Overfishing Resource Pack
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Historical Overfishing and the Recent Collapse of Coastal Ecosystems
E COLOGY T HROUGH T IME REVIEW Historical Overfishing and the Recent Collapse of Coastal Ecosystems Jeremy B. C. Jackson,1,2* Michael X. Kirby,3 Wolfgang H. Berger,1 Karen A. Bjorndal,4 Louis W. Botsford,5 Bruce J. Bourque,6 Roger H. Bradbury,7 Richard Cooke,2 Jon Erlandson,8 James A. Estes,9 Terence P. Hughes,10 Susan Kidwell,11 Carina B. Lange,1 Hunter S. Lenihan,12 John M. Pandolfi,13 Charles H. Peterson,12 Robert S. Steneck,14 Mia J. Tegner,1† Robert R. Warner15 Ecological extinction caused by overfishing precedes all other pervasive longer term cycles or shifts in oceanographic human disturbance to coastal ecosystems, including pollution, degrada- regimes and productivity (15–17). To help ad- tion of water quality, and anthropogenic climate change. Historical abun- dress this problem, we describe ecosystem dances of large consumer species were fantastically large in comparison structure predating modern ecological studies with recent observations. Paleoecological, archaeological, and historical using well-dated time series based on biological data show that time lags of decades to centuries occurred between the (18, 19), biogeochemical (20, 21), physical onset of overfishing and consequent changes in ecological communities, (22), and historical (23) proxies that are infor- because unfished species of similar trophic level assumed the ecological mative over a variety of spatial scales and bio- roles of overfished species until they too were overfished or died of geographic realms (24). Although proxies vary epidemic diseases related to overcrowding. Retrospective data not only in precision and clarity of the signals they mea- help to clarify underlying causes and rates of ecological change, but they sure, the use of multiple proxies that give the also demonstrate achievable goals for restoration and management of same ecological signal greatly increases confi- coastal ecosystems that could not even be contemplated based on the dence in results. -
Ecocide: the Missing Crime Against Peace'
35 690 Initiative paper from Representative Van Raan: 'Ecocide: The missing crime against peace' No. 2 INITIATIVE PAPER 'The rules of our world are laws, and they can be changed. Laws can restrict, or they can enable. What matters is what they serve. Many of the laws in our world serve property - they are based on ownership. But imagine a law that has a higher moral authority… a law that puts people and planet first. Imagine a law that starts from first do no harm, that stops this dangerous game and takes us to a place of safety….' Polly Higgins, 2015 'We need to change the rules.' Greta Thunberg, 2019 Table of contents Summary 1 1. Introduction 3 2. The ineffectiveness of current legislation 7 3. The legal framework for ecocide law 14 4. Case study: West Papua 20 5. Conclusion 25 6. Financial section 26 7. Decision points 26 Appendix: The institutional history of ecocide 29 Summary Despite all our efforts, the future of our natural environments, habitats, and ecosystems does not look promising. Human activity has ensured that climate change continues to persist. Legal instruments are available to combat this unprecedented damage to the natural living environment, but these instruments have proven inadequate. With this paper, the initiator intends to set forth an innovative new legal concept. This paper is a study into the possibilities of turning this unprecedented destruction of our natural environment into a criminal offence. In this regard, we will use the term ecocide, defined as the extensive damage to or destruction of ecosystems through human activity. -
Stock Assessment of Sardine (Sardina Pilchardus, Walb.) in the Adriatic Sea, with an Estimate of Discards*
sm69n4603-1977 21/11/05 16:28 Página 603 SCI. MAR., 69 (4): 603-617 SCIENTIA MARINA 2005 Stock assessment of sardine (Sardina pilchardus, Walb.) in the Adriatic Sea, with an estimate of discards* ALBERTO SANTOJANNI 1, NANDO CINGOLANI 1, ENRICO ARNERI 1, GEOFF KIRKWOOD 2, ANDREA BELARDINELLI 1, GIANFRANCO GIANNETTI 1, SABRINA COLELLA 1, FORTUNATA DONATO 1 and CATHERINE BARRY 3 1 ISMAR - CNR, Sezione Pesca Marittima, Largo Fiera della Pesca, 60125 Ancona, Italy. E-mail: [email protected] 2 Renewable Resources Assessment Group (RRAG), Department of Environmental Science and Technology, Imperial College, Prince Consort Road, London, UK. 3 Marine Resources Assessment Group (MRAG), 27 Campden Street, London, UK. SUMMARY:Analytical stock assessment of sardine (Sardina pilchardus, Walb.) in the Adriatic Sea from 1975 to 1999 was performed taking into account the occurrence of discarding at sea of sardine caught by the Italian fleet. We have attempted to model the fishermen’s behaviour using data collected by an observer on board fishing vessels. This enabled us to estimate the amounts of discards, which were added to the catches landed, collected by ISMAR-CNR Ancona. Discards were calculated for the period 1987-1999, as their values were negligible before 1987. Stock assessment on the entire data series from 1975-1999 was carried out by means of Virtual Population Analysis (VPA). Discarding behaviour differs among ports due to different local customs and market conditions. The quantity added to the annual total catch ranged from 900 tonnes to 4000 tonnes, corre- sponding to between 2% and 15% of the total corrected catch. -
Committee on Fisheries
August 2017 COFI:AQ/IX/2017/5 E COMMITTEE ON FISHERIES SUB-COMMITTEE ON AQUACULTURE Ninth Session Rome, 24–27 October 2017 AQUACULTURE, THE SUSTAINABLE DEVELOPMENT GOALS (SDGS)/AGENDA 2030 AND FAO’S COMMON VISION FOR SUSTAINABLE FOOD AND AGRICULTURE Executive Summary The paper introduces the 2030 Agenda and the SDGs, and presents the Common Vision for Sustainable Food and Agriculture1 as basis for discussion and for encouraging more effective and coherent action within aquaculture and across other agricultural sectors in implementing the 2030 Agenda. It highlights the relevance of the SDGs for further possible actions in policy-making, planning and management for sustainable aquaculture development, and relates these to available international guidance and initiatives focusing on sustainable aquaculture development. FAO’s support to countries for implementation of the 2030 Agenda in the aquaculture sector is outlined, including through its Blue Growth Initiative. The Sub-Committee is invited to: comment on the information presented in this document, as appropriate, and suggest future activities to be undertaken by the Secretariat as well as by the Sub-Committee itself towards actions of implementing the 2030 Agenda in aquaculture development and management; discuss the need and possibilities to promote more integrated actions in aquaculture and across agriculture, forestry and fisheries that balance the different dimensions of sustainability; 1 When not specified otherwise, ‘agriculture’ is understood here as the whole set of activities related to crop and livestock production, forestry, fisheries and aquaculture. This document can be accessed using the Quick Response Code on this page; an FAO initiative to minimize its environmental impact and promote greener communications. -
STOP ECOCIDE Oil Spills
WHAT IS ECOCIDE? It means mass damage and destruction of ecosystems: STOP ECOCIDE Oil spills. Deforestation. Chemical contamination. Soil depletion. Overfishing. Air pollution. Microplastics… harm to nature which is widespread, severe or systematic. [PAGE 1 OF 2] Climate breakdown and mass extinction are the direct result of ECOCIDE, IN 3.5 MINUTES committed by many of the world's biggest corporations over decades. We know the dangers – at current rates of destruction we are heading for an uninhabitable Earth. We know the costs – to nature and humanity, and especially to those cultures and WHAT DOES ECOCIDE MEAN? populations who are least consulted, most impacted and most exploited, and of course to all future generations. It means mass damage and destruction of ecosystems - Oil spills. Deforestation. Chemical pollution. Soil damage. Overfishing. Air pollution. We know the solutions – renewable energy, regenerative agriculture, circular economy… Plastic waste… harm to nature which is widespread, severe or systematic. and we have the ingenuity and ability to implement them. ECOCIDE, committed by many of the world's biggest corporations over With all this knowledge, WHY does ECOCIDE continue? Quite simply, because it's allowed to. decades, has led directly to climate breakdown and mass extinction. CEO’s have an obligation to maximise profit by any lawful means. We know the dangers: And right now, ECOCIDE is not a crime. It's as simple as that. if we continue as we are, the Earth will no longer be able to sustain human civilisation in the near -
Reconsidering Historical Definitions of Overfishing and the Balance Between Sustainable Use and Overexploitation
Not to be cited without Prior Reference to the Author ICES ASC Bergen 2012 ICES CM 2012/L:25 Reconsidering Historical Definitions of Overfishing and the Balance between Sustainable Use and Overexploitation Daniel R. Goethel Steven X. Cadrin Brian J. Rothschild Overexploitation and sustainability have been core concepts in the management of renewable resources since the 1600s. Traditionally, these terms were directly linked to one another, so that overexploitation was truly unsustainable. In fisheries management, the connection between them was severed when maximum sustainable yield became the guiding principal for many management bodies in the 1950s. The current tendency is to consider fishery management a failure if a stock is ‘overfished’. However, the abuse of such terms has led to inappropriate negative perceptions of management systems and the fishing industry. By tracing the origins of the term ‘overfishing’ we demonstrate that modern management systems that link overfishing to an optimal fishing mortality reference point do not adhere to the traditional concept. We suggest a revival of historical definitions of overfishing, based on short-term time horizons. Such a reinterpretation would define sustainable use as harvesting up to the reproductive surplus of the resource, while overexploitation would be indicated by harvesting more than could be naturally replaced in a given year. By re-defining overfishing as unsustainable fishing mortality, the unwarranted negative perception of fisheries can be avoided and promote conservative fishing techniques. Keywords: Sustainability, overfishing, fisheries management, ICES history Contact Author: Daniel Goethel UMASS-Dartmouth School for Marine Science and Technology 200 Mill Rd., Suite 325 Fairhaven, MA 02719 [email protected] - 1 - 1. -
Estimating Discards Using Selectivity Data: the Effects of Mesh Size Changes in the Mixed Demersal Fisheries in the Irish Sea
NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S) Northwest Atlantic Fisheries Organization Serial No. N2302 NAFO SCR Doc. 93/109 SCIENTIFIC COUNCIL MEETING - SEPTEMBER 1993 'Estimating Discards Using Selectivity Data: the Effects of Mesh Size Changes in the Mixed Demersal Fisheries in the Irish Sea. by J. Casey Ministry of Agriculture, Fisheries and Food Directorate of Fisheries Research Fisheries Laboratory Pakefield Road, Lowestoft, Suffolk NR33 OHT, U.K. Abstract A model is described to predict the numbers at age of fish discarded in fisheries for which only landings at age are known. The model assumes a knowledge of the E distributionoflengthwiftneachagegroupindiepoputhfion,andusesmeshselection 0 characteristics, and an inferred discarding practice, to derive the proportions of each 0 age group discarded and landed. Mesh selectivity and discarding practice, in terms of 0 proportions of the catch discarded and landed, are described using a logistic fit to the proportions of the population entering the net that are caught, discarded and landed. The application of the model is illustrated using data from the mixed demersal fisheries 11 .1 in the Irish Sea, and the effects of mesh size and effort changes on catch predictions are examined. 71-5 t9 Introduction Catches of finfish in the Irish Sea are dominated by four main species; the common sole (Solea solea (Linnaeus, 1758)), plaice (Pleuronectesplatessa Linnaeus, 1758), cod (Gadus morhua Linnaeus, 1758) and whiting (Merlangias merlangus (Linnaeus, 1758)). The demersal fishery for these species in the Irish Sea is prosecuted by 3 main fleets, each using a different gear type; beam trawlers, otter trawlers and Nephrops trawlers. -
A Guide to Fisheries Stock Assessment from Data to Recommendations
A Guide to Fisheries Stock Assessment From Data to Recommendations Andrew B. Cooper Department of Natural Resources University of New Hampshire Fish are born, they grow, they reproduce and they die – whether from natural causes or from fishing. That’s it. Modelers just use complicated (or not so complicated) math to iron out the details. A Guide to Fisheries Stock Assessment From Data to Recommendations Andrew B. Cooper Department of Natural Resources University of New Hampshire Edited and designed by Kirsten Weir This publication was supported by the National Sea Grant NH Sea Grant College Program College Program of the US Department of Commerce’s Kingman Farm, University of New Hampshire National Oceanic and Atmospheric Administration under Durham, NH 03824 NOAA grant #NA16RG1035. The views expressed herein do 603.749.1565 not necessarily reflect the views of any of those organizations. www.seagrant.unh.edu Acknowledgements Funding for this publication was provided by New Hampshire Sea Grant (NHSG) and the Northeast Consortium (NEC). Thanks go to Ann Bucklin, Brian Doyle and Jonathan Pennock of NHSG and to Troy Hartley of NEC for guidance, support and patience and to Kirsten Weir of NHSG for edit- ing, graphics and layout. Thanks for reviews, comments and suggestions go to Kenneth Beal, retired assistant director of state, federal & constituent programs, National Marine Fisheries Service; Steve Cadrin, director of the NOAA/UMass Cooperative Marine Education and Research Program; David Goethel, commercial fisherman, Hampton, NH; Vincenzo Russo, commercial fisherman, Gloucester, MA; Domenic Sanfilippo, commercial fisherman, Gloucester, MA; Andy Rosenberg, UNH professor of natural resources; Lorelei Stevens, associate editor of Commercial Fisheries News; and Steve Adams, Rollie Barnaby, Pingguo He, Ken LaValley and Mark Wiley, all of NHSG. -
Movethedate Social Media Toolkit
#MoveTheDate Social Media Toolkit Thank you for sharing Earth Overshoot Day through social media, email newsletters, blog posts, and/or your organization’s website. We appreciate your help driving users to steps to #MoveTheDate, videos, infographics, and other information available on the Overshoot Day website (www.overshootday.org). The following materials can be used to promote Earth Overshoot Day. Please download our images and graphics from Dropbox, available here. We have a few infographics available in other languages at https://www.overshootday.org/newsroom/infographics/. General • August 1 is Earth Overshoot Day―the date when we (all of humanity) have used more from nature than our planet can renew in the entire year. How will you #MoveTheDate? www.overshootday.org • We are using 1.7 Earths. How? By using more ecological resources and services than nature can regenerate through overfishing, overharvesting forests, and emitting more carbon dioxide into the atmosphere than ecosystems can absorb. #MoveTheDate www.overshootday.org • Earth Overshoot Day is August 1. If everyone committed to #MoveTheDate 5 days each year, we could get out of global overshoot by 2050. Take your first step today! www.overshootday.org • Today is Earth Overshoot Day. It would take 8.5 South Koreas to support South Koreans' Ecological Footprint. It would take 4 UKs to meet the demand for natural resources of UK residents. How does your country stack up? • Today is Earth Overshoot Day. If everyone www.overshootday.org lived like the average American, we would need 5 Earths. The average Russian, 3.3 Earths. And the average Brazilian, 1.8 Earths. -
Wasted Catch: Unsolved Problems in U.S. Fisheries
© Brian Skerry WASTED CATCH: UNSOLVED PROBLEMS IN U.S. FISHERIES Authors: Amanda Keledjian, Gib Brogan, Beth Lowell, Jon Warrenchuk, Ben Enticknap, Geoff Shester, Michael Hirshfield and Dominique Cano-Stocco CORRECTION: This report referenced a bycatch rate of 40% as determined by Davies et al. 2009, however that calculation used a broader definition of bycatch than is standard. According to bycatch as defined in this report and elsewhere, the most recent analyses show a rate of approximately 10% (Zeller et al. 2017; FAO 2018). © Brian Skerry ACCORDING TO SOME ESTIMATES, GLOBAL BYCATCH MAY AMOUNT TO 40 PERCENT OF THE WORLD’S CATCH, TOTALING 63 BILLION POUNDS PER YEAR CORRECTION: This report referenced a bycatch rate of 40% as determined by Davies et al. 2009, however that calculation used a broader definition of bycatch than is standard. According to bycatch as defined in this report and elsewhere, the most recent analyses show a rate of approximately 10% (Zeller et al. 2017; FAO 2018). CONTENTS 05 Executive Summary 06 Quick Facts 06 What Is Bycatch? 08 Bycatch Is An Undocumented Problem 10 Bycatch Occurs Every Day In The U.S. 15 Notable Progress, But No Solution 26 Nine Dirty Fisheries 37 National Policies To Minimize Bycatch 39 Recommendations 39 Conclusion 40 Oceana Reducing Bycatch: A Timeline 42 References ACKNOWLEDGEMENTS The authors would like to thank Jennifer Hueting and In-House Creative for graphic design and the following individuals for their contributions during the development and review of this report: Eric Bilsky, Dustin Cranor, Mike LeVine, Susan Murray, Jackie Savitz, Amelia Vorpahl, Sara Young and Beckie Zisser. -
Wasted Resources: Bycatch and Discards in U. S. Fisheries
Wasted Resources: Bycatch and discards in U. S. Fisheries by J. M. Harrington, MRAG Americas, Inc. R. A. Myers, Dalhousie University A. A. Rosenberg, University of New Hampshire Prepared by MRAG Americas, Inc. For Oceana July 2005 TABLE OF CONTENTS ACKNOWLEDGEMENTS 7 NATIONAL OVERVIEW 9 Introduction 9 Methodology 11 Discarded Bycatch Estimates for the 27 Major Fisheries in the U.S. 12 Recommendations 17 Definitions of Key Terms Used in the Report 19 Acronyms and Abbreviations Used in the Report 20 NORTHEAST 25 Northeast Groundfish Fishery 27 Target landings 28 Regulations 30 Discards 32 Squid, Mackerel and Butterfish Fishery 41 Target landings 42 Regulations 44 Discards 44 Monkfish Fishery 53 Target landings 53 Regulations 54 Discards 55 Summer Flounder, Scup, and Black Sea Bass Fishery 59 Target landings 59 Regulations 60 Discards 61 Spiny Dogfish Fishery 69 Target landings 69 Regulations 70 Discards 70 Atlantic Surf Clam and Ocean Quahog Fishery 75 Target landings 75 Regulations 76 Discards 76 Atlantic Sea Scallop Fishery 79 Target landings 79 Regulations 80 Discards 81 Atlantic Sea Herring Fishery 85 Target landings 85 Regulations 86 Discards 87 Northern Golden Tilefish Fishery 93 Target landings 93 Regulations 94 Discards 94 Atlantic Bluefish Fishery 97 Target landings 97 Regulations 98 Discards 98 Deep Sea Red Crab Fishery 101 Target landings 101 Regulations 101 Discards 102 SOUTHEAST 103 Shrimp Fishery of the South Atlantic 105 Target landings 105 Regulations 106 Discards 107 Snapper and Grouper of the South Atlantic 111 Target -
UNDER PRESSURE. the Need to Protect Whales and Dolphins In
UNDER PRESSURE The need to protect whales and dolphins in European waters The need to protect whales and dolphins in European waters April 2021 An OceanCare report. © OceanCare 2021 ISBN 978-3-033-08516-9 Editor: Laetitia Nunny, Wild Animal Welfare, La Garriga, Spain Cover image: © gettyimages Design: Roman Richter Suggested citation: OceanCare (2021) Under Pressure: The need to protect whales and dolphins in European waters. An OceanCare report. Copyright: The copyright of individual articles (including research articles, opinion pieces, conference proceedings, abstracts and images) remains the property of the authors. OceanCare Gerbestrasse 6 P.O.Box 372 CH-8820 Wädenswil Switzerland Tel: +41 (0) 44 780 66 88 https://www.oceancare.org OceanCare has been committed to marine wildlife protection since 1989. Through research and conservation projects, campaigns, environmental education, and involvement in a range of important international committees, OceanCare undertakes concrete steps to improve the situation for wildlife in the world’s oceans. OceanCare holds Special Consultative Status with the Economic and Social Council of the United Nations (ECOSOC) and is a partner of the General Fisheries Commission for the Mediterranean (GFCM), the Convention on Migratory Species (CMS), and the UNEP/CMS Agreement on the Conservation of Cetaceans in the Black Sea, Mediterranean Sea and Contiguous Atlantic Area (ACCOBAMS), as well as UNEP/MAP. OceanCare is accredited observer at the Convention on Biological Diversity (CBD). OceanCare has also been accredited as a Major Group to the United Nations Environment Assembly (UNEA), which is the governing body of UNEP and is a part of the UNEP Global Partnership on Marine Litter.