Sequencing the Extrachromosomal Circular Mobilome Reveals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Characterization of a Heat-Activated Retrotransposon ONSEN and the Effect of Zebularine in Adzuki Bean and Title Soybean
The characterization of a heat-activated retrotransposon ONSEN and the effect of zebularine in adzuki bean and Title soybean Author(s) BOONJING, PATWIRA Citation 北海道大学. 博士(生命科学) 甲第14157号 Issue Date 2020-06-30 DOI 10.14943/doctoral.k14157 Doc URL http://hdl.handle.net/2115/82053 Type theses (doctoral) File Information PATWIRA_BOONJING.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Thesis for Ph.D. Degree The characterization of a heat-activated retrotransposon ONSEN and the effect of zebularine in adzuki bean and soybean 「アズキとダイズにおける高温活性型レトロトランス ポゾン ONSEN の特徴とゼブラリンの効果について」 by Patwira Boonjing Graduate School of Life Science Hokkaido University June 2020 Thesis for Ph.D. Degree The characterization of a heat-activated retrotransposon ONSEN and the effect of zebularine in adzuki bean and soybean 「アズキとダイズにおける高温活性型レトロトランス ポゾン ONSEN の特徴とゼブラリンの効果について」 by Patwira Boonjing Graduate School of Life Science Hokkaido University June 2020 2 Abstract The Ty1/copia-like retrotransposon ONSEN is conserved among Brassica species, as well as in beans, including adzuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) and soybean (Glycine max (L.) Merr.), which are the economically important crops in Japan. ONSEN has acquired a heat-responsive element that is recognized by plant-derived heat stress defense factors, resulting in transcribing and producing the full-length extrachromosomal DNA under conditions with elevated temperatures. DNA methylation plays an important role in regulating the activation of transposons in plants. Therefore, chemical inhibition of DNA methyltransferases has been utilized to study the effect of DNA methylation on transposon activation. To understand the effect of DNA methylation on ONSEN activation, Arabidopsis thaliana, adzuki bean, and soybean plants were treated with zebularine, which is known to be an effective chemical demethylation agent. -
Mobile Genetic Elements in Streptococci
Curr. Issues Mol. Biol. (2019) 32: 123-166. DOI: https://dx.doi.org/10.21775/cimb.032.123 Mobile Genetic Elements in Streptococci Miao Lu#, Tao Gong#, Anqi Zhang, Boyu Tang, Jiamin Chen, Zhong Zhang, Yuqing Li*, Xuedong Zhou* State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China. #Miao Lu and Tao Gong contributed equally to this work. *Address correspondence to: [email protected], [email protected] Abstract Streptococci are a group of Gram-positive bacteria belonging to the family Streptococcaceae, which are responsible of multiple diseases. Some of these species can cause invasive infection that may result in life-threatening illness. Moreover, antibiotic-resistant bacteria are considerably increasing, thus imposing a global consideration. One of the main causes of this resistance is the horizontal gene transfer (HGT), associated to gene transfer agents including transposons, integrons, plasmids and bacteriophages. These agents, which are called mobile genetic elements (MGEs), encode proteins able to mediate DNA movements. This review briefly describes MGEs in streptococci, focusing on their structure and properties related to HGT and antibiotic resistance. caister.com/cimb 123 Curr. Issues Mol. Biol. (2019) Vol. 32 Mobile Genetic Elements Lu et al Introduction Streptococci are a group of Gram-positive bacteria widely distributed across human and animals. Unlike the Staphylococcus species, streptococci are catalase negative and are subclassified into the three subspecies alpha, beta and gamma according to the partial, complete or absent hemolysis induced, respectively. The beta hemolytic streptococci species are further classified by the cell wall carbohydrate composition (Lancefield, 1933) and according to human diseases in Lancefield groups A, B, C and G. -
The LUCA and Its Complex Virome in Another Recent Synthesis, We Examined the Origins of the Replication and Structural Mart Krupovic , Valerian V
PERSPECTIVES archaea that form several distinct, seemingly unrelated groups16–18. The LUCA and its complex virome In another recent synthesis, we examined the origins of the replication and structural Mart Krupovic , Valerian V. Dolja and Eugene V. Koonin modules of viruses and posited a ‘chimeric’ scenario of virus evolution19. Under this Abstract | The last universal cellular ancestor (LUCA) is the most recent population model, the replication machineries of each of of organisms from which all cellular life on Earth descends. The reconstruction of the four realms derive from the primordial the genome and phenotype of the LUCA is a major challenge in evolutionary pool of genetic elements, whereas the major biology. Given that all life forms are associated with viruses and/or other mobile virion structural proteins were acquired genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by from cellular hosts at different stages of evolution giving rise to bona fide viruses. projecting back in time using the extant distribution of viruses across the two In this Perspective article, we combine primary domains of life, bacteria and archaea, and tracing the evolutionary this recent work with observations on the histories of some key virus genes, we attempt a reconstruction of the LUCA virome. host ranges of viruses in each of the four Even a conservative version of this reconstruction suggests a remarkably complex realms, along with deeper reconstructions virome that already included the main groups of extant viruses of bacteria and of virus evolution, to tentatively infer archaea. We further present evidence of extensive virus evolution antedating the the composition of the virome of the last universal cellular ancestor (LUCA; also LUCA. -
Comprehensive Analysis of Mobile Genetic Elements in the Gut Microbiome Reveals Phylum-Level Niche-Adaptive Gene Pools
bioRxiv preprint doi: https://doi.org/10.1101/214213; this version posted December 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Comprehensive analysis of mobile genetic elements in the gut microbiome 2 reveals phylum-level niche-adaptive gene pools 3 Xiaofang Jiang1,2,†, Andrew Brantley Hall2,3,†, Ramnik J. Xavier1,2,3,4, and Eric Alm1,2,5,* 4 1 Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, 5 Cambridge, MA 02139, USA 6 2 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 7 3 Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard 8 Medical School, Boston, MA 02114, USA 9 4 Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General 10 Hospital and Harvard Medical School, Boston, MA 02114, USA 11 5 MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 12 02142, USA 13 † Co-first Authors 14 * Corresponding Author bioRxiv preprint doi: https://doi.org/10.1101/214213; this version posted December 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 15 Abstract 16 Mobile genetic elements (MGEs) drive extensive horizontal transfer in the gut microbiome. This transfer 17 could benefit human health by conferring new metabolic capabilities to commensal microbes, or it could 18 threaten human health by spreading antibiotic resistance genes to pathogens. Despite their biological 19 importance and medical relevance, MGEs from the gut microbiome have not been systematically 20 characterized. -
World Journal of Advanced Research and Reviews
World Journal of Advanced Research and Reviews, 2020, 08(02), 279–284 World Journal of Advanced Research and Reviews e-ISSN: 2581-9615, Cross Ref DOI: 10.30574/wjarr Journal homepage: https://www.wjarr.com (REVIEW ARTICLE) Fundamentals of extrachromosomal circular DNA in human cells - Genetic activities as regards cancer promotion alongside chromosomal DNA Reinhard H. Dennin * Formerly: Department of Infectious Diseases and Microbiology, University of Lübeck, UKSH, Campus Lübeck, Germany. Publication history: Received on 17 November 2020; revised on 24 November 2020; accepted on 25 November 2020 Article DOI: https://doi.org/10.30574/wjarr.2020.8.2.0442 Abstract In addition to chromosomal DNA (chr-DNA) and mitochondrial DNA, eukaryotic cells contain extrachromosomal DNA (ec-DNA). Analysed extrachromosomal circular DNA (ecc-DNA) accounts for up to 20% of the total cellular DNA. Ecc- DNAs contain coding and non-coding sequences originating from chr-DNA and mobile genetic elements (MGEs). MGEs include sequences such as transposons, which have the potential to move between different and the same DNA molecules, thereby, for example, causing rearrangements and inactivation of genes. Ecc DNAs have aroused interest in diseases such as malignancies and diagnostic procedures relating to this. A database to collect ecc-DNA has been established. Investigations are needed to find possible differences in sequences of chr-DNA after sequencing the whole cellular DNA (WCD), namely: chr-DNA plus ec-/ecc-DNA compared to chr-DNA, which is separated from ec-/ecc-DNA. Standards for sequencing protocols of WCD have to be developed that also reveal the sequences of ecc-DNA; this concerns “single-cell genomics” in particular. -
A Novel and Direct Mobilome Approach Improves the Detection of Larger-Sized Circular Elements Across Kingdoms
bioRxiv preprint doi: https://doi.org/10.1101/761098; this version posted September 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A novel and direct mobilome approach improves 2 the detection of larger-sized circular elements 3 across kingdoms 4 Katrine Skov Alanin1,2†, Tue Sparholt Jørgensen1,3,4†, Patrick Browne1,2†, Bent Petersen5,6, Leise Riber7, 5 Witold Kot1,2‡* and Lars Hestbjerg Hansen1,2‡* 6 1Department of Environmental Science, Aarhus University, Roskilde, Denmark 7 2Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark 8 3Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, Lyngby, Denmark 9 4Department of Science and Environment, Roskilde University, Denmark 10 5Globe Institute, Faculty of Health and Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark 11 6Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST 12 University, Kedah, Malaysia 13 7Department of Biology, Functional Genomics, University of Copenhagen, Copenhagen, Denmark 14 15 †These authors contributed equally to the work presented 16 ‡ WK and LHH initiated and supervised the project equally 17 *To whom correspondence should be addressed 18 19 Abstract: Mobile genetic elements (MGEs) are instrumental in natural prokaryotic genome editing, permitting 20 genome plasticity and allowing microbes to accumulate immense genetic diversity. MGEs include DNA 21 elements such as plasmids, transposons and Insertion Sequences (IS-elements), as well as bacteriophages 22 (phages), and they serve as a vast communal gene pool. -
The Wolbachia Mobilome in Culex Pipiens Includes a Putative Plasmid
Corrected: Author correction ARTICLE https://doi.org/10.1038/s41467-019-08973-w OPEN The Wolbachia mobilome in Culex pipiens includes a putative plasmid Julie Reveillaud1, Sarah R. Bordenstein2, Corinne Cruaud3, Alon Shaiber4,5, Özcan C. Esen5, Mylène Weill6, Patrick Makoundou6, Karen Lolans5, Andrea R. Watson5, Ignace Rakotoarivony1, Seth R. Bordenstein 2,7,8 & A. Murat Eren 4,5,9 Wolbachia is a genus of obligate intracellular bacteria found in nematodes and arthropods 1234567890():,; worldwide, including insect vectors that transmit dengue, West Nile, and Zika viruses. Wolbachia’s unique ability to alter host reproductive behavior through its temperate bacteriophage WO has enabled the development of new vector control strategies. However, our understanding of Wolbachia’s mobilome beyond its bacteriophages is incomplete. Here, we reconstruct near-complete Wolbachia genomes from individual ovary metagenomes of four wild Culex pipiens mosquitoes captured in France. In addition to viral genes missing from the Wolbachia reference genome, we identify a putative plasmid (pWCP), consisting of a 9.23-kbp circular element with 14 genes. We validate its presence in additional Culex pipiens mosquitoes using PCR, long-read sequencing, and screening of existing metagenomes. The discovery of this previously unrecognized extrachromosomal element opens additional possibilities for genetic manipulation of Wolbachia. 1 ASTRE, INRA, CIRAD, University of Montpellier, Montpellier 34398, France. 2 Department of Biological Sciences, Vanderbilt University, Nashville 37235 TN, USA. 3 Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut de Biologie François Jacob, Genoscope, Evry 91057, France. 4 Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA. 5 Department of Medicine, University of Chicago, Chicago 60637 IL, USA. -
Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280 -
The Future of Transposable Element Annotation and Their Classification in the Light of Functional Genomics
The future of transposable element annotation and their classification in the light of functional genomics -what we can learn from the fables of Jean de la Fontaine? Peter Arensburger, Benoit Piegu, Yves Bigot To cite this version: Peter Arensburger, Benoit Piegu, Yves Bigot. The future of transposable element annotation and their classification in the light of functional genomics - what we can learn from thefables of Jean de la Fontaine?. Mobile Genetic Elements, Taylor & Francis, 2016, 6 (6), pp.e1256852. 10.1080/2159256X.2016.1256852. hal-02385838 HAL Id: hal-02385838 https://hal.archives-ouvertes.fr/hal-02385838 Submitted on 27 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright The future of transposable element annotation and their classification in the light of functional genomics - what we can learn from the fables of Jean de la Fontaine? Peter Arensburger1, Benoît Piégu2, and Yves Bigot2 1 Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768 - United States of America. 2 Physiologie de la reproduction et des Comportements, UMR INRA-CNRS 7247, PRC, 37380 Nouzilly – France Corresponding author address: Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768 - United States of America. -
The Plasmid Mobilome of the Model Plant-Symbiont Sinorhizobium Meliloti
The Plasmid Mobilome of the Model Plant-Symbiont Sinorhizobium meliloti: Coming up With New Questions and Answers ANTONIO LAGARES,1 JUAN SANJUÁN,2 and MARIANO PISTORIO1 1IBBM, Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (1900) La Plata, Argentina; 2Departamento de Microbiología del Suelo y Sistemas Simbióticos. Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain ABSTRACT Rhizobia are Gram-negative Alpha- and the current article revises their main structural components, Betaproteobacteria living in the underground that have the their transfer and regulatory mechanisms, and their potential ability to associate with legumes for the establishment of as vehicles in shaping the evolution of the rhizobial genome. nitrogen-fixing symbioses. Sinorhizobium meliloti in particular—the symbiont of Medicago, Melilotus, and Trigonella spp.—has for the past decades served as a model organism for EXTRACHROMOSOMAL REPLICONS investigating, at the molecular level, the biology, biochemistry, IN S. MELILOTI: PLASMID CONTENT and genetics of a free-living and symbiotic soil bacterium of AND DIVERSITY agricultural relevance. To date, the genomes of seven different S. meliloti strains have been fully sequenced and annotated, Bacteria grouped within the Rhizobiaceae, Phyllobac- and several other draft genomic sequences are also available teriaceae, and Bradyrhizobiaceae families, collectively (http://www.ncbi.nlm.nih.gov/genome/genomes/1004). known as rhizobia, inhabit the soil under free-living The vast amount of plasmid DNA that S. meliloti frequently bears conditions and are associated in symbiosis with the root (up to 45% of its total genome), the conjugative ability of some of of legumes as nitrogen-fixing organisms. -
Chapter 9 Genetics Chromosome Genes • DNA RNA Protein Flow Of
Genetics Chapter 9 Topics • Genome - the sum total of genetic - Genetics information in a organism - Flow of Genetics/Information • Genotype - the A's, T's, G's and C's - Regulation • Phenotype - the physical - Mutation characteristics that are encoded - Recombination – gene transfer within the genome Examples of Eukaryotic and Prokaryotic Genomes Chromosome • Prokaryotic ( E. coli ~ 4,288 genes) – 1 circular chromosome ± extrachromosomal DNA ( plasmids ) • Eukaryotic (humans ~ 20 -25,000 genes) – Many paired chromosomes ± extrachromosomal DNA ( Mitochondria or Chloroplast ) • Subdivided into basic informational packets called genes Genes Flow of Genetics/Information • Three categories The Central Dogma –Structural - genes that code for • DNA RNA Protein proteins –Regulatory - genes that control – Replication - copy DNA gene expression – Transcription - make mRNA – Translation - make protein –Encode for RNA - non-mRNA 1 Replication Transcription & Translation DNA • Structure • Replication • Universal Code & Codons Escherichia coli with its emptied genome! Structure • Nucleotide – Phosphate – Deoxyribose sugar – Nitrogenous base • Double stranded helix – Antiparallel arrangement Versions of the DNA double helix Nitrogenous bases 5’ 3’ • Purines –Adenine 3’ 5’ –Guanine • Pyrimidines –Thymine –Cytosine 2 Replication • Semiconservative - starts at the Origin of Replication • Enzymes • Helicase • Dna Pol III • DNA Pol I • Primase • Gyrase • Ligase • Leading strand • Lagging strand – Okazaki fragments The function of important enzymes involved -
Downloaded from Based Exploration of Domains Can Be Visualized with the Domain Ggkbase.Berkeley.Edu/Hpae final/Organisms
Lawrence Berkeley National Laboratory Recent Work Title Diverse ATPase Proteins in Mobilomes Constitute a Large Potential Sink for Prokaryotic Host ATP. Permalink https://escholarship.org/uc/item/1jg0q58v Authors Shim, Hyunjin Shivram, Haridha Lei, Shufei et al. Publication Date 2021 DOI 10.3389/fmicb.2021.691847 Peer reviewed eScholarship.org Powered by the California Digital Library University of California fmicb-12-691847 July 3, 2021 Time: 17:17 # 1 HYPOTHESIS AND THEORY published: 08 July 2021 doi: 10.3389/fmicb.2021.691847 Diverse ATPase Proteins in Mobilomes Constitute a Large Potential Sink for Prokaryotic Host ATP Hyunjin Shim1, Haridha Shivram2, Shufei Lei1, Jennifer A. Doudna2 and Jillian F. Banfield1,2,3,4,5,6* 1 Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States, 2 Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States, 3 Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States, 4 Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States, 5 Chan Zuckerberg Biohub, San Francisco, CA, United States, 6 School of Earth Sciences, University of Melbourne, Melbourne, VIC, Australia Prokaryote mobilome genomes rely on host machineries for survival and replication. Given that mobile genetic elements (MGEs) derive their energy from host cells, we Edited by: investigated the diversity of ATP-utilizing proteins in MGE genomes to determine Gee W. Lau, University of Illinois whether they might be associated with proteins that could suppress related host at Urbana-Champaign, United States proteins that consume energy. A comprehensive search of 353 huge phage genomes Reviewed by: revealed that up to 9% of the proteins have ATPase domains.