Cross-Sectional Skewness
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Simple Mean Weighted Mean Or Harmonic Mean
MultiplyMultiply oror Divide?Divide? AA BestBest PracticePractice forfor FactorFactor AnalysisAnalysis 77 ––10 10 JuneJune 20112011 Dr.Dr. ShuShu-Ping-Ping HuHu AlfredAlfred SmithSmith CCEACCEA Los Angeles Washington, D.C. Boston Chantilly Huntsville Dayton Santa Barbara Albuquerque Colorado Springs Ft. Meade Ft. Monmouth Goddard Space Flight Center Ogden Patuxent River Silver Spring Washington Navy Yard Cleveland Dahlgren Denver Johnson Space Center Montgomery New Orleans Oklahoma City Tampa Tacoma Vandenberg AFB Warner Robins ALC Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com PRT-70, 01 Apr 2011 ObjectivesObjectives It is common to estimate hours as a simple factor of a technical parameter such as weight, aperture, power or source lines of code (SLOC), i.e., hours = a*TechParameter z “Software development hours = a * SLOC” is used as an example z Concept is applicable to any factor cost estimating relationship (CER) Our objective is to address how to best estimate “a” z Multiply SLOC by Hour/SLOC or Divide SLOC by SLOC/Hour? z Simple, weighted, or harmonic mean? z Role of regression analysis z Base uncertainty on the prediction interval rather than just the range Our goal is to provide analysts a better understanding of choices available and how to select the right approach Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com PR-70, 01 Apr 2011 Approved for Public Release 2 of 25 OutlineOutline Definitions -
Hydraulics Manual Glossary G - 3
Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B. -
Skewness, Kurtosis and Convertible Arbitrage Hedge Fund Performance
Skewness, kurtosis and convertible arbitrage hedge fund performance Mark Hutchinson* Department of Accounting and Finance University College Cork Liam Gallagher** Business School Dublin City University This Version: January 2006 Keywords: Arbitrage, Convertible bonds, Hedge funds, RALS *Address for Correspondence: Mark Hutchinson, Department of Accounting and Finance, University College Cork, College Road, Cork. Telephone: +353 21 4902597, E-mail: [email protected] **Address for Correspondence: Liam Gallagher, DCU Business School, Dublin City University, Dublin 9, Ireland. Telephone: +353 1 7005399, E-mail: [email protected] 1 Skewness, kurtosis and convertible arbitrage hedge fund performance Abstract Returns of convertible arbitrage hedge funds generally exhibit significant negative skewness and excess kurtosis. Failing to account for these characteristics will overstate estimates of performance. In this paper we specify the Residual Augmented Least Squares (RALS) estimator, a recently developed estimation technique designed to exploit non-normality in a time series’ distribution. Specifying a linear factor model, we provide robust estimates of convertible arbitrage hedge fund indices risks demonstrating the increase in efficiency of RALS over OLS estimation. Third and fourth moment functions of the HFRI convertible arbitrage index residuals are then employed as proxy risk factors, for skewness and kurtosis, in a multi-factor examination of individual convertible arbitrage hedge fund returns. Results indicate that convertible arbitrage hedge funds’ receive significant risk premium for bearing skewness and kurtosis risk. We find that 15% of the estimated abnormal performance from a model omitting higher moment risk factors is attributable to skewness and kurtosis risk. We are grateful to SunGard Trading and Risk Systems for providing Monis Convertibles XL convertible bond analysis software and convertible bond terms and conditions. -
Notes on Calculating Computer Performance
Notes on Calculating Computer Performance Bruce Jacob and Trevor Mudge Advanced Computer Architecture Lab EECS Department, University of Michigan {blj,tnm}@umich.edu Abstract This report explains what it means to characterize the performance of a computer, and which methods are appro- priate and inappropriate for the task. The most widely used metric is the performance on the SPEC benchmark suite of programs; currently, the results of running the SPEC benchmark suite are compiled into a single number using the geometric mean. The primary reason for using the geometric mean is that it preserves values across normalization, but unfortunately, it does not preserve total run time, which is probably the figure of greatest interest when performances are being compared. Cycles per Instruction (CPI) is another widely used metric, but this method is invalid, even if comparing machines with identical clock speeds. Comparing CPI values to judge performance falls prey to the same prob- lems as averaging normalized values. In general, normalized values must not be averaged and instead of the geometric mean, either the harmonic or the arithmetic mean is the appropriate method for averaging a set running times. The arithmetic mean should be used to average times, and the harmonic mean should be used to average rates (1/time). A number of published SPECmarks are recomputed using these means to demonstrate the effect of choosing a favorable algorithm. 1.0 Performance and the Use of Means We want to summarize the performance of a computer; the easiest way uses a single number that can be compared against the numbers of other machines. -
Math 140 Introductory Statistics
Notation Population Sample Sampling Math 140 Distribution Introductory Statistics µ µ Mean x x Standard Professor Bernardo Ábrego Deviation σ s σ x Lecture 16 Sections 7.1,7.2 Size N n Properties of The Sampling Example 1 Distribution of The Sample Mean The mean µ x of the sampling distribution of x equals the mean of the population µ: Problems usually involve a combination of the µx = µ three properties of the Sampling Distribution of the Sample Mean, together with what we The standard deviation σ x of the sampling distribution of x , also called the standard error of the mean, equals the standard learned about the normal distribution. deviation of the population σ divided by the square root of the sample size n: σ Example: Average Number of Children σ x = n What is the probability that a random sample The Shape of the sampling distribution will be approximately of 20 families in the United States will have normal if the population is approximately normal; for other populations, the sampling distribution becomes more normal as an average of 1.5 children or fewer? n increases. This property is called the Central Limit Theorem. 1 Example 1 Example 1 Example: Average Number Number of Children Proportion of families, P(x) of Children (per family), x µx = µ = 0.873 What is the probability that a 0 0.524 random sample of 20 1 0.201 σ 1.095 σx = = = 0.2448 families in the United States 2 0.179 n 20 will have an average of 1.5 3 0.070 children or fewer? 4 or more 0.026 Mean (of population) 0.6 µ = 0.873 0.5 0.4 Standard Deviation 0.3 σ =1.095 0.2 0.1 0.873 0 01234 Example 1 Example 2 µ = µ = 0.873 Find z-score of the value 1.5 Example: Reasonably Likely Averages x x − mean z = = What average numbers of children are σ 1.095 SD σ = = = 0.2448 reasonably likely in a random sample of 20 x x − µ 1.5 − 0.873 n 20 = x = families? σx 0.2448 ≈ 2.56 Recall that the values that are in the middle normalcdf(−99999,2.56) ≈ .9947 95% of a random distribution are called So in a random sample of 20 Reasonably Likely. -
4.1 What Is an Average? Example
STAT1010 – mean (or average) Chapter 4: Describing data ! 4.1 Averages and measures of center " Describing the center of a distribution ! 4.2 Shapes of distributions " Describing the shape ! 4.3 Quantifying variation " Describing the spread of a distribution 1 4.1 What is an average? ! In statistics, we generally use the term mean instead of average, and the mean has a specific formula… mean = sum of all values total number of values ! The term average could be interpreted in a variety of ways, thus, we’ll focus on the mean of a distribution or set of numbers. 2 Example: Eight grocery stores sell the PR energy bar for the following prices: $1.09 $1.29 $1.29 $1.35 $1.39 $1.49 $1.59 $1.79 Find the mean of these prices. Solution: The mean price is $1.41: $1.09 + $1.29 + $1.29 + $1.35 + $1.39 + $1.49 + $1.59 + $1.79 mean = 8 = $1.41 3 1 STAT1010 – mean (or average) Example: Octane Rating n = 40 87.4, 88.4, 88.7, 88.9, 89.3, 89.3, 89.6, 89.7 89.8, 89.8, 89.9, 90.0, 90.1, 90.3, 90.4, 90.4 90.4, 90.5, 90.6, 90.7, 91.0, 91.1, 91.1, 91.2 91.2, 91.6, 91.6, 91.8, 91.8, 92.2, 92.2, 92.2 92.3, 92.6, 92.7, 92.7, 93.0, 93.3, 93.7, 94.4 4 Example: Octane Rating Technical Note (short hand formula for the mean): Let x1, x2, …, xn represent n values. -
STANDARDS and GUIDELINES for STATISTICAL SURVEYS September 2006
OFFICE OF MANAGEMENT AND BUDGET STANDARDS AND GUIDELINES FOR STATISTICAL SURVEYS September 2006 Table of Contents LIST OF STANDARDS FOR STATISTICAL SURVEYS ....................................................... i INTRODUCTION......................................................................................................................... 1 SECTION 1 DEVELOPMENT OF CONCEPTS, METHODS, AND DESIGN .................. 5 Section 1.1 Survey Planning..................................................................................................... 5 Section 1.2 Survey Design........................................................................................................ 7 Section 1.3 Survey Response Rates.......................................................................................... 8 Section 1.4 Pretesting Survey Systems..................................................................................... 9 SECTION 2 COLLECTION OF DATA................................................................................... 9 Section 2.1 Developing Sampling Frames................................................................................ 9 Section 2.2 Required Notifications to Potential Survey Respondents.................................... 10 Section 2.3 Data Collection Methodology.............................................................................. 11 SECTION 3 PROCESSING AND EDITING OF DATA...................................................... 13 Section 3.1 Data Editing ........................................................................................................ -
Pricing Skewness and Kurtosis Risk on the Swedish Stock Market
Master Thesis 15 ECTS credits Pricing Skewness and Kurtosis Risk on the Swedish Stock Market Andreas Johansson Tutor: Birger Nilsson Department of Economics, Lund University, Sweden September 2005 Abstract This paper investigates the role of higher moments on the Swedish stock market 1979-2004 using the asset pricing framework developed in Fang & Lai (1997). The models are estimated using a two-step ordinary least squares procedure and, in addition, an instrumental variables approach to account for the potential problem of errors in variables. Estimations have been made on the full period and in two sub-periods. The results show that the asset pricing performance improves when augmenting the standard capital asset pricing model with third (skewness) and fourth (kurtosis) moments. Further, we find that both skewness and kurtosis risk carries statistically significant risk premiums. Our results are in line with the results of Fang & Lai (1997) and other surveys covering the similiar area, like Kraus & Litzenberger (1976). The results presented in this survey can further be used by investors on the Swedish stock market, to make asset management even more effective by take into account the effect of skewness and kurtosis in asset return distribution. Keys: Skewness, Kurtosis, CAPM, mean-varaince I want to thank my tutor Birger Nilsson* for emminent supervision. I also want to thank Isak Ahlbom** for composition of the data. *Nilsson is a PhD in Economics at Lund University, Lund School of Economics. **Ahlbom is a MSc in Economics from Lund University, Lund School of Eco- nomics. Contents 1Introduction 3 2Previousstudies 5 2.1 Fang and Lai (1997) ............................ -
Glossary of Transportation Construction Quality Assurance Terms
TRANSPORTATION RESEARCH Number E-C235 August 2018 Glossary of Transportation Construction Quality Assurance Terms Seventh Edition TRANSPORTATION RESEARCH BOARD 2018 EXECUTIVE COMMITTEE OFFICERS Chair: Katherine F. Turnbull, Executive Associate Director and Research Scientist, Texas A&M Transportation Institute, College Station Vice Chair: Victoria A. Arroyo, Executive Director, Georgetown Climate Center; Assistant Dean, Centers and Institutes; and Professor and Director, Environmental Law Program, Georgetown University Law Center, Washington, D.C. Division Chair for NRC Oversight: Susan Hanson, Distinguished University Professor Emerita, School of Geography, Clark University, Worcester, Massachusetts Executive Director: Neil J. Pedersen, Transportation Research Board TRANSPORTATION RESEARCH BOARD 2017–2018 TECHNICAL ACTIVITIES COUNCIL Chair: Hyun-A C. Park, President, Spy Pond Partners, LLC, Arlington, Massachusetts Technical Activities Director: Ann M. Brach, Transportation Research Board David Ballard, Senior Economist, Gellman Research Associates, Inc., Jenkintown, Pennsylvania, Aviation Group Chair Coco Briseno, Deputy Director, Planning and Modal Programs, California Department of Transportation, Sacramento, State DOT Representative Anne Goodchild, Associate Professor, University of Washington, Seattle, Freight Systems Group Chair George Grimes, CEO Advisor, Patriot Rail Company, Denver, Colorado, Rail Group Chair David Harkey, Director, Highway Safety Research Center, University of North Carolina, Chapel Hill, Safety and Systems -
Probability and Statistics Activity: Your Average Joe TEKS
Mathematics TEKS Refinement 2006 – 6-8 Tarleton State University Probability and Statistics Activity: Your Average Joe TEKS: (6.10) Probability and statistics. The student uses statistical representations to analyze data. The student is expected to: (B) identify mean (using concrete objects and pictorial models), median, mode, and range of a set of data; (6.11) Underlying processes and mathematical tools. The student applies Grade 6 mathematics to solve problems connected to everyday experiences, investigations in other disciplines, and activities in and outside of school The student is expected to: (D) select tools such as real objects, manipulatives, paper/pencil, and technology or techniques such as mental math, estimation, and number sense to solve problems. Overview: In this activity, students will answer a question about the average number of letters in a first name. Using linking cubes, students will physically model the mean, median, and mode of the number of letters in their first names. Definitions will be formulated for these terms by referring to the physical activities used to determine their value. Example: to find the median, we first arranged ourselves in order from the shortest first name to the longest first name. Finally, students will be given a problem to solve in pairs, and then solution strategies will be shared with the class. Materials: Linking cubes Grid paper Transparencies 1-4 Handout 1 Calculator Grouping: Large group and pairs of students Time: Two 45-minute class periods Lesson: Procedures Notes 1. (5 minutes) Discuss the meaning of the Possible question: word “average” and how it is used in statistics. -
Descriptive Statistics
Statistics: Descriptive Statistics When we are given a large data set, it is necessary to describe the data in some way. The raw data is just too large and meaningless on its own to make sense of. We will sue the following exam scores data throughout: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 45, 67, 87, 21, 43, 98, 28, 23, 28, 75 Summary Statistics We can use the raw data to calculate summary statistics so that we have some idea what the data looks like and how sprad out it is. Max, Min and Range The maximum value of the dataset and the minimum value of the dataset are very simple measures. The range of the data is difference between the maximum and minimum value. Range = Max Value − Min Value = 98 − 21 = 77 Mean, Median and Mode The mean, median and mode are measures of central tendency of the data (i.e. where is the center of the data). Mean (µ) The mean is sum of all values divided by how many values there are N 1 X 45 + 67 + 87 + 21 + 43 + 98 + 28 + 23 + 28 + 75 xi = = 51.5 N i=1 10 Median The median is the middle data point when the dataset is arranged in order from smallest to largest. If there are two middle values then we take the average of the two values. Using the data above check that the median is: 44 Mode The mode is the value in the dataset that appears most. Using the data above check that the mode is: 28 Standard Deviation The standard deviation (σ) measures how spread out the data is. -
Arxiv:2104.04264V1 [Q-Fin.GN] 9 Apr 2021
Frequency-Dependent Higher Moment Risks* Jozef Baruník* Josef Kurka** First draft: July 2018 This draft: April 12, 2021 Abstract Based on intraday data for a large cross-section of individual stocks and exchange traded funds, we show that short-term as well as long-term fluctuations of realized market and average idiosyncratic higher moments risks are priced in the cross-section of asset returns. Specifically, we find that market and average idiosyncratic volatil- ity and kurtosis are significantly priced by investors mainly in the long-run even if controlled by market moments and other factors, while skewness is mostly short-run phenomenon. A conditional pricing model capturing the time-variation of moments confirms downward-sloping term structure of skewness risk and upward-sloping term structure of kurtosis risk, moreover the term structures connected to market skewness risk and average idiosyncratic skewness risk exhibit different dymanics. Keywords: Higher Moments, frequency, Spectral Analysis, Cross-sectional JEL: C14, C22, G11, G12 arXiv:2104.04264v1 [q-fin.GN] 9 Apr 2021 *We are grateful to Wolfgang Hardle, Antonio Galvao, Lukas Vacha, Martin Hronec, and the participants at the CFE 2019 for many useful comments, suggestions, and discussions. We gratefully acknowledge the support from the Czech Science Foundation under the EXPRO GX19-28231X project, support from the Grant Agency of Charles University under project No. 1188119, and from Charles University Research Centre program No. UNCE/HUM/035. *Institute of Economic Studies, Charles University, Opletalova 26, 110 00, Prague, CR and Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod Vodarenskou Vezi 4, 18200, Prague, Czech Republic, E-mail: [email protected].