indicates a ten-fold increase in seismic wave amplitude. Note that since a log10 scale is used, magnitudes can be negative for very small displacements. For example, a magnitude -1 earthquake might correspond to a hammer blow. Earthquake magnitudes and moment Richter magnitude The concept of earthquake magnitude was introduced by Charles Richter in 1935 for southern California earthquakes. He originally defined earthquake magnitude as the logarithm (to the base 10) of maximum amplitude measured in microns on the record of a standard torsion seismograph with a pendulum period of 0.8 s, magnification of 2800, and damping factor 0.8, located at a distance of 100 km from the epicenter. -
Preliminary Isoseismal Map for the Santa Cruz (Loma Prieta), California, Earthquake of October 18,1989 UTC
DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Preliminary isoseismal map for the Santa Cruz (Loma Prieta), California, earthquake of October 18,1989 UTC Open-File Report 90-18 by Carl W. Stover, B. Glen Reagor, Francis W. Baldwin, and Lindie R. Brewer National Earthquake Information Center U.S. Geological Survey Denver, Colorado This report has not been reviewed for conformity with U.S. Geological Survey editorial stan dards and stratigraphic nomenclature. Introduction The Santa Cruz (Loma Prieta) earthquake, occurred on October 18, 1989 UTC (October 17, 1989 PST). This major earthquake was felt over a contiguous land area of approximately 170,000 km2; this includes most of central California and a portion of western Nevada (fig. 1). The hypocen- ter parameters computed by the U.S. Geological Survey (USGS) are: Origin time: 00 04 15.2 UTC Location: 37.036°N., 121.883°W. Depth: 19km Magnitude: 6.6mb,7.1Ms. The University of California, Berkeley assigned the earthquake a local magnitude of 7.0ML. The earthquake caused at least 62 deaths, 3,757 injuries, and over $6 billion in property damage (Plafker and Galloway, 1989). The earthquake was the most damaging in the San Francisco Bay area since April 18,1906. A major arterial traffic link, the double-decked San Francisco-Oakland Bay Bridge, was closed because a single fifty foot span of the upper deck collapsed onto the lower deck. In addition, the approaches to the bridge were damaged in Oakland and in San Francisco. Other se vere earthquake damage was mapped at San Francisco, Oakland, Los Gatos, Santa Cruz, Hollister, Watsonville, Moss Landing, and in the smaller communities in the Santa Cruz Mountains. -
Paper 4: Seismic Methods for Determining Earthquake Source
Paper 4: Seismic methods for determining earthquake source parameters and lithospheric structure WALTER D. MOONEY U.S. Geological Survey, MS 977, 345 Middlefield Road, Menlo Park, California 94025 For referring to this paper: Mooney, W. D., 1989, Seismic methods for determining earthquake source parameters and lithospheric structure, in Pakiser, L. C., and Mooney, W. D., Geophysical framework of the continental United States: Boulder, Colorado, Geological Society of America Memoir 172. ABSTRACT The seismologic methods most commonly used in studies of earthquakes and the structure of the continental lithosphere are reviewed in three main sections: earthquake source parameter determinations, the determination of earth structure using natural sources, and controlled-source seismology. The emphasis in each section is on a description of data, the principles behind the analysis techniques, and the assumptions and uncertainties in interpretation. Rather than focusing on future directions in seismology, the goal here is to summarize past and current practice as a companion to the review papers in this volume. Reliable earthquake hypocenters and focal mechanisms require seismograph locations with a broad distribution in azimuth and distance from the earthquakes; a recording within one focal depth of the epicenter provides excellent hypocentral depth control. For earthquakes of magnitude greater than 4.5, waveform modeling methods may be used to determine source parameters. The seismic moment tensor provides the most complete and accurate measure of earthquake source parameters, and offers a dynamic picture of the faulting process. Methods for determining the Earth's structure from natural sources exist for local, regional, and teleseismic sources. One-dimensional models of structure are obtained from body and surface waves using both forward and inverse modeling. -
A History of British Seismology
Bull Earthquake Eng (2013) 11:715–861 DOI 10.1007/s10518-013-9444-5 ORIGINAL RESEARCH PAPER A history of British seismology R. M. W. Musson Received: 14 March 2013 / Accepted: 21 March 2013 / Published online: 9 May 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com Abstract The work of John Milne, the centenary of whose death is marked in 2013, has had a large impact in the development in global seismology. On his return from Japan to England in 1895, he established for the first time a global earthquake recording network, centred on his observatory at Shide, Isle of Wight. His composite bulletins, the “Shide Circulars” developed, in the twentieth century, into the world earthquake bulletins of the International Seismolog- ical Summary and eventually the International Seismological Centre, which continues to publish the definitive earthquake parameters of world earthquakes on a monthly basis. In fact, seismology has a long tradition in Britain, stretching back to early investigations by members of the Royal Society after 1660. Investigations in Scotland in the early 1840s led to a number of firsts, including the first network of instruments, the first seismic bulletin, and indeed, the first use of the word “seismometer”, from which words like “seismology” are a back-formation. This paper will present a chronological survey of the development of seismology in the British Isles, from the first written observations of local earthquakes in the seventh century, and the first theoretical writing on earthquakes in the twelfth century, up to the monitoring of earthquakes in Britain in the present day. -
Modelling Seismic Wave Propagation for Geophysical Imaging J
Modelling Seismic Wave Propagation for Geophysical Imaging J. Virieux, V. Etienne, V. Cruz-Atienza, R. Brossier, E. Chaljub, O. Coutant, S. Garambois, D. Mercerat, V. Prieux, S. Operto, et al. To cite this version: J. Virieux, V. Etienne, V. Cruz-Atienza, R. Brossier, E. Chaljub, et al.. Modelling Seismic Wave Propagation for Geophysical Imaging. Seismic Waves - Research and Analysis, Masaki Kanao, 253- 304, Chap.13, 2012, 978-953-307-944-8. hal-00682707 HAL Id: hal-00682707 https://hal.archives-ouvertes.fr/hal-00682707 Submitted on 5 Apr 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 130 Modelling Seismic Wave Propagation for Geophysical Imaging Jean Virieux et al.1,* Vincent Etienne et al.2†and Victor Cruz-Atienza et al.3‡ 1ISTerre, Université Joseph Fourier, Grenoble 2GeoAzur, Centre National de la Recherche Scientifique, Institut de Recherche pour le développement 3Instituto de Geofisica, Departamento de Sismologia, Universidad Nacional Autónoma de México 1,2France 3Mexico 1. Introduction − The Earth is an heterogeneous complex media from -
Three New Fundamental Problems in Physics of the Aftershocks
arXiv 2020 Three New Fundamental Problems in Physics of the Aftershocks Anatol V. Guglielmi, Alexey D. Zavyalov, Oleg D. Zotov Institute of Physics of the Earth RAS, Moscow, Russia [email protected], [email protected], [email protected] Abstract Recently, the physics of aftershocks has been enriched by three new problems. We will conditionally call them dynamic, inverse, and morphological problems. They were clearly formulated, partially resolved and are fundamental. Dynamic problem is to search for the cumulative effect of a round-the-world seismic echo appearing after the mainshock of earthquake. According to the theory, a converging surface seismic wave excited by the main shock returns to the epicenter about 3 hours after the main shock and stimulates the excitation of a strong aftershock. Our observations confirm the theoretical expectation. The second problem is an adequate description of the averaged evolution of the aftershock flow. We introduced a new concept about the coefficient of deactivation of the earthquake source, “cooling down” after the main mainshock, and proposed an equation that describes the evolution of aftershocks. Based on the equation of evolution, we posed and solved the inverse problem of the physics of the earthquake source and created an Atlas of aftershocks demonstrating the diversity of variations of the deactivation coefficient. The third task is to model the spatial and spatio-temporal distribution of aftershocks. Its solution refines our understanding of the structure of the earthquake source. We also discuss in detail interesting unsolved problems in the physics of aftershocks. Keywords: round-the-world echo, deactivation coefficient, evolution equation, inverse problem, spatio-temporal distribution of aftershocks 1 1. -
Ore Bin / Oregon Geology Magazine / Journal
The ORE BIN Volume 25, No.4 April, 1963 INVESTIGATIONS OF THE EARTHQUAKE OF NOVEMBER 5, 1962, NORTH OF PORTLAND By P. Dehlingerl, R. G. Bowen2, E. F. Chiburis1, and W. H. Westphal3 Introduction Earthquakes are one of the most destructive of the earth·s natural phenom ena. The larger earthquakes provide the bulk of our information about the interior of the earth, smaller quakes much of the information on nearby crustal and subcrustal structures. Seismograms {recordings} of the November 5, 1962, Portland earthquake and later shocks in the Northwest written at different seismic stations are being analyzed to provide information on these earthquakes and on the local crustal structures in the Northwest. These analyses concern locating earthquake epicenters and determination of their origin times, depths of foci, mechanisms of faulting at the source, and the nature and configuration of the crust and subcrustal material. The Portland earthquake was the largest shock to occur in Oregon since the recent installations of the several new seismic stations in the Pa cific Northwest. Although damage resulting from this shock was minor, as indicated in a preliminary report (Dehlinger and Berg, 1962), the shock is of considerable seismological importance. Because it was large enough to be recorded at the newly installed as well as at many of the older seismic stations, and because its epicentral location was known approximately from the felt area and from on-site recordings of aftershocks, this earthquake has provided the first significant data to be used for constructing travel-time curves for Oregon. The seismograms also provided data for a better under standing of the source mechanism associated with the Portland shock. -
Activity–Seismic Slinky©
Activity–Seismic Slinky© Slinkies prove to be a good tool for modeling the behavior of compressional P waves and shearing S waves. We recommend reading about the behavior of seismic waves and watching the variety of animations below to understand how they travel and how the P, S, and surface waves differ from each other. Science Standards (NGSS; pg. 287) • From Molecules to Organisms—Structures and Processes: MS-LS1-8 Master Teacher Bonnie Magura demonstrates S waves using • Motion and Stability—Forces two metal slinkies taped together. and Interactions: HS-PS2-1, MS-PS2-2 to the taped joint to emphasize the movement directions. • Energy: MS-PS3-1, MS-PS3-2, HS-PS3-2, NOTE that when a metal slinky is taped to a plastic slinky, the P MS-PS3-5 • Waves and Their Applications in boundary due to the change in material response. Technologies for Information Transfer: SEE question 2 on Page 4 on the worksheet for this activity. MS-PS4-1, HS-PS4-1, MS-PS4-2, HS-PS4-5 Resources on this DVD & Internet relevant to Build a Better Wall VIDEOS —Demonstrations using the Slinky© are in the 2. Earthquakes & Tsunamis folder on this DVD: 3. VIDEOS_Earthquake & Tsunami > DEMO_SlinkySeismicWaves_Groom.mov Roger Groom’s class demo: http://www.youtube.com/watch?v=KZaI4MEWdc4 ANIMATIONS —Watch the following groups of animations in the 2. Earthquakes & Tsunamis folder : 2. ANIMATIONS_Earthquake & Tsunami > Seismic Wave Behavior_1station Seismic Wave Behavior-Travel time Seismic Wave Motion-Brailes INTERNET —Other descriptions of this activity: http://www.exo.net/~pauld/summer_institute/summer_day10waves/wavetypes.html