Statistics.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Statistics.Pdf SCHAUM'S OUTLINE OF TheoryandProblemsof STATISTICS This page intentionally left blank SCHAUM'S OUTLINE OF TheoryandProblemsof STATISTICS Fourth Edition . MURRAY R. SPIEGEL, Ph.D. Former Professor and Chairman Mathematics Department, Rensselaer Polytechnic Institute Hartford Graduate Center LARRY J. STEPHENS, Ph.D. Full Professor Mathematics Department University of Nebraska at Omaha . Schaum’s Outline Series McGRAW-HILL New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2008, 1999, 1988, 1961 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-159446-9 The material in this eBook also appears in the print version of this title: 0-07-148584-8. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms. THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise. DOI: 10.1036/0071485848 Professional Want to learn more? We hope you enjoy this McGraw-Hill eBook! If you’d like more information about this book, its author, or related books and websites, please click here. To the memory of my Mother and Father, Rosie and Johnie Stephens L.J.S. This page intentionally left blank This fourth edition, completed in 2007, contains new examples, 130 new figures, and output from five computer software packages representative of the hundreds or perhaps thousands of computer software packages that are available for use in statistics. All figures in the third edition are replaced by new and sometimes different figures created by the five software packages: EXCEL, MINITAB, SAS, SPSS, and STATISTIX. My examples were greatly influenced by USA Today as I put the book together. This newspaper is a great source of current uses and examples in statistics. Other changes in the book include the following. Chapter 18 on the analyses of time series was removed and Chapter 19 on statistical process control and process capability is now Chapter 18. The answers to the supplementary problems at the end of each chapter are given in more detail. More discussion and use of p-values is included throughout the book. ACKNOWLEDGMENTS As the statistical software plays such an important role in the book, I would like to thank the following people and companies for the right to use their software. MINITAB: Ms. Laura Brown, Coordinator of the Author Assistance Program, Minitab Inc., 1829 Pine Hall Road, State College, PA 16801. I am a member of the author assistance program that Minitab sponsors. ‘‘Portions of the input and output contained in this publication/book are printed with the permission of Minitab Inc. All material remains the exclusive property and copyright of Minitab Inc. All rights reserved.’’ The web address for Minitab is www.minitab.com. SAS: Ms. Sandy Varner, Marketing Operations Manager, SAS Publishing, Cary, NC. ‘‘Created with SAS software. Copyright 2006. SAS Institute Inc., Cary, NC, USA. All rights reserved. Reproduced with permission of SAS Institute Inc., Cary, NC.’’ I quote from the Website: ‘‘SAS is the leader in business intelligence software and services. Over its 30 years, SAS has grown – from seven employees to nearly 10,000 worldwide, from a few customer sites to more than 40,000 – and has been profitable every year.’’ The web address for SAS is www.sas.com. SPSS: Ms. Jill Rietema, Account Manager, Publications, SPSS. I quote from the Website: ‘‘SPSS Inc. is a leading worldwide provider of predictive analytics software and solutions. Founded in 1968, today SPSS has more than 250,000 customers worldwide, served by more than 1200 employees in 60 countries.’’ The Web address for SPSS is www.spss.com. STATISTIX: Dr. Gerard Nimis, President, Analytical Software, P.O. Box 12185, Tallahassee, FL 32317. I quote from the Website: ‘‘If you have data to analyze, but you’re a researcher, not a statistician, Statistix is designed for you. You’ll be up and running in minutes-without programming or using a manual. This easy to learn and simple to use software saves you valuable time and money. Statistix combines all the basic and advanced statistics and powerful data manipulation tools you need in a single, inexpensive package.’’ The Web address for STATISTIX is www.statistix.com. EXCEL: Microsoft Excel has been around since 1985. It is available to almost all college students. It is widely used in this book. vii Copyright © 2008, 1999, 1988, 1961 by The McGraw-Hill Companies, Inc. Click here for terms of use. viii PREFACE TO THE FOURTH EDITION I wish to thank Stanley Wileman for the computer advice that he so unselfishly gave to me during the writing of the book. I wish to thank my wife, Lana, for her understanding while I was often day dreaming and thinking about the best way to present some concept. Thanks to Chuck Wall, Senior Acquisitions Editor, and his staff at McGraw-Hill. Finally, I would like to thank Jeremy Toynbee, project manager at Keyword Publishing Services Ltd., London, England, and John Omiston, freelance copy editor, for their fine production work. I invite comments and questions about the book at [email protected]. LARRY J. STEPHENS In preparing this third edition of Schaum’s Outline of Statistics, I have replaced dated problems with problems that reflect the technological and sociological changes that have occurred since the first edition was published in 1961. One problem in the second edition dealt with the lifetimes of radio tubes, for example. Since most people under 30 probably do not know what radio tubes are, this problem, as well as many other problems, have been replaced by problems involving current topics such as health care issues, AIDS, the Internet, cellular phones, and so forth. The mathematical and statistical aspects have not changed, but the areas of application and the computational aspects of statistics have changed. Another important improvement is the introduction of statistical software into the text. The devel- opment of statistical software packages such as SAS, SPSS, and MINITAB has dramatically changed the application of statistics to real-world problems. One of the most widely used statistical packages in academia as well as in industrial settings is the package called MINITAB (Minitab Inc., 1829 Pine Hall Road, State College, PA 16801). I would like to thank Minitab Inc. for granting me permission to include Minitab output throughout the text. Many modern statistical textbooks include computer software output as part of the text. I have chosen to include Minitab because it is widely used and is very friendly. Once a student learns the various data file structures needed to use MINITAB, and the structure of the commands and subcommands, this knowledge is readily transferable to other statistical software. With the introduction of pull-down menus and dialog boxes, the software has been made even friendlier. I include both commands and pull-down menus in the Minitab discussions in the text.
Recommended publications
  • STATISTICS APPLIED to PSYCHOLOGY I – Code 800146 Academic Year 2020-21
    STATISTICS APPLIED TO PSYCHOLOGY I – Code 800146 Academic Year 2020-21 COURSE INFORMATION Undergraduate Studies: 0812 – Bachelor’s degree in Psychology (Studies Plan 2009-10) Type: Basic (compulsory) ECTS: 6.0 Module: Basic training Area: Statistics Year: First Semester: 1 LECTURER INFORMATION Name: Rocío Alcalá Quintana, PhD Mail: [email protected] Office number: 2121-O Office hours (fall semester): Tuesdays and Thursdays, from 15.30 to 18.00. SYNOPSIS COMPETENCIES General competencies GC6: Know and understand research methods and data analysis techniques. Transversal competencies TC1: Analysis and synthesis. TC2: Preparation and defence of properly reasoned arguments. TC3: Problem solving and decision making in Psychology. TC5: Looking for information and data interpretation on social, scientific and ethical topics related to the field of Psychology. TC6: Team work and collaboration with other professionals TC7: Critical thinking and self- analysis. TC8: Learning how to learn, skills for life-long learning. Specific competencies SC17: Be able to measure and obtain relevant data for the evaluation of interventions. SC18: Know how to analyse and interpret results of evaluations. SC19: Know how to appropriately and accurately provide feedback to recipients. TEACHING ACTIVITIES TEACHING ACTIVITIES Hours % of total Attendance credits Theory classes 45 30 % 100% Practical sessions 15 10 % 100% Students' work 82.5 55 % 0% Assessment 7.5 5 % 100% BRIEF DESCRIPTION: Basic concepts of measurement and types of variables. Introduction to Statistics. Data summarization and visualization. Measures of central tendency, variability, and skewness. Measures of association. Introduction to probability theory. Probability distributions of some continuous and discrete random variables. Sampling. PRE-REQUISITES Basic proficiency in secondary school maths is required to follow the course adequately.
    [Show full text]
  • Simple Mean Weighted Mean Or Harmonic Mean
    MultiplyMultiply oror Divide?Divide? AA BestBest PracticePractice forfor FactorFactor AnalysisAnalysis 77 ––10 10 JuneJune 20112011 Dr.Dr. ShuShu-Ping-Ping HuHu AlfredAlfred SmithSmith CCEACCEA Los Angeles Washington, D.C. Boston Chantilly Huntsville Dayton Santa Barbara Albuquerque Colorado Springs Ft. Meade Ft. Monmouth Goddard Space Flight Center Ogden Patuxent River Silver Spring Washington Navy Yard Cleveland Dahlgren Denver Johnson Space Center Montgomery New Orleans Oklahoma City Tampa Tacoma Vandenberg AFB Warner Robins ALC Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com PRT-70, 01 Apr 2011 ObjectivesObjectives It is common to estimate hours as a simple factor of a technical parameter such as weight, aperture, power or source lines of code (SLOC), i.e., hours = a*TechParameter z “Software development hours = a * SLOC” is used as an example z Concept is applicable to any factor cost estimating relationship (CER) Our objective is to address how to best estimate “a” z Multiply SLOC by Hour/SLOC or Divide SLOC by SLOC/Hour? z Simple, weighted, or harmonic mean? z Role of regression analysis z Base uncertainty on the prediction interval rather than just the range Our goal is to provide analysts a better understanding of choices available and how to select the right approach Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com PR-70, 01 Apr 2011 Approved for Public Release 2 of 25 OutlineOutline Definitions
    [Show full text]
  • Math 234: Course Syllabus – Spring 2013
    Math 234: Course Syllabus – Spring 2013 Course logistics: Time and Location: Tuesday & Thursday 3:30pm – 4:45pm, 251 Mercer St., CIWW 517 Instructor: Michael O’Neil Email: [email protected] Phone: 212-992-5874 Office: Room 1105A, Warren Weaver Hall Office hours: Thursday 11:00am – 1:00pm Course website: See NYU Classes Recitation time: Friday 2:00pm – 3:15pm, 25 W. 4th St., C-8 Teaching assistant: Alex RoZinov Email: [email protected] Course information: Description: This course is intended as a thorough mathematical introduction to the theory of statistics, intended to be taken after sufficiency in probability is obtained at the level of Math 233: Theory of Probability. Topics covered in this class will include: sampling theory, hypothesis testing, point (parameter) estimation, regression and linear least squares, the bootstrap, tests of significance, likelihood methods, and an intro to Bayesian statistics. The course will mainly focus on analytical approaches, but will contain computational aspects of statistics such as simulation, least squares, tests of significance, etc. Text: Mandatory, homework problems will be assigned from it: Bulmer, Principles of Statistics Suggested references: Rice, Mathematical Statistics and Data Analysis Wasserman, All of Statistics Casella & Berger, Statistical Inference (graduate level) Schaum’s Outline of Statistics Grading: The grade for the course will be determined based on weekly homework assignments, a midterm, and a final exam. The following rubric will be used: Homework 30% Midterm 30% Final 40% The lowest homework grade will be dropped. Homework is due at the beginning of class on the due date; in the interest of fairness, absolutely no late assignments will be accepted.
    [Show full text]
  • IN STATISTICS Under Choice Based Credit System (CBCS)
    SYLLABUS FOR B.SC. (HONOURS) IN STATISTICS Under Choice Based Credit System (CBCS) Effective from 2017-2018 The University of Burdwan Burdwan-713104 West Bengal 1 Outlines of Course Structures The main components of this syllabus are as follows: 1. Core Course 2. Elective Course 3. Ability Enhancement Course 1. Core Course (CC) A course, that should compulsorily be studied by a candidate as a core requirement, is termed as a core course. 2. Elective Course 2.1 Discipline Specific Elective (DSE) Course: A course, which may be offered by the main discipline/subject of study, is referred to as Discipline Specific Elective. 2.2 Generic Elective (GE) Course: An elective course, chosen generally from an unrelated discipline/subject of study with intention to seek an exposure, is called a Generic Elective Course. 3. Ability Enhancement Course (AEC) The Ability Enhancement Course may be of two kinds: 3.1 Ability Enhancement Compulsory Course (AECC) 3.2 Skill Enhancement Course (SEC) Details of Courses of B.Sc. (Honours) under CBCS Course Credit Marks 1 Core Course (14 papers) Theory + Theory +Tutorial 14×75= 1050 Practical 14× (5+1)=84 14×(4+2)=84 2 Elective Course (8 Papers) A. DSE 4×(4+2)=24 4×(5+1)=24 4´75= 300 (4 Papers) B. GE 4×(4+2)=24 4×(5+1)=24 4´75= 300 (4 Papers) 3 Ability Enhancement Course A. AECC (2 Papers) AECC1 (ENVS) 4×1=4 4×1=4 100 AECC2 (English/MIL) 2×1=2 2×1=2 50 B. SEC (2 Papers) 2×2=4 2×2=4 2´50= 100 Total Credit : 142 142 Total Marks = 1900 2 Semester wise Course Structures Semester Course Course Name of the Course Pattern
    [Show full text]
  • Hydraulics Manual Glossary G - 3
    Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B.
    [Show full text]
  • 2010 Amazon 100 Bestsellers in Applied Mathematics November 12, 2010 10:30 AM
    2010 Amazon 100 Bestsellers in Applied Mathematics November 12, 2010 10:30 AM. 1. Freakonomics Rev Ed: (and Other Riddles of Modern Life) Steven D. Levitt, Stephen J. Dubner HC? [Kindle] 2. The Calculus Diaries: How Math Can Help You Lose Weight, Win in Vegas, and Survive a Zombie Apocalypse by Jennifer Ouellette 3. How to Measure Anything: Finding the Value of Intangibles in Business by Douglas W. Hubbard 4. The Visual Display of Quantitative Information, 2nd edition by Edward R. Tufte 5. Secrets of Mental Math: The Mathemagician's Guide to Lightning Calculation and Amazing Math Tricks by Arthur Benjamin, Michael Shermer 6. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches by John W. Creswell 7. How to Lie with Statistics by Darrell Huff 8. Secrets of Mental Math: The Mathemagician's Guide to Lightning Calculation and Amazing Math Tricks Michael Shermer [Kindle] 9. Cartoon Guide to Statistics by Larry Gonick, Woollcott Smith 10. Statistics for Dummies by Deborah Rumsey 11. Discovering Statistics Using SPSS (Introducing Statistical Methods) by Andy Field 12. Fooled by Randomness: The Hidden Role of Chance in Life and in the Markets by Nassim Nicholas Taleb 13. Freakonomics Rev Ed: (and Other Riddles of Modern Life) Steven D. Levitt, Stephen J. Dubner PB? [Kindle] 14. The Drunkard's Walk: How Randomness Rules Our Lives (Vintage) by Leonard Mlodinow 15. Fooled by Randomness: The Hidden Role of Chance in Life and in the Markets by Nassim Nicholas Taleb [Kindle] 16. Envisioning Information by Edward R. Tufte 17. Now You See It: Simple Visualization Techniques for Quantitative Analysis by Stephen Few 18.
    [Show full text]
  • Download Schaum's Outline of Statistics and Econometrics
    NEW CUSTOMER? START HERE. Schaum's Outline of Statistics and Econometrics, Second Edition, Dominick Salvatore, Derrick Reagle, McGraw-Hill Education, 2011, 0071755470, 9780071755474, 336 pages. The ideal review for your statistics and econometrics course More than 40 million students have trusted Schaum’s Outlines for their expert knowledge and helpful solved problems. Written by renowned experts in their respective fields, Schaum’s Outlines cover everything from math to science, nursing to language. The main feature for all these books is the solved problems. Step-by-step, authors walk readers through coming up with solutions to exercises in their topic of choice. Clear, concise explanations of all statistics and econometrics concepts Appropriate for the following courses: Statistics and Econometrics, Statistical Methods in Economics, Quantitative Methods in Economics, Mathematical Economics, Micro-Economics, Macro-Economics, Math for Economists, Math for Social Sciences . DOWNLOAD PDF HERE International economics , Dominick Salvatore, Jan 15, 1998, , 766 pages. Posodobljena in vsebinsko razširjena šesta izdaja svetovne uspešnice s področja mednarodnega gospodarstva vključuje mnoga nova poglavja, študije primerov, najnovejše podatke in .... Microeconomics Theory and Applications, Dominick Salvatore, 2003, Business & Economics, 724 pages. "This fully-revised text provides robust coverage of intermediate microeconomics within a global context. Building on the success of previous editions, the text presents a .... Schaum's Outline of Structural Steel Design , Abraham Rokach, 1991, Technology & Engineering, 187 pages. A revision guide for students of structural engineering aiming to provide a succinct description of the key features of structural steel design using LRFD. Among topics .... Statistical estimation of simultaneous economic relationships , Anirudh Lal Nagar, 1959, Business & Economics, 96 pages.
    [Show full text]
  • Notes on Calculating Computer Performance
    Notes on Calculating Computer Performance Bruce Jacob and Trevor Mudge Advanced Computer Architecture Lab EECS Department, University of Michigan {blj,tnm}@umich.edu Abstract This report explains what it means to characterize the performance of a computer, and which methods are appro- priate and inappropriate for the task. The most widely used metric is the performance on the SPEC benchmark suite of programs; currently, the results of running the SPEC benchmark suite are compiled into a single number using the geometric mean. The primary reason for using the geometric mean is that it preserves values across normalization, but unfortunately, it does not preserve total run time, which is probably the figure of greatest interest when performances are being compared. Cycles per Instruction (CPI) is another widely used metric, but this method is invalid, even if comparing machines with identical clock speeds. Comparing CPI values to judge performance falls prey to the same prob- lems as averaging normalized values. In general, normalized values must not be averaged and instead of the geometric mean, either the harmonic or the arithmetic mean is the appropriate method for averaging a set running times. The arithmetic mean should be used to average times, and the harmonic mean should be used to average rates (1/time). A number of published SPECmarks are recomputed using these means to demonstrate the effect of choosing a favorable algorithm. 1.0 Performance and the Use of Means We want to summarize the performance of a computer; the easiest way uses a single number that can be compared against the numbers of other machines.
    [Show full text]
  • STATISTICS APPLIED to PSYCHOLOGY I – Code 800146 Academic Year 2018-19
    STATISTICS APPLIED TO PSYCHOLOGY I – Code 800146 Academic Year 2018-19 COURSE INFORMATION Undergraduate Studies: 0812 – Bachelor’s degree in Psychology (Studies Plan 2009-10) Type: Basic (compulsory) ECTS: 6.0 Module: Basic training Area: Statistics Year: First Semester: 1 LECTURER INFORMATION Name: Rocío Alcalá Quintana, PhD Mail: [email protected] Office number: 2121-O Office hours (fall semester): Tuesdays and Thursdays, from 15.30 to 18.00. SYNOPSIS COMPETENCIES General competencies GC6: Know and understand research methods and data analysis techniques. Transversal competencies TC1: Analysis and synthesis. TC2: Preparation and defence of properly reasoned arguments. TC3: Problem solving and decision making in Psychology. TC5: Looking for information and data interpretation on social, scientific and ethical topics related to the field of Psychology. TC6: Team work and collaboration with other professionals TC7: Critical thinking and self- analysis. TC8: Learning how to learn, skills for life-long learning. Specific competencies SC17: Be able to measure and obtain relevant data for the evaluation of interventions. SC18: Know how to analyse and interpret results of evaluations. SC19: Know how to appropriately and accurately provide feedback to recipients. TEACHING ACTIVITIES TEACHING ACTIVITIES Hours % of total Attendance credits Theory classes 45 30 % 100% Practical sessions 15 10 % 100% Students' work 82.5 55 % 0% Assessment 7.5 5 % 100% BRIEF DESCRIPTION: Basic concepts of measurement and types of variables. Introduction to Statistics. Data summarization and visualization. Measures of central tendency, variability, and skewness. Measures of association. Introduction to probability theory. Probability distributions of some continuous and discrete random variables. Sampling. PRE-REQUISITES Basic proficiency in secondary school maths is required to follow the course adequately.
    [Show full text]
  • Cross-Sectional Skewness
    Cross-sectional Skewness Sangmin Oh∗ Jessica A. Wachtery June 18, 2019 Abstract This paper evaluates skewness in the cross-section of stock returns in light of pre- dictions from a well-known class of models. Cross-sectional skewness in monthly returns far exceeds what the standard lognormal model of returns would predict. In spite of the fact that cross-sectional skewness is positive, aggregate market skewness is negative. We present a model that accounts for both of these facts. This model also exhibits long-horizon skewness through the mechanism of nonstationary firm shares. ∗Booth School of Business, The University of Chicago. Email: [email protected] yThe Wharton School, University of Pennsylvania. Email: [email protected]. We thank Hendrik Bessembinder, John Campbell, Marco Grotteria, Nishad Kapadia, Yapai Zhang, and seminar participants at the Wharton School for helpful comments. 1 Introduction Underlying the cross-section of stock returns is a universe of heterogeneous entities com- monly referred to as firms. What is the most useful approach to modeling these firms? For the aggregate market, there is a wide consensus concerning the form a model needs to take to be a plausible account of the data. While there are important differences, quantitatively successful models tend to feature a stochastic discount factor with station- ary growth rates and permanent shocks, combined with aggregate cash flows that, too, have stationary growth rates and permanent shocks.1 No such consensus exists for the cross-section. We start with a simple model for stock returns to illustrate the puzzle. The model is not meant to be the final word on the cross-section, but rather to show that the most straightforward way to extend the consensus for the aggregate to the cross-section runs quickly into difficulties both with regard to data and to theory.
    [Show full text]
  • Math 140 Introductory Statistics
    Notation Population Sample Sampling Math 140 Distribution Introductory Statistics µ µ Mean x x Standard Professor Bernardo Ábrego Deviation σ s σ x Lecture 16 Sections 7.1,7.2 Size N n Properties of The Sampling Example 1 Distribution of The Sample Mean The mean µ x of the sampling distribution of x equals the mean of the population µ: Problems usually involve a combination of the µx = µ three properties of the Sampling Distribution of the Sample Mean, together with what we The standard deviation σ x of the sampling distribution of x , also called the standard error of the mean, equals the standard learned about the normal distribution. deviation of the population σ divided by the square root of the sample size n: σ Example: Average Number of Children σ x = n What is the probability that a random sample The Shape of the sampling distribution will be approximately of 20 families in the United States will have normal if the population is approximately normal; for other populations, the sampling distribution becomes more normal as an average of 1.5 children or fewer? n increases. This property is called the Central Limit Theorem. 1 Example 1 Example 1 Example: Average Number Number of Children Proportion of families, P(x) of Children (per family), x µx = µ = 0.873 What is the probability that a 0 0.524 random sample of 20 1 0.201 σ 1.095 σx = = = 0.2448 families in the United States 2 0.179 n 20 will have an average of 1.5 3 0.070 children or fewer? 4 or more 0.026 Mean (of population) 0.6 µ = 0.873 0.5 0.4 Standard Deviation 0.3 σ =1.095 0.2 0.1 0.873 0 01234 Example 1 Example 2 µ = µ = 0.873 Find z-score of the value 1.5 Example: Reasonably Likely Averages x x − mean z = = What average numbers of children are σ 1.095 SD σ = = = 0.2448 reasonably likely in a random sample of 20 x x − µ 1.5 − 0.873 n 20 = x = families? σx 0.2448 ≈ 2.56 Recall that the values that are in the middle normalcdf(−99999,2.56) ≈ .9947 95% of a random distribution are called So in a random sample of 20 Reasonably Likely.
    [Show full text]
  • 4.1 What Is an Average? Example
    STAT1010 – mean (or average) Chapter 4: Describing data ! 4.1 Averages and measures of center " Describing the center of a distribution ! 4.2 Shapes of distributions " Describing the shape ! 4.3 Quantifying variation " Describing the spread of a distribution 1 4.1 What is an average? ! In statistics, we generally use the term mean instead of average, and the mean has a specific formula… mean = sum of all values total number of values ! The term average could be interpreted in a variety of ways, thus, we’ll focus on the mean of a distribution or set of numbers. 2 Example: Eight grocery stores sell the PR energy bar for the following prices: $1.09 $1.29 $1.29 $1.35 $1.39 $1.49 $1.59 $1.79 Find the mean of these prices. Solution: The mean price is $1.41: $1.09 + $1.29 + $1.29 + $1.35 + $1.39 + $1.49 + $1.59 + $1.79 mean = 8 = $1.41 3 1 STAT1010 – mean (or average) Example: Octane Rating n = 40 87.4, 88.4, 88.7, 88.9, 89.3, 89.3, 89.6, 89.7 89.8, 89.8, 89.9, 90.0, 90.1, 90.3, 90.4, 90.4 90.4, 90.5, 90.6, 90.7, 91.0, 91.1, 91.1, 91.2 91.2, 91.6, 91.6, 91.8, 91.8, 92.2, 92.2, 92.2 92.3, 92.6, 92.7, 92.7, 93.0, 93.3, 93.7, 94.4 4 Example: Octane Rating Technical Note (short hand formula for the mean): Let x1, x2, …, xn represent n values.
    [Show full text]