Air Embolism Occurring As a Complication of Central Venous Catheterization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Central Venous Catheters Insertion – Assisting
Policies & Procedures Title:: CENTRAL VENOUS CATHETERS INSERTION – ASSISTING LPN / RN: Entry Level Competency I.D. Number: 1073 Authorization Source: Nursing Cross Index: [] Pharmacy Nursing Committee Date Revised: February 2018 [] MAC Motion #: Date Effective: March, 1997 [x] Former SHtnHR Nursing Practice Scope: SKtnHR Acute Care Committee Any PRINTED version of this document is only accurate up to the date of printing 13-May-19. Saskatoon Health Region (SHR) cannot guarantee the currency or accuracy of any printed policy. Always refer to the Policies and Procedures site for the most current versions of documents in effect. SHR accepts no responsibility for use of this material by any person or organization not associated with SHR. No part of this document may be reproduced in any form for publication without permission of SHR. HIGH ALERT: Central line-associated bloodstream infection (CLABSI) continues to be one of the most deadly and costly hospital-associated infections. – Institute for Healthcare Improvement DEFINITIONS Central Venous Catheter (CVC) - A venous access device whose tip dwells in a great vessel. Central Line Associated Blood Stream Infection (CLABSI)- is a primary blood stream infection (BSI) in a patient that had a central line within the 48-hour period before the development of a BSI and is not bloodstream related to an infection at another site. 1. PURPOSE 1.1 To minimize the risks of central line-associated bloodstream infections and other complications associated with the insertion of central venous catheters. 2. POLICY 2.1 This policy applies to insertion of all central venous catheters (CVCs). 2.2 All licensed staff assisting with the insertion of CVCs will be educated in CVC care and prevention of CLABSI. -
Intubation Through a Laryngeal Mask Airway by Fiberoptic Bronchoscope in an Infant with a Mass at the Base of the Tongue − a Case Report −
대한마취과학회지 2008; 54: S 43~6 □ 영문논문 □ Korean J Anesthesiol Vol. 54, No. 3, March, 2008 Intubation through a Laryngeal Mask Airway by Fiberoptic Bronchoscope in an Infant with a Mass at the Base of the Tongue − A case report − Department of Anesthesiology and Pain Medicine, Anesthesiology and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea Ji Eun Kim, M.D., Chul Ho Chang, M.D., and Yong-Taek Nam, M.D. Failed or difficult tracheal intubation remains an important cause of mortality and morbidity during anesthesia, especially in infants with anatomical or pathological abnormalities of the airway. We report on a 4.1 kg, 85-day-male infant with a thyroglossal duct cyst at the tongue base who could not be conventionally ventilated and intubated in the supine position. The infant was intubated with a 3-mm endotracheal tube through the laryngeal mask airway (LMA) with guidance of a fiberoptic bronchoscope (FOB). However, the pilot balloon did not pass through the 1.5-mm LMA conduit. After cutting the pilot balloon, we removed the LMA and inserted a central venous catheter guide-wire through the endotracheal tube to increase the endotracheal tube to 3.5 mm. This maneuver allowed us to secure the airway without further problems. (Korean J Anesthesiol 2008; 54: S 43~6) Key Words: fiberoptic bronchoscope, infant, intubation, laryngeal mask airway, thyroglossal duct cyst. Failed or difficult tracheal intubation is an important cause conventional laryngoscopy.8) of mortality and morbidity during anesthesia.1-3) Difficulties are In the present report, we describe the successful intubation more frequent in pediatric patients because of their anatomical with LMA and FOB under the aid of central venous catheter variations.4) Tracheal intubation of infants with various anato- guide wire in a 4.1 kg, 85-day-male infant, who could not be mical and pathological abnormalities of the airway can be a conventionally ventilated and intubated. -
Brachium and Cubital Fossa
Anatomy Guy Dissection Sheet 1/15/2012 Brachium and Cubital Fossa Dr. Craig Goodmurphy Anatomy Guy Major Dissection Objectives – Anterior Compartment 1. Maintain the superficial veins but work the fascia of the brachium off the anterior compartment noting the intermuscular septae 2. Clean and identify the three muscle of the anterior arm and their attachments 3. Mobilize the contents of the brachial fascia as it extends from the axillary fascia to the elbow noting the median, ulnar and medial brachial and medial antebrachial cutaneous nerves 4. Follow the musculocutaneous nerve as it passes through the coracobrachialis and between the biceps and brachialis noting motor branches and the lateral antebrachial cutaneous nerve Major Dissection Objectives – Cubital Fossa & Posterior Compartment 6. Mobilize the cubital fossa veins and review the boundaries 7. Clean the biceps tendon and reflect the aponeurosis 8. Locate the contents of the fossa including the bifurcation of the brachial artery, median nerve and floor muscles 9. Have a partner elevate the arm to dissect posteriorly and remove the skin and fascia 10. Locate the three heads of the triceps and their attachments 11. Locate the profunda brachii artery and radial nerve at the triangular interval and between the brachialis and brachioradialis muscles Eastern Virginia Medical School 1 Anatomy Guy Dissection Sheet 1/15/2012 Brachium and Cubital Fossa Pearls & Problems Don’t 1. Cut the biceps muscle just mobilize it Do 2. Follow the cords and tubes from known to unknown as you clean them Do 3. Remove the duplicated deep veins but save the unpaired superficial veins Do 4. -
Elbow Checklist
Workbook Musculoskeletal Ultrasound September 26, 2013 Shoulder Checklist Long biceps tendon Patient position: Facing the examiner Shoulder in slight medial rotation; elbow in flexion and supination Plane/ region: Transverse (axial): from a) intraarticular portion to b) myotendinous junction (at level of the pectoralis major tendon). What you will see: Long head of the biceps tendon Supraspinatus tendon Transverse humeral ligament Subscapularis tendon Lesser tuberosity Greater tuberosity Short head of the biceps Long head of the biceps (musculotendinous junction) Humeral shaft Pectoralis major tendon Plane/ region: Logitudinal (sagittal): What you will see: Long head of biceps; fibrillar structure Lesser tuberosity Long head of the biceps tendon Notes: Subscapularis muscle and tendon Patient position: Facing the examiner Shoulder in lateral rotation; elbow in flexion/ supination Plane/ region: longitudinal (axial): full vertical width of tendon. What you will see: Subscapularis muscle, tendon, and insertion Supraspinatus tendon Coracoid process Deltoid Greater tuberosity Lesser tuberosity Notes: Do passive medial/ lateral rotation while examining Plane/ region: Transverse (sagittal): What you will see: Lesser tuberosity Fascicles of subscapularis tendon Supraspinatus tendon Patient position: Lateral to examiner Shoulder in extension and medial rotation Hand on ipsilateral buttock Plane/ region: Longitudinal (oblique sagittal) Identify the intra-articular portion of biceps LH in the transverse plane; then -
The Square Flap Technique for Burn Contractures: Clinical Experience and Analysis of Length Gain
Annals of Burns and Fire Disasters - vol. XXXI - n. 4 - December 2018 THE SQUARE FLAP TECHNIQUE FOR BURN CONTRACTURES: CLINICAL EXPERIENCE AND ANALYSIS OF LENGTH GAIN DOUBLE LAMBEAU RHOMBOÏDE POUR BRIDE SÉQUELLAIRE DE BRÛ- LURE: EXPÉRIENCE PRATIQUE ET ANALYSE DE LA LONGUEUR GAGNÉE Hifny M.A. Department of Plastic Surgery, Faculty of Medicine, Qena University Hospital, South Valley University, Egypt SUMMARY. Post-burn contractures, affecting the joints especially, are demanding problems. Many surgical techniques have been designated for burn contracture release. The aim of this study is to investigate the efficiency of the square flap technique to release a post-burn scar contracture, and assess the post-operative length gain that can be achieved by simple mathematical calculation. In this study, sixteen patients with linear contracture bands were treated with the square flap tech- nique. The anatomical distribution of the contractures was: axilla, cubital fossa, flank, perineum and popliteal fossa. Scar maturity ranged from 4 months - 9 years. Square flap width and contracture band length before and immediately after surgery were recorded by simple mathematical calculation. Flap complication was assessed. Patient satisfaction was also assessed during the follow-up period. All square flaps were effective in lengthening the contracture bands. The length of the contracture that was released ranged from 2 to 6 cm. The gain in length provided with this technique ranged from 212 to 350%, average 247%, and adequate contracture release was achieved in all cases postoperatively. All square flaps healed uneventfully except for one (6%), which demonstrated limited epidermolysis that healed by secondary intention. The fol- low-up interval ranged from 6 months to 1.5 years. -
The Nurses Group Poster Session
THE NURSES GROUP POSTER SESSION NP001 This abstract outlines the development and testing of an Family members’ experiences of different caring education program for family carers of individuals about to organizations during allogeneic hematopoietic stem cells undergo BMT. The project aimed to increase carer confidence transplantation - A qualitative interview study in supporting newly discharged blood and marrow transplant K. Bergkvist1,*, J. Larsen2, U.-B. Johansson1, J. Mattsson3, (BMT) recipients through an interactive education program. B. Fossum1 Method: Evaluation methodology was used to examine the 1 2 impact on carer confidence. Brief questionnaires to assess level Sophiahemmet University, Red Cross University College, fi 3Oncology and Pathology, Karolinska Institutet, Stockholm, of con dence were implemented pre- and post- each session; fi Sweden questions were speci c to the content of that session. Following completion of the program an overall evaluation Introduction: Home care after allogeneic hematopoietic stem survey was also completed. The education sessions were developed drawing on evidence from literature, unit specific cell transplantation (HSCT) has been an option for over ’ 15 years. Earlier studies have shown that home care is safe practice guidelines and the team s expertise. Carers of and has medical advantages. Because of the complex and individuals who were about to receive, or currently receiving intensive nature of the HSCT, most patients require a family BMT, were invited to attend the education program. member to assist them with their daily living. Today, there is a Completing the evaluation was not a program requirement. limited knowledge about family members’ experiences in Results: Up to 14 carers attended each session. -
ADOPTED REGULATION of the STATE BOARD of NURSING LCB File No. R122-01 Effective December 14, 2001 AUTHORITY: §§1-7, 13 And
ADOPTED REGULATION OF THE STATE BOARD OF NURSING LCB File No. R122-01 Effective December 14, 2001 EXPLANATION – Matter in italics is new; matter in brackets [omitted material] is material to be omitted. AUTHORITY: §§1-7, 13 and 14, NRS 632.120; §§8-12, NRS 632.120 and 632.237. Section 1. Chapter 632 of NAC is hereby amended by adding thereto a new section to read as follows: “Physician assistant” means a person who is licensed as a physician assistant by the board of medical examiners pursuant to chapter 630 of NRS. Sec. 2. NAC 632.010 is hereby amended to read as follows: 632.010 As used in this chapter, unless the context otherwise requires, the words and terms defined in NAC 632.015 to 632.101, inclusive, and section 1 of this regulation have the meanings ascribed to them in those sections. Sec. 3. NAC 632.071 is hereby amended to read as follows: 632.071 “Prescription” means authorization to administer medications or treatments issued by an advanced practitioner of nursing, a licensed physician, a licensed physician assistant, a licensed dentist or a licensed podiatric physician in the form of a written or oral order, a policy or procedure of a facility or a written protocol developed by the prescribing practitioner. Sec. 4. NAC 632.220 is hereby amended to read as follows: 632.220 1. A registered nurse shall perform or supervise: --1-- Adopted Regulation R122-01 (a) The verification of an order given for the care of a patient to ensure that it is appropriate and properly authorized and that there are no documented contraindications in carrying out the order; (b) Any act necessary to understand the purpose and effect of medications and treatments and to ensure the competence of the person to whom the administration of medications is delegated; and (c) The initiation of intravenous therapy and the administration of intravenous medication. -
Unusual Cubital Fossa Anatomy – Case Report
Anatomy Journal of Africa 2 (1): 80-83 (2013) Case Report UNUSUAL CUBITAL FOSSA ANATOMY – CASE REPORT Surekha D Shetty, Satheesha Nayak B, Naveen Kumar, Anitha Guru. Correspondence: Dr. Satheesha Nayak B, Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal University, Madhav Nagar, Manipal, Karnataka State, India. 576104 Email: [email protected] SUMMARY The median nerve is known to show variations in its origin, course, relations and distribution. But in almost all cases it passes through the cubital fossa. We saw a cubital fossa without a median nerve. The median nerve had a normal course in the upper part of front of the arm but in the distal third of the arm it passed in front of the medial epicondyle of humerus, surrounded by fleshy fibres of pronator teres muscle. Its course and distribution in the forearm was normal. In the same limb, the fleshy fibres of the brachialis muscle directly continued into the forearm as brachioradialis, there being no fibrous septum separating the two muscles from each other. The close relationship of the nerve to the epicondyle might make it vulnerable in the fractures of the epicondyle. The muscle fibres surrounding the nerve might pull up on the nerve and result in altered sensory-motor functions of the hand. Since the brachialis and brachioradialis are two muscles supplied by two different nerves, this continuity of the muscles might result in compression/entrapment of the radial nerve in it. Key words: Median nerve, cubital fossa, brachialis, brachioradialis, entrapment INTRODUCTION The median nerve is the main content of and broad tendon which is inserted into the cubital fossa along with brachial artery and ulnar tuberosity and to a rough surface on the biceps brachii tendon. -
DEPARTMENT of ANATOMY IGMC SHIMLA Competency Based Under
DEPARTMENT OF ANATOMY IGMC SHIMLA Competency Based Under Graduate Curriculum - 2019 Number COMPETENCY Objective The student should be able to At the end of the session student should know AN1.1 Demonstrate normal anatomical position, various a) Define and demonstrate various positions and planes planes, relation, comparison, laterality & b) Anatomical terms used for lower trunk, limbs, joint movement in our body movements, bony features, blood vessels, nerves, fascia, muscles and clinical anatomy AN1.2 Describe composition of bone and bone marrow a) Various classifications of bones b) Structure of bone AN2.1 Describe parts, blood and nerve supply of a long bone a) Parts of young bone b) Types of epiphysis c) Blood supply of bone d) Nerve supply of bone AN2.2 Enumerate laws of ossification a) Development and ossification of bones with laws of ossification b) Medico legal and anthropological aspects of bones AN2.3 Enumerate special features of a sesamoid bone a) Enumerate various sesamoid bones with their features and functions AN2.4 Describe various types of cartilage with its structure & a) Differences between bones and cartilage distribution in body b) Characteristics features of cartilage c) Types of cartilage and their distribution in body AN2.5 Describe various joints with subtypes and examples a) Various classification of joints b) Features and different types of fibrous joints with examples c) Features of primary and secondary cartilaginous joints d) Different types of synovial joints e) Structure and function of typical synovial -
Parts of the Body 1) Head – Caput, Capitus 2) Skull- Cranium Cephalic- Toward the Skull Caudal- Toward the Tail Rostral- Toward the Nose 3) Collum (Pl
BIO 3330 Advanced Human Cadaver Anatomy Instructor: Dr. Jeff Simpson Department of Biology Metropolitan State College of Denver 1 PARTS OF THE BODY 1) HEAD – CAPUT, CAPITUS 2) SKULL- CRANIUM CEPHALIC- TOWARD THE SKULL CAUDAL- TOWARD THE TAIL ROSTRAL- TOWARD THE NOSE 3) COLLUM (PL. COLLI), CERVIX 4) TRUNK- THORAX, CHEST 5) ABDOMEN- AREA BETWEEN THE DIAPHRAGM AND THE HIP BONES 6) PELVIS- AREA BETWEEN OS COXAS EXTREMITIES -UPPER 1) SHOULDER GIRDLE - SCAPULA, CLAVICLE 2) BRACHIUM - ARM 3) ANTEBRACHIUM -FOREARM 4) CUBITAL FOSSA 6) METACARPALS 7) PHALANGES 2 Lower Extremities Pelvis Os Coxae (2) Inominant Bones Sacrum Coccyx Terms of Position and Direction Anatomical Position Body Erect, head, eyes and toes facing forward. Limbs at side, palms facing forward Anterior-ventral Posterior-dorsal Superficial Deep Internal/external Vertical & horizontal- refer to the body in the standing position Lateral/ medial Superior/inferior Ipsilateral Contralateral Planes of the Body Median-cuts the body into left and right halves Sagittal- parallel to median Frontal (Coronal)- divides the body into front and back halves 3 Horizontal(transverse)- cuts the body into upper and lower portions Positions of the Body Proximal Distal Limbs Radial Ulnar Tibial Fibular Foot Dorsum Plantar Hallicus HAND Dorsum- back of hand Palmar (volar)- palm side Pollicus Index finger Middle finger Ring finger Pinky finger TERMS OF MOVEMENT 1) FLEXION: DECREASE ANGLE BETWEEN TWO BONES OF A JOINT 2) EXTENSION: INCREASE ANGLE BETWEEN TWO BONES OF A JOINT 3) ADDUCTION: TOWARDS MIDLINE -
Comprehensive Review of the Superficial Veins of the Forearm from a Historical, Anatomical and Clinical Point of View
IJAE Vol. 124, n. 2: 142-152, 2019 ITALIAN JOURNAL OF ANATOMY AND EMBRYOLOGY Circulatory system Comprehensive review of the superficial veins of the forearm from a historical, anatomical and clinical point of view Lucas Alves Sarmento Pires1,2,*, Albino Fonseca Junior1,2, Jorge Henrique Martins Manaia1,2, Tulio Fabiano Oliveira Leite3, Marcio Antonio Babinski1,2, Carlos Alberto Araujo Chagas2 1 Medical Sciences Post Graduation Program, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil 2 Morphology Department, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil 3 Interventional Radiology Unit, Radiology Institute, University of São Paulo Medical School, São Paulo, Brazil Abstract The superficial veins of the forearm are prone to possess different patterns of anastomosis. This is highly significant, as venipunctures in the upper limb are among the most performed procedures in the world and they often rely on the veins of the cubital fossa. In addition, the relationship of these veins to the cutaneous nerves are also prone to vary and are often uncer- tain. These veins are also manipulated in the creation of arteriovenous fistula for dialisis, which remains as the best choice of treatment for renal failure patients. Such fistulas are often per- formed on the wrist or the cubital fossa, with the cephalic vein or basilic vein. It is known that anatomical variations of the vessels and nerves on the cubital fossa may induce the profession- als to error, and one of the most common complications of venipuncture are accidental nerve puncture, which can lead to paresthesia and pain. We aim to perform a comprehensive review of the venous arrangements of the cubital fossa and their clinical aspects, as well as of veni- puncture from a historical perspective and of the complications of venipuncture and arterio- venous fistula from an anatomical point of view, with the purpose of compiling available data and help healthcare professionals to reduce puncture errors or arteriovenous fistula complica- tions and improve patient care. -
Minimising Iatrogenic Nerve Injury in Primary Care
Clinical Intelligence Katharine A Wallis, Thomas Hills and S Ali Mirjalili Minimising iatrogenic nerve injury in primary care Nerve injuries usually present as pain, NERVE ANATOMICAL COURSE numbness, or weakness, and can have Sciatic nerve in the gluteal region devastating consequences for patients. Sciatic nerve injury in the buttock may Procedures that are common in primary result in numbness, and weakness of the care can cause nerve injury. Iatrogenic hamstrings and all muscles below the nerve injuries are largely preventable by knee. The upper outer quadrant of the understanding nerve anatomical course buttock (dorsogluteal region) remains and surface anatomy, and the risky one of the most common sites for interventions and regions. Most knowledge intramuscular injection worldwide.2 Recent of nerve anatomical course is derived cross-sectional imaging studies in living from early work on cadaver dissection, adults and children have led to a revision of but modern imaging techniques more the surface anatomy of the sciatic nerve.3 accurately map nerve anatomical course This evidence suggests that the safe zone in living bodies. for injection is not the upper outer buttock We provide an overview of nerve injuries but the gluteal triangle (ventrogluteal in primary care, discuss updated nerve region). The gluteal triangle is located by anatomical course and surface anatomy placing the palm of the opposing hand on based on modern radiological evidence, the greater trochanter and the index finger and make recommendations to guide safer on the anterior superior iliac spine, forming interventions in primary care. a triangle with the middle finger pointing towards the iliac crest, as demonstrated NERVE INJURIES IN PRIMARY CARE in Figure 1.3 The recommended injection In New Zealand’s primary care treatment site is the centre of the triangle with the injury claims dataset there were 69 nerve needle inserted at 90° to the skin surface.