Generalizations of Dyson’s Rank on Overpartitions Alice X.H. Zhao College of Science Tianjin University of Technology, Tianjin 300384, P.R. China
[email protected] Abstract. We introduce a statistic on overpartitions called the k-rank. When there are no overlined parts, this coincides with the k-rank of a partition introduced by Garvan. Moreover, it reduces to the D-rank of an overpartition when k = 2. The generating function for the k-rank of overpartitions is given. We also establish a relation between the generating function of self-3-conjugate overpartitions and the tenth order mock theta functions X(q) and χ(q). Keywords: Dyson’s rank, partitions, overpartitions, mock theta functions. AMS Classifications: 11P81, 05A17, 33D15 1 Introduction Dyson’s rank of a partition is defined to be the largest part minus the number of parts [8]. In 1944, Dyson conjectured that this partition statistic provided combinatorial interpre- tations of Ramanujan’s congruences p(5n + 4) ≡ 0 (mod 5) and p(7n + 5) ≡ 0 (mod 7), where p(n) is the number of partitions of n. Let N(m, n) denote the number of partitions of n with rank m. He also found the following generating function of N(m, n) [8, eq. arXiv:2108.08639v1 [math.CO] 19 Aug 2021 (22)]: ∞ 1 ∞ N(m, n)qn = (−1)n−1qn(3n−1)/2+|m|n(1 − qn). (1.1) (q; q) n=0 ∞ n=1 X X Here and in the sequel, we use the standard notation of q-series: ∞ (a; q) (a; q) := (1 − aqn), (a; q) := ∞ , ∞ n (aqn; q) n=0 ∞ Y j(z; q) := (z; q)∞(q/z; q)∞(q; q)∞.