And Redox-Driven Artificial Molecular Motors

Total Page:16

File Type:pdf, Size:1020Kb

And Redox-Driven Artificial Molecular Motors This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Review Cite This: Chem. Rev. 2020, 120, 200−268 pubs.acs.org/CR Photo- and Redox-Driven Artificial Molecular Motors Massimo Baroncini,*,†,‡ Serena Silvi,*,†,§ and Alberto Credi*,†,‡ † CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, via Gobetti 101, 40129 Bologna, Italy ‡ Dipartimento di Scienze e Tecnologie Agro-alimentari, Universitàdi Bologna, viale Fanin 44, 40127 Bologna, Italy § Dipartimento di Chimica “G. Ciamician”, Universitàdi Bologna, via Selmi 2, 40126 Bologna, Italy ABSTRACT: Directed motion at the nanoscale is a central attribute of life, and chemically driven motor proteins are nature’s choice to accomplish it. Motivated and inspired by such bionanodevices, in the past few decades chemists have developed artificial prototypes of molecular motors, namely, multicomponent synthetic species that exhibit directionally controlled, stimuli-induced movements of their parts. In this context, photonic and redox stimuli represent highly appealing modes of activation, particularly from a technological viewpoint. Here we describe the evolution of the field of photo- and redox-driven artificial molecular motors, and we provide a comprehensive review of the work published in the past 5 years. After an analysis of the general principles that govern controlled and directed movement at the molecular scale, we describe the fundamental photochemical and redox processes that can enable its realization. The main classes of light- and redox-driven molecular motors are illustrated, with a particular focus on recent designs, and a thorough description of the functions performed by these kinds of devices according to literature reports is presented. Limitations, challenges, and future perspectives of the field are critically discussed. CONTENTS 5. From Movements to Functions 237 5.1. Control of Chemical and Physical Properties 238 1. Introduction 201 fi 5.1.1. Transfer of Chirality 238 1.1. Terms and De nitions 201 5.1.2. Catalytic Properties 240 1.2. Directional Motion in Molecular Systems 202 5.1.3. Biological Functions 241 1.2.1. Energy Ratchet 202 5.2. Transmission of Directed Motion within 1.2.2. Information Ratchet 204 Molecular Systems 243 1.3. Energy Supply and Autonomous Behavior 205 5.3. Locomotion at the Nanoscale 246 1.3.1. Chemical Stimulation 205 5.3.1. Molecular Swimmers 246 1.3.2. Electrical Stimulation 207 5.3.2. Surface-Roving Nanovehicles 247 1.3.3. Optical Stimulation 207 5.4. Controlled Transport of Molecular Cargos 248 2. Redox-Driven Motors 209 5.4.1. Systems Based on Linear Molecular 2.1. General Considerations 209 Switches 248 2.2. Useful Redox Processes 210 5.4.2. Systems Based on Rotary Molecular 2.3. Supramolecular Pumps 210 Switches 249 2.4. Molecular Rotary Motors 213 5.5. Amplification of Motion by Collective Strat- 3. Photochemically Driven Motors 216 egies 250 3.1. General Considerations 216 5.5.1. Doped Liquid Crystals 251 3.2. Useful Photoinduced Processes 216 5.5.2. Self-Assembled Systems 252 3.3. Supramolecular Pumps 221 5.5.3. Systems with Covalently Linked Molec- 3.4. Molecular Walkers 222 ular Motor Units 254 3.5. Catenane Rotary Motors 224 6. Conclusions and Outlook 255 3.6. Molecular Rotary Motors 226 Author Information 257 3.6.1. Overcrowded Alkenes 226 Corresponding Authors 257 3.6.2. Hemithioindigos 232 ORCID 257 3.6.3. Imines 233 Notes 257 3.6.4. Other Systems 235 3.7. Photochemically Triggered Chemically Driv- en Motors 235 Special Issue: Molecular Motors 4. Motors with Combined Photo- and Redox Activation 237 Received: May 9, 2019 Published: August 15, 2019 © 2019 American Chemical Society 200 DOI: 10.1021/acs.chemrev.9b00291 Chem. Rev. 2020, 120, 200−268 Chemical Reviews Review Biographies 257 Nevertheless, the construction and operation of systems with Acknowledgments 257 a level of structural and functional sophistication close to that of References 257 natural molecular motors is still a prohibitive task. What chemists have been doing is making simple prototypes consisting of a few molecular components that can move relative to one another in a controllable way and tackling the 1. INTRODUCTION challenging problems posed by the interfacing of such devices Living organisms are equipped with a myriad of complex with the macroscopic world in terms of energy supply, molecular assemblies, called motor proteins, that work inside information exchange, and in more recent years, the task cells for ordinary needs like machines in a manufacturing performed. The many remarkable achievements in this area have − 24−41 plant.1 4 Scientific progress in the past decades has shown that been evidenced in several reviews (including some focused 42−46 47−54 these extremely small motors are in fact the most useful on redox-driven and light-driven systems), themed 55−58 59−61 62−65 machines for humankind, because they are tasked with executing issues, edited books, and monographs. The crucial processes for life. The most important and best known scientific value of molecular machines was highlighted by the motor proteins are those of the myosin5 and kinesin6 families, award of the 2016 Nobel Prize in Chemistry to Jean-Pierre ATP synthase,7 and the bacterial flagellar motor.8 Myosin and Sauvage,66 Fraser Stoddart,67 and Ben Feringa68 well before kinesin are linear motors powered by a chemical reaction these systems could impact significantly on people’s lives.69 namely, the hydrolysis of adenosine triphosphate (ATP)and Clearly, besides the relevance for fundamental science, the are responsible for, among other functions, contraction and Nobel Committee recognized the huge potential of molecular relaxation of muscles and transport of cargos around the cell, machines for major progress in several areas of technology and respectively. ATP synthase and the bacterial flagellum are rotary medicine, with ground-breaking applications limited only by motors, both driven by transmembrane proton gradients, whose imagination.70 functions are manufacturing of ATP in all organisms and This review will cover the progress achieved in the past 5 years locomotion in some classes of bacteria, respectively. Another in the area of molecular motors operated by redox and/or remarkable example is DNA polymerase, which moves along photochemical processes. Molecular motors are a subcategory of DNA while performing transcriptions.9,10 Several other key molecular machines (see section 1.1 for definitions). In order to biological processes, such as protein folding and unfolding,11 are provide a complete and meaningful representation of this rapidly − driven by molecular motors.1 4 Surely, these biomolecular growing area, studies prior to 2014 that are particularly mechanical devices provide a compelling demonstration of the significant for historical, tutorial, or scientific reasons or are feasibility and utility of nanotechnology and constitute a sound still the sole examples of a given type of device will also be scientific basis for attempting the construction of wholly artificial included. We will focus on systems in which the motor function machines that operate at the molecular scale. is inherent either to the individual molecule or, in the case of Although the latter idea was proposed for the first time by supramolecular complexes, to a minimal number of molecular Richard Feynman in his landmark 1959 talk,12 only in the past components. Therefore, materials and devices whose motorlike three decades has the progress in several areas of chemistry behavior is determined by the collective action of molecular primarily, the tremendous development of new synthetic, switches (which are not motors) and/or rectification features analytical, and computational tools to make and investigate arising from the anisotropy of the material or its environment complex molecular assembliesenabled its practical realization. will not be considered here. Interested readers can refer to recent − − In the 1980s, research in supramolecular chemistry triggered the articles71 82 and reviews83 91 on redox- and photoinduced creativity of the chemical community, and the possibility that the mechanical actuation and propulsion in nanostructured systems concepts of macroscopic device and machine, typical of and materials. engineering, could be transferred to the molecular level started 1.1. Terms and Definitions to arise.13,14 Specifically, it was proposed that molecules could be used as building blocks to construct nanoscale devices and As discussed in the previous section, the macroscopic concepts machines by a bottom-up approach.15 In the following years, as a of device and machine can be transferred to the molecular level. result of the rapid growth of supramolecular chemistry16 A molecular device is defined as an assembly of a discrete particularly in its broader meaning of the chemistry of number of molecular components designed to execute a 15,16 multicomponent speciesand mastering of the mechanical predetermined task. While each part performs a single act, bond between molecules,17,18 it became clear that the molecular the multicomponent (supramolecular) assembly can achieve a bottom-up approach offers virtually unlimited possibilities for more complex function that results from the cooperation of the the realization of nanoscale machines. Single-molecule micros- molecular components and is therefore inaccessible to them copies have provided direct observations of molecules as individually. A machine is a device characterized by the use of nanoscale objects endowed with size and shape that can move, mechanical power, i.e., controlled motion;92 analogously, a interact, and react. Indeed, the visualization by fluorescence molecular machine is a type of molecular device in which the microscopy of the rotation of a single molecular filament driven components can be set in motion relative to one another in a 19 by an F1-ATP synthase motor was not only a remarkable controlled manner, resulting in the potential ability to carry out a research achievement but also an exciting moment for function.36,38,62,63 nanoscientists.
Recommended publications
  • Volume 74, No. 4, October 2010
    Inside Volume 74, No.4, October 2010 Articles and Features 129 Rotaxanes as Molecular Machines – The Work of Professor David Leigh Anthea Blackburn 136 Hydrated Complexes in Earth’s Atmosphere Anna L. Garden and Henrik G. Kjaergaard 141 Healthy Harbour Watchers: Community-Based Water Quality Monitoring and Chemistry Education in Dunedin Andrew Innes, Steven A. Rusak, Barrie M. Peake and David S. Warren 145 Hot Chemistry from Horopito Nigel B. Perry and Kevin S. Gould 149 Jan Romuald Zdysiewicz, FRACI (1943–2010) Jennifer M. Bennett and Donald W. Cameron 150 Earthquakes and Chemistry Anthea Lees Other Columns 122 NZIC October News 157 Grants and Awards 151 Patent Proze 158 IYC 2011 152 ChemScrapes 159 Subject Index 2010 153 Dates of Note 160 Author Index 2010 156 Conference Calendar Advertisers Inside front cover Thermo Fisher Scientific Editorial 135 NZIC Annual General Meeting Inside back cover Pacifichem Back cover NZ Scientific On the Cover Horopito leaves from http://en.wikipedia.org/wiki/File:Pseudowinteracolorata.jpg – see P 145 121 Chemistry in New Zealand October 2010 New Zealand Institute of Chemistry supporting chemical sciences October News NZIC News Comment from the President and ICY 2011 It is now just a few months until the end of the 2010 – ships with groups such as and that means the start of the 2011 International Year of teachers (both high school Chemistry. I am pleased to report that the major NZIC and primary) and, in my events have been planned and a programme of events for experience, NZIC needs the year written. These will all have been discussed by to demonstrate how it can Council at its September 3 meeting when this is in press.
    [Show full text]
  • Azulene Chemistry
    Azulene Chemistry What follows is a summary of the synthesis reactions related to Azulene, its generation and its derivatives based on the references I was able to review. I hope that this summary will be of help to those who might be interested in this subject. Nozoe, T., Seto, S., & Matsumura, S. (1962). Synthesis of 2-substituted azulenes by nucleophilic substitution reactions of 2-haloazulene derivatives. Bulletin of the Chemical Society of Japan, 35(12), 1990-1998. Nozoe, T., Takase, K., & Tada, M. (1965). The Anionoid Substitution Reaction of Diethyl 6-Bromoazulene-1, 3- dicarboxylate. Bulletin of the Chemical Society of Japan, 38(2), 247-251. Tada, M. (1966). The Anionoid Substitution Reaction of Diethyl 2-Acetamido-6-bromoazulene-1, 3-dicarboxylate. Bulletin of the Chemical Society of Japan, 39(9), 1954-1961. Saito, M., Morita, T., & Takase, K. (1980). Synthesis of 2-Formylazulene and Its Derivatives by Oxidative Cleavage of 2-Styrylazulenes. Bulletin of the Chemical Society of Japan, 53(12), 3696-3700. Asao, T., & Ito, S. (1996). Synthesis and Properties of Novel Azulenic π-Electronic Compounds. Journal of Synthetic Organic Chemistry, Japan, 54(1), 2-14. Kurotobi, K., Tabata, H., Miyauchi, M., Mustafizur, R. A., Migita, K., Murafuji, T., ... & Fujimori, K. (2003). The first generation of azulenyl-lithium and-magnesium: A novel, versatile method of introducing a substituent at the 2- position of an azulene skeleton. Synthesis, 1(01), 0030-0034. Crombie, A. L., Kane, J. L., Shea, K. M., & Danheiser, R. L. (2004). Ring expansion-annulation strategy for the synthesis of substituted azulenes and oligoazulenes. 2. Synthesis of azulenyl halides, sulfonates, and azulenylmetal compounds and their application in transition-metal-mediated coupling reactions.
    [Show full text]
  • Design, Synthesis, Photochemical and Biological Evaluation of Novel Photoactive Molecular Switches
    TESIS DOCTORAL Título Design, Synthesis, Photochemical and Biological Evaluation of Novel Photoactive Molecular Switches Autor/es David Martínez López Director/es Diego Sampedro Ruiz y Pedro José Campos García Facultad Facultad de Ciencia y Tecnología Titulación Departamento Química Curso Académico Design, Synthesis, Photochemical and Biological Evaluation of Novel Photoactive Molecular Switches, tesis doctoral de David Martínez López, dirigida por Diego Sampedro Ruiz y Pedro José Campos García (publicada por la Universidad de La Rioja), se difunde bajo una Licencia Creative Commons Reconocimiento-NoComercial- SinObraDerivada 3.0 Unported. ̉ Permisos que vayan más allá de lo cubierto por esta licencia pueden solicitarse a los titulares del copyright. © El autor © Universidad de La Rioja, Servicio de Publicaciones, 2019 publicaciones.unirioja.es E-mail: [email protected] Facultad de Ciencia y Tecnología Departamento de Química Área de Química Orgánica Grupo de Fotoquímica Orgánica TESIS DOCTORAL DESIGN, SYNTHESIS, PHOTOCHEMICAL AND BIOLOGICAL EVALUATION OF NOVEL PHOTOACTIVE MOLECULAR SWITCHES Memoria presentada en la Universidad de La Rioja para optar al grado de Doctor en Química por: David Martínez López Junio 2019 Facultad de Ciencia y Tecnología Departamento de Química Área de Química Orgánica Grupo de Fotoquímica Orgánica D. DIEGO SAMPEDRO RUIZ, Profesor Titular de Química Orgánica del Departamento de Química de la Universidad de La Rioja, y D. PEDRO JOSÉ CAMPOS GARCÍA, Catedrático de Química Orgánica del Departamento de Química de la Universidad de La Rioja. CERTIFICAN: Que la presente memoria, titulada “Design, synthesis, photochemical and biological evaluation of novel photoactive molecular switches”, ha sido realizada en el Departamento de Química de La Universidad de La Rioja bajo su dirección por el Licenciado en Química D.
    [Show full text]
  • Annual Progress Report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998
    Ris0-R-1O99(EN) DK9900089 Annual Progress Report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998 Edited by K. Bechgaard, K.N. Clausen, R. Feidenhans'l and I. Johannsen Ris0 National Laboratory, Roskilde, Denmark April 1999 30-31 Ris0-R-1O99(EN) Annual Progress Report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998 Edited by K. Bechgaard, K.N. Clausen, R. Feidenhans'l and I. Johannsen Ris0 National Laboratory, Roskilde, Denmark April 1999 Abstract The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. The readers are invited to contact the department or the authors of the individual contributions for more detailed information than can be given in this report. The postal address is: Condensed Matter Physics and Chemistry Department, Ris0 National Laboratory. P.O. Box 49, DK-4000 Roskilde, Denmark. E-mail addresses may be found on the last page of this report.
    [Show full text]
  • Π‐Extended Diaza[7]Helicenes by Hybridization of Naphthalene
    Full Paper Chemistry—A European Journal doi.org/10.1002/chem.202003402 & Organic chemistry |HotPaper| p-Extended Diaza[7]helicenes by Hybridization of Naphthalene Diimides and Hexa-peri-hexabenzocoronenes Carolin Dusold,[a] Dmitry I. Sharapa,[b] Frank Hampel,[a] and Andreas Hirsch*[a] Abstract: The synthesis of an unprecedented, p-extended mation of the diaza[7]helicene moiety in the final Scholl oxi- hexabenzocorene (HBC)-based diaza[7]helicene is presented. dation is favoured, affording the symmetric p-extended heli- The target compound was synthesized by an ortho-fusion of cene as the major product as apair of enantiomers. The sep- two naphthalene diimide (NDI) units to aHBC-skeleton. A aration of the enantiomers was successfully accomplished combination of Diels–Alder and Scholl-type oxidation reac- by HPLC involving achiral stationary phase. The absolute tions involving asymmetric di-NDI-tolane precursor were configuration of the enantiomers was assigned by compari- crucial for the very selectiveformation of the helical super- son of circular dichroismspectrawith quantum mechanical structure via ahexaphenyl-benzene (HPB) derivative. The for- calculations. Introduction can notably tune optical, electronical and supramolecular properties.[10] Elongation of the spiral arrangementofthe con- The development of nonplanar PAHs is currently an emerging jugated p-systemrepresents the most common way to pre- field in synthetic organic chemistry.[1] Among the most impor- pare higher helicene derivatives.[11] In contrasttothat, the ex- tant
    [Show full text]
  • Anti‐Aromatic Versus Induced Paratropicity ... -.:. Michael Pittelkow
    Angewandte Forschungsartikel Chemie Deutsche Ausgabe:DOI:10.1002/ange.201913552 Circulenes Internationale Ausgabe:DOI:10.1002/anie.201913552 Anti-Aromatic versus Induced Paratropicity:Synthesis and InterrogationofaDihydro-diazatrioxa[9]circulene with aProton Placed Directly above the Central Ring Stephan K. Pedersen, Kristina Eriksen, Nataliya N. Karaush-Karmazin, Boris Minaev, Hans gren, Gleb V. Baryshnikov* und Michael Pittelkow* Abstract: We present ahigh-yielding intramolecular oxidative coupling within adiazadioxa[10]helicene to give adihydro- diazatrioxa[9]circulene.This is the first [n]circulene contain- ing more than eight ortho-annulated rings (n > 8). The single- crystal X-raystructure reveals atight columnar packing, with aproton from apendant naphthalene moiety centred directly abovethe central nine-membered ring. This distinct environ- ment induces asignificant magnetic deshielding effect on that particular proton as determined by 1HNMR spectroscopy. The origin of the deshielding effect was investigated computation- ally in terms of the NICS values.Itisestablished that the deshielding effect originates from an induced paratropic ring current from the seven aromatic rings of the [9]circulene structure,and is not due to the nine-membered ring being antiaromatic.UV/Vis spectroscopyreveals more efficient Figure 1. Simplified illustration of the influence of diatropic and para- conjugation in the prepared diazatrioxa[9]circulene compared tropic ring currents on the 1Hchemical shift inside and outside of to the parent helical azaoxa[10]helicenes,and
    [Show full text]
  • How Molecules Became Machines
    THE NOBEL PRIZE IN CHEMISTRY 2016 POPULAR SCIENCE BACKGROUND How molecules became machines The Nobel Prize in Chemistry 2016 is awarded to Jean-Pierre Sauvage, Sir J. Fraser Stoddart and Bernard L. Feringa for their development of molecular machines that are a thousand times thinner than a hair strand. This is the story of how they succeeded in linking molecules together to design everything from a tiny lift to motors and miniscule muscles. How small can you make machinery? This is the question that Nobel Laureate Richard Feynman, famed for his 1950s’ predictions of developments in nanotechnology, posed at the start of a visionary lecture in 1984. Barefoot, and wearing a pink polo top and beige shorts, he turned to the audience and said: “Now let us talk about the possibility of making machines with movable parts, which are very tiny.” He was convinced it was possible to build machines with dimensions on the nanometre scale. These already existed in nature. He gave bacterial flagella as an example, corkscrew-shaped macromole- cules which, when they spin, make bacteria move forward. But could humans – with their gigantic hands – build machines so small that you would need an electron microscope to see them? A vision of the future – molecular machines will exist within 25–30 years One possible way would be to build a pair of mechanical hands that are smaller than your own, which in turn build a pair of smaller hands, which build even smaller hands, and so on, until a pair of miniscule hands can build equally miniscule machinery.
    [Show full text]
  • Design and Fabrication of Moto Autor
    A. John Joseph Clinton Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 5, Issue 1( Part 4), January 2015, pp.07-16 RESEARCH ARTICLE OPEN ACCESS Design and Fabrication of Moto Autor A. John Joseph Clinton*, P. Rajkumar** *(Department of Mechanical Engineering, Chandy College of Engineering, Affliated to Anna University- Chennai, Tuticorin-05) ** (Department of Mechanical Engineering, Chandy College of Engineering,Affliated to Anna University- Chennai, Tuticorin-05) ABSTRACT This project is based on the need for the unconventional motor. This work will be another addition in the unconventional revolution. Our project is mainly composed of design and fabrication of the ―MOTO AUTOR‖ which is a replacement of conventional motors in many applications of it. This motoautor can run on its own without any traditional input for fuelling it except for the initiation where permanent magnets has to be installed at first. It is a perpetual motion system that can energize itself by taking up the free energy present in the nature itself. This project enables to motorize systems with very minimal expenditure of energy. Keywords–Perpetual motion, Free energy conversion, Unconventional motor, Magnetic principles, Self- energizing I. INTRODUCTION Perhaps the first electric motors were In normal motoring mode, most electric motors simple electrostatic devices created by the Scottish operate through the interaction between an electric monk Andrew Gordon in the 1740s. The theoretical motor's magnetic field and winding currents to principle behind production of mechanical force by generate force within the motor. In certain the interactions of an electric current and a magnetic applications, such as in the transportation industry field, Ampère's force law, was discovered later with traction motors, electric motors can operate in by André-Marie Ampère in 1820.
    [Show full text]
  • [7]Helicene to a Planar Hetero[8]Circulene Bodil Lousen,[A] Stephan K
    Communication Chemistry—A European Journal doi.org/10.1002/chem.201905339 & Non-Planar Aromatics Compressing aNon-Planar Aromatic Heterocyclic [7]Helicene to a Planar Hetero[8]Circulene Bodil Lousen,[a] Stephan K. Pedersen,[a] Pernille Bols,[a] Kasper H. Hansen,[a] MichelleR.Pedersen,[a] Ole Hammerich,[a] Sergey Bondarchuk,[b] Boris Minaev,[b] Glib V. Baryshnikov,[c] Hans gren,[c, d] and MichaelPittelkow*[a] cally chiral moleculeshave found vast applications in such di- Abstract: This work describes asyntheticapproachwhere verse fields as molecular recognition,catalysis anddetection or anon-planar aromatic heterocyclic [7]helicene is com- emissionofcircularlypolarized light.[2–5] Structurally related pressedtoyield ahetero[8]circulene containing an inner motifstothe [n]helicenes are the [n]circulenes. These struc- antiaromatic cyclooctatetraene (COT) core. This [8]circu- tures also consist of ortho-annulatedaromatic rings, but in- lene consists of four benzene rings and four heterocyclic stead forms acyclic structure, having acentral ring with n rings, and it is the first heterocyclic[8]circulenecontaining sides.Itisillustrative to view the all-benzene series of [n]circu- three differentheteroatoms. The synthetic pathway pro- lenes,which consistsofthe bowl-shaped carba[5]circulene ceeds via athe flattened dehydro-hetero[7]helicene, (corannulene), the planar carba[6]circulene(coronene) andthe which is partially ahelicene and partially acirculene:itis saddle-shaped[7]- and [8]circulenes. Hetero[8]circulenes incor- non-planar and helically chiral as helicenes, and contains a poratingfour five-membered heterocycles(furans,pyrroles, COT motif like [8]circulenes. The antiaromaticity of the thiophenes)are planar,[6,7] and these structures can be viewed COT core is confirmed by nucleusindependent chemical as containingantiaromaticcyclooctatetraene(COT) cores.
    [Show full text]
  • The Manual of Free Energy Devices and Systems
    THE MANUAL OF FREE ENERGY DEVICES AND SYSTEMS THIS MANUAL FULLY DESCRIBES THE VARIOUS PIONEERING PROTOTYPE "FREE ENERGY" POWER PRO- JECTS BEING DEVELOPED AND EVOLVED IN THIS MAJOR NEW AREA OF APPLIED PHYSICS. THE MANUAL IS DIVIDED INTO FOURTEEN TYPES OF SPECIFIC PROJECTS IN BOTH ROTATING AND SOLID STATE UNITS, AND HYBRIDS, WITH SOME TYPES SUB- DIVIDED INTO OTHER SUBCLASSES, AS NOTED IN THE ENCLOSED TABLE OF CONTENT. CONTRARY TO THE OUTMODED OPINION OF MANY WELL ESTABLISHED PHYSICISTS, THESE VARIOUS UNITS AND SYSTEMS ARE HERE AND NOW EVENTS WHICH WILL CON- TINUE TO BE IMPROVED UPON UNTIL A "NEW WAVE" OF APPLIED ENERGY PHYSICS IS IN PLACE, AND THE OLD BELIEFS AND VIEWS FALL BY THE WAYSIDE! Copyright © 1986 General Content & Format, other Copyrights, as noted ISBN 0-932298-59-5 1st Printing 1986 ELECTRODYNE CORPORATION Clearwater, FL, 33516 2nd Printing 1987 3rd Printing 1991 - Published by CADAKE INDUSTRIES & TRI-STATE PRESS P.O. Box 1866 Clayton, Georgia 30525 THE SECRETS OF FREE ENERGY The subject of free energy and perpetual motion has received much undue criticism and misrepresentation over the past years. If we consider the entire picture, all motion is perpetual! Motion and energy may disperse or transform, but will always remain in a perpetually energized state within the complete system. Consider the "free energy" hydro-electric plants. Water from a lake powers generators and flows on down the river. The lake though is constantly replenished by springs, run-off, etc. Essentially, the sun is responsible for keeping this system "perpetual." The sun may burn out but the total energy-mass remains constant within the cycling univer- sal system.
    [Show full text]
  • Molecular Machines Operated by Light
    Cent. Eur. J. Chem. • 6(3) • 2008 • 325–339 DOI: 10.2478/s11532-008-0033-4 Central European Journal of Chemistry Molecular machines operated by light Invited Review Alberto Credi*, Margherita Venturi Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2 – 40126 Bologna, Italy Received 11 February 2008; Accepted 22 Arpil 2008 Abstract: The bottom-up construction and operation of machines and motors of molecular size is a topic of great interest in nanoscience, and a fascinating challenge of nanotechnology. Researchers in this field are stimulated and inspired by the outstanding progress of mo- lecular biology that has begun to reveal the secrets of the natural nanomachines which constitute the material base of life. Like their macroscopic counterparts, nanoscale machines need energy to operate. Most molecular motors of the biological world are fueled by chemical reactions, but research in the last fifteen years has demonstrated that light energy can be used to power nanomachines by exploiting photochemical processes in appropriately designed artificial systems. As a matter of fact, light excitation exhibits several advantages with regard to the operation of the machine, and can also be used to monitor its state through spectroscopic methods. In this review we will illustrate the design principles at the basis of photochemically driven molecular machines, and we will describe a few examples based on rotaxane-type structures investigated in our laboratories. Keywords: Molecular device • Nanoscience • Photochemistry • Rotaxane • Supramolecular Chemistry © Versita Warsaw and Springer-Verlag Berlin Heidelberg. 1. Introduction Richard Feynman stated in his famous talk in 1959 [4]. Research on supramolecular chemistry has shown that molecules are convenient nanometer-scale building The development of civilization has always been strictly blocks that can be used, in a bottom-up approach, related to the design and construction of devices – to construct ultraminiaturized devices and machines from wheel to jet engine – capable of facilitating man [5].
    [Show full text]
  • Switched Reluctance Generator
    Wind Turbine Generator for Distributed Wind Systems Distributed Wind Energy Association— Electrical Systems Subgroup Meeting Eduard Muljadi March 25–26, 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Types of WTGs Type 1—Fixed Speed Type 2—Variable Slip Type 3—Variable Speed Type 4—Full Power Conversion 2 Distributed Wind Turbine Progress Then (1980s) Now (2015) Technical Technical • Single-speed or dual-speed induction • Variable-speed operation (DFIG—Type 3 generator (fixed speed—Type 1) or PMSG—Type 4) • PM alternator with SCR base (harmonics, • IGBT Si-based (800 V–1 kV), currently slow operation, line commutated) SiC-based (10—15 kV) • Aerodynamic control was primitive, mostly • Aerodynamic control (yaw, electro- mechanical (furling/tilting—horizontal or mechanical servo-based), pitch control vertical), pitch control—relatively new, • Modern control allows optimization in mostly stall control design, control, and energy capture Cost Cost • PE had low power rating, slow switching, and • PE is relatively cheap—e.g., Siemens was very expensive chose exclusively Type 4 WTGs • PM was ferrite (B = 0.3 Tesla), large and • Rare earth PM (B = 1.4 Tesla), small, light heavy machines machines • Primitive control systems may lead to large • Modern control allows optimization of mechanical-based system size and dimension of the WTG • LCOE was heavily taxed by the CAPEX and • LCOE (CAPEX and OPEX) has dropped OPEX significantly
    [Show full text]