Caractérisation Fonctionnelle De La Protéine ANKS3 Impliquée Dans Les Ciliopathies Rénales Et Étude De Son Rôle Dans La Régulation Des Arns Gweltas Odye

Total Page:16

File Type:pdf, Size:1020Kb

Caractérisation Fonctionnelle De La Protéine ANKS3 Impliquée Dans Les Ciliopathies Rénales Et Étude De Son Rôle Dans La Régulation Des Arns Gweltas Odye Caractérisation fonctionnelle de la protéine ANKS3 impliquée dans les ciliopathies rénales et étude de son rôle dans la régulation des ARNs Gweltas Odye To cite this version: Gweltas Odye. Caractérisation fonctionnelle de la protéine ANKS3 impliquée dans les ciliopathies rénales et étude de son rôle dans la régulation des ARNs. Biologie cellulaire. Université Sorbonne Paris Cité, 2018. Français. NNT : 2018USPCB029. tel-02490646 HAL Id: tel-02490646 https://tel.archives-ouvertes.fr/tel-02490646 Submitted on 25 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L’UNIVERSITE PARIS DESCARTES Ecole doctorale Bio Sorbonne Paris Cité Département Biologie Cellulaire et Moléculaire, Physiologie, Physiopathologie (BCMPP) Gweltas ODYE Pour l’obtention du grade de Docteur en Sciences Sujet : Caractérisation fonctionnelle de la protéine ANKS3 impliquée dans les ciliopathies rénales et étude de son rôle dans la régulation des ARNs Soutenue le 2 Juillet 2018 Composition du Jury Dr. Jeanne AMIEL Dr. Bénédicte DURAND Dr. Brigitte LELONGT Dr. Hervé LE HIR Dr. Philippe BASTIN Dr. Sophie SAUNIER Les lois de la science ne distinguent pas le passé du futur. Stephen Hawking REMERCIEMENTS 1 | P a g e 2 | P a g e REMERCIEMENTS 1310 jours, 333 Western Blots, 2610 Heures de microscopie, 102 qPCR, plus de 50 000 cils analysés et un papier plus tard, le temps est venu de refermer ce chapitre. Evidemment tout ceci n’aurait jamais été possible sans apprendre, sans aide ou sans soutien. Je vais donc ouvrir cette thèse par quelques remerciements. Je tiens d’abord à remercier Sophie qui m’a donné l’occasion de réaliser mon stage de M2 dans son laboratoire et de poursuivre par ma thèse. Merci +++ d’avoir cru que je pouvais le faire et de m’avoir permis d’avoir ce financement. Merci de m’avoir tant appris sur la science mais aussi sur moi-même. Ca n’aura pas été facile tous les jours mais on retiendra le meilleur L’un n’allant pas sans l’autre, je tiens aussi à remercier Alex et Cécile. Merci pour toutes ces discussions, scientifiques ou non. Merci également d’avoir su arrondir les angles quand il le fallait. Ensuite je veux remercier ma famille, même si à l’évidence les mots ne sont pas suffisants pour exprimer ce que je pense. Mes parents, mon frère et ma sœur, ma grand-mère et mon parrain sans qui tout cela ne se serait jamais produit, sans qui aujourd’hui je ne serais ni là où je suis, ni qui je suis. Votre soutien pendant ces 4 voire 5 années a été inébranlable, y compris dans les pires moments, alors MERCI. Et il y’à toi, toi qui partageais ma vie au labo et toujours en dehors. Merci de me supporter (et on sait tous à quel point c’est difficile) dans tous les sens du terme. Merci d’avoir su me pousser et me trainer au labo quand il le fallait mais aussi m’apaiser quand j’en avais besoin. Cette thèse est importante pour moi et je n’aurais jamais réussi à la finir si tu n’avais pas accepté les week-ends au labo, les horaires pas possibles, et autres séances d’écriture/relecture interminables. En parlant de famille, je veux remercier ma seconde famille, celle avec qui j’ai passé la majorité de mon temps durant cette thèse, je parle de celle du labo. Je tiens à préciser qu’il existe à l’évidence une hiérarchie dans ces remerciements, je vous laisse la trouver. Tout d’abord, Flora, merci de m’avoir formé à mon arrivée, de m’avoir soutenu et fait croire en moi, ce sont des choses dont je me rappellerai à vie. Et il y’a Christelle. Je pourrais en écrire des pages, mais je te remercierai juste pour toutes ces discussions (souvent non scientifique), pour tes e-mails enflammés, et évidemment pour ta bonne humeur « petite tête de linotte ». Je pense à Corinne pour toutes les discussions dominicales à propos d’à peu près tout, c’était un vrai plaisir. Merci à Gégé, tu as été la plus grande cause de mon taux de caféine dans le sang. Merci aussi Olivier, pour les discussions sur le sport, pour avoir solutionné plus d’un problème et finalement pour la dose de testostérone quotidienne, y’en avait bien besoin dans 3 | P a g e REMERCIEMENTS ce labo. En parlant de testostérone, comment ne pas penser à Maxence ? Mon p’tit pote, on s’est serré les coudes dans les moments difficiles et on a fêté les (nombreux) bons moments. Je crois en toi. Merci à Guillaume et Hugo pour les interludes d’enquêtes policières et les bons moments passés ensemble. Merci à Marion avec qui j’ai partagé ce travail, tu m’as beaucoup appris. Merci à Meriem pour sa bonne humeur et pour les crénaux arrangés en sous mains. Loulou et Lala, vous êtes indissociable ce fut un plaisir de partager tous ces bons moments avec vous et merci pour le soutien incroyable dont vous avez fait preuve pendant la redaction….et les corrections…. (non on ne parlera pas de semi marathon ici). Merci à Evelyne pour m’avoir fait me sentir normal et merci Camille pour les mois de juin tennistique et pour ton rire communicatif. Laurine, tes mails me manqueront toujours et Gaelle j’espère avoir l’occasion de t’entendre mixer à nouveau. Albane, tu as un peu été un mentor pour moi, mais aussi une amie (et evidemment la meilleure, la plus sympa, la plus belle et la plus intelligente, mon modèle dans la vie). Merci de m’avoir fait découvrir la culture Albanaise et ta passion pour cet art qu’est la collection de cheveux. Je ne remercierai pas Esther et tu sais pourquoi. Sarach, au début je te voyais comme une brute, aujourd’hui c’est toujours le cas, mais merci quand même. Marie et Daniel je vous mets ensemble, vous savez pourquoi ce fut un plaisir de rencontrer d’aussi grands humoristes. Je pense aussi aux autres équipes, « aux Simons » particulièrement à Julie, Zvoni et Maria et « aux Gourdon » notamment à Elodie, Sandra et évidemment Mario, tu as rendu mes gels BET bien plus drôle. Bien sûr je n’ai pas oublié mes colocataires de bureau, je pense à Rebecc et à Frances. J’ai tellement partagé avec vous. Pas facile de me supporter à longueur de journée, pas facile de vous supporter à longueur de journée, je pense que l’on faisait un trio parfait ! Merci aussi à Vale, « Team Nature » comme tu disais. Tu m’as accueilli à bras ouverts (ou à tentacules ouvertes comme tu veux Polpo) quand je suis arrivé et tu es devenue une vraie amie. Alors merci d’avoir cru en moi, de m’avoir fait confiance, de m’avoir soutenu et de m’avoir appris à parler parfaitement italien. Merci également à Alix et Romain pour tout, des discussions scientifiques aux soirées en passant par les conférences de biologie cellulaire à Curie evidemment. Enfin j’ai une pensée pour la « bande du fond » aujourd’hui tous docteurs, vous auriez pu m’attendre quand même. En fin, j'aimerais remercier le jury, Brigitte LELONGT, Bénédicte DURAND, Hervé LE HIR, Philippe BASTIN et Jeanne AMIEL et qui ont accepté d'évaluer mon travail. 4 | P a g e RESUME 5 | P a g e 6 | P a g e RESUME Caractérisation fonctionnelle de la protéine ANKS3 impliquée dans les ciliopathies rénales et étude de son rôle dans la régulation des ARNs La néphronophtise (NPH) est une néphropathie tubulo-interstitielle autosomique récessive, caractérisée par la présence d'une fibrose interstitielle massive et la formation de kystes. Elle est une cause majeure d'insuffisance rénale terminale chez l'enfant ou le jeune adulte. Elle peut être isolée ou associée à des atteintes extrarénales. La NPH appartient au groupe des ciliopathies, un ensemble de maladies multisystémiques causées par des mutations dans des gènes codant des protéines participant à la fonction des cils primaires et motiles. Le cil primaire agit, à la surface de la plupart des cellules, comme un mécano et chimiosenseur contrôlant des voies de signalisation essentielles au développement et à l'homéostasie tissulaire (Sonic hedgehog (Shh), Wnt, polycystines/Calcium, mTOR). La NPH est une maladie génétiquement hétérogène, avec vingt-trois gènes NPHP responsables identifiés à ce jour (dont 14 dans notre laboratoire). La plupart de ces gènes codent des protéines assurant des fonctions ciliaires telles que le contrôle de la composition protéique et de la signalisation ciliaire, à la base du cil (zone de transition (TZ)), au niveau du compartiment Inversine (CI), ou lors du transport intraflagellaire (IFT). Par analyse d’exome, nous avons identifié une mutation homozygote pathogène dans un nouveau gène, ANKS3, responsable d'une NPH associée à une fibrose hépatique. ANKS3 code une protéine à domaines Ankyrines et SAM, connue pour interagir avec plusieurs protéines NPHP de la TZ (NPHP1), du CI (ANKS6, NEK8) ainsi qu'avec BICC1, une ribonucléoprotéine mutée dans les dysplasies rénales kystiques. Mon projet de thèse a porté sur la caractérisation de la fonction d'ANKS3 et de l'impact de la mutation humaine dans les processus cellulaires altérés dans les ciliopathies rénales.
Recommended publications
  • Nucleocytoplasmic Shuttling of Soluble Tubulin in Mammalian Cells
    Research Article 1111 Nucleocytoplasmic shuttling of soluble tubulin in mammalian cells Tonia Akoumianaki1, Dimitris Kardassis1,2, Hara Polioudaki1, Spyros D. Georgatos3,4 and Panayiotis A. Theodoropoulos1,* 1Department of Biochemistry, University of Crete, School of Medicine, 71 003 Heraklion, Greece 2Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71 110 Heraklion, Greece 3Stem Cell and Chromatin Group, The Laboratory of Biology, University of Ioannina School of Medicine, 45 110 Ioannina, Greece 4The Biomedical Institute of Ioannina, IBE/ITE, 45 110 Ioannina, Greece *Author for correspondence (e-mail: [email protected]) Accepted 17 December 2008 Journal of Cell Science 122, 1111-1118 Published by The Company of Biologists 2009 doi:10.1242/jcs.043034 Summary We have investigated the subcellular distribution and dynamics to recombinant, normally modified and hyper- of soluble tubulin in unperturbed and transfected HeLa cells. phosphorylated/acetylated histone H3. Tubulin-bound H3 no Under normal culture conditions, endogenous α/β tubulin is longer interacts with heterochromatin protein 1 and lamin B confined to the cytoplasm. However, when the soluble pool of receptor, which are known to form a ternary complex under in subunits is elevated by combined cold-nocodazole treatment and vitro conditions. Based on these observations, we suggest that when constitutive nuclear export is inhibited by leptomycin B, nuclear accumulation of soluble tubulin is part of an intrinsic tubulin accumulates in the cell nucleus. Transfection assays and defense mechanism, which tends to limit cell proliferation FRAP experiments reveal that GFP-tagged β-tubulin shuttles under pathological conditions. This readily explains why nuclear between the cytoplasm and the cell nucleus.
    [Show full text]
  • Posttranslational Modifications of Tubulin and Cilia
    Downloaded from http://cshperspectives.cshlp.org/ on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Posttranslational Modifications of Tubulin and Cilia Dorota Wloga,1 Ewa Joachimiak,1 Panagiota Louka,2 and Jacek Gaertig2 1Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland 2Department of Cellular Biology, University of Georgia, Athens, Georgia 30602 Correspondence: [email protected]; [email protected] Tubulin undergoes several highly conserved posttranslational modifications (PTMs) includ- ing acetylation, detyrosination, glutamylation, and glycylation. These PTMs accumulate on a subset of microtubules that are long-lived, including those in the basal bodies and axonemes. Tubulin PTMs are distributed nonuniformly. In the outer doublet microtubules of the axoneme, the B-tubules are highly enriched in the detyrosinated, polyglutamylated, and polyglycylated tubulin, whereas the A-tubules contain mostly unmodified tubulin. The non- uniform patterns of tubulin PTMs may functionalize microtubules in a position-dependent manner. Recent studies indicate that tubulin PTMs contribute to the assembly, disassembly, maintenance, and motility of cilia. In particular, tubulin glutamylation has emerged as a key PTM that affects ciliary motility through regulation of axonemal dynein arms and controls the stability and length of the axoneme. TYPES OF CONSERVED TUBULIN PTMs bules and along the length or even around the circumference of the same microtubule (Fig. 2). ubulin undergoes several conserved post- According to the “tubulin code” model (Verhey translational modifications (PTMs) (Janke T and Gaertig 2007), tubulin PTMs form patterns 2014; Song and Brady 2015; Yu et al. 2015). of marks on the microtubules that locally influ- The most studied tubulin PTMs and their re- ence various activities, such as the motility of sponsible enzymes are summarized in Figure 1.
    [Show full text]
  • Regulation of Mitochondrial Respiration by VDAC Is Enhanced by Membrane-Bound Inhibitors with Disordered Polyanionic C-Terminal Domains
    International Journal of Molecular Sciences Review Regulation of Mitochondrial Respiration by VDAC Is Enhanced by Membrane-Bound Inhibitors with Disordered Polyanionic C-Terminal Domains Tatiana K. Rostovtseva 1,*, Sergey M. Bezrukov 1 and David P. Hoogerheide 2 1 Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; [email protected] 2 Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; [email protected] * Correspondence: [email protected] Abstract: The voltage-dependent anion channel (VDAC) is the primary regulating pathway of water- soluble metabolites and ions across the mitochondrial outer membrane. When reconstituted into lipid membranes, VDAC responds to sufficiently large transmembrane potentials by transitioning to gated states in which ATP/ADP flux is reduced and calcium flux is increased. Two otherwise unrelated cytosolic proteins, tubulin, and α-synuclein (αSyn), dock with VDAC by a novel mechanism in which the transmembrane potential draws their disordered, polyanionic C-terminal domains into and through the VDAC channel, thus physically blocking the pore. For both tubulin and αSyn, Citation: Rostovtseva, T.K.; the blocked state is observed at much lower transmembrane potentials than VDAC gated states, Bezrukov, S.M.; Hoogerheide, D.P. such that in the presence of these cytosolic docking proteins, VDAC’s sensitivity to transmembrane Regulation of Mitochondrial potential is dramatically increased. Remarkably, the features of the VDAC gated states relevant for Respiration by VDAC Is Enhanced by bioenergetics—reduced metabolite flux and increased calcium flux—are preserved in the blocked Membrane-Bound Inhibitors with state induced by either docking protein.
    [Show full text]
  • Molecular Determinants of Tubulin's C‑Terminal Tail Conformational
    Letters pubs.acs.org/acschemicalbiology Molecular Determinants of Tubulin’sC‑Terminal Tail Conformational Ensemble † § † § † † † Kathryn P. Wall, , Maria Pagratis, , Geoffrey Armstrong, Jeremy L. Balsbaugh, Eric Verbeke, ‡ † Chad G. Pearson, and Loren E. Hough*, † University of Colorado, Boulder, Colorado, United States ‡ University of Colorado, Anschutz Medical Campus, Colorado, United States *S Supporting Information ABSTRACT: Tubulin is important for a wide variety of cellular processes including cell division, ciliogenesis, and intracellular trafficking. To perform these diverse functions, tubulin is regulated by post-translational modifications (PTM), primarily at the C-terminal tails of both the α- and β-tubulin heterodimer subunits. The tubulin C-terminal tails are disordered segments that are predicted to extend from the ordered tubulin body and may regulate both intrinsic properties of microtubules and the binding of microtubule associated proteins (MAP). It is not understood how either interactions with the ordered tubulin body or PTM affect tubulin’s C-terminal tails. To probe these questions, we developed a method to isotopically label tubulin for C-terminal tail structural studies by NMR. The conformational changes of the tubulin tails as a result of both proximity to the ordered tubulin body and modification by mono- and polyglycine PTM were determined. The C-terminal tails of the tubulin dimer are fully disordered and, in contrast with prior simulation predictions, exhibit a propensity for β-sheet conformations. The C-terminal tails display significant chemical shift differences as compared to isolated peptides of the same sequence, indicating that the tubulin C- terminal tails interact with the ordered tubulin body. Although mono- and polyglycylation affect the chemical shift of adjacent residues, the conformation of the C-terminal tail appears insensitive to the length of polyglycine chains.
    [Show full text]
  • The Tubulin Code and Its Role in Controlling Microtubule Properties and Functions
    REVIEWS The tubulin code and its role in controlling microtubule properties and functions Carsten Janke 1,2 ✉ and Maria M. Magiera 1,2 ✉ Abstract | Microtubules are core components of the eukaryotic cytoskeleton with essential roles in cell division, shaping, motility and intracellular transport. Despite their functional heterogeneity , microtubules have a highly conserved structure made from almost identical molecular building blocks: the tubulin proteins. Alternative tubulin isotypes and a variety of post- translational modifications control the properties and functions of the microtubule cytoskeleton, a concept known as the ‘tubulin code’. Here we review the current understanding of the molecular components of the tubulin code and how they impact microtubule properties and functions. We discuss how tubulin isotypes and post-translational modifications control microtubule behaviour at the molecular level and how this translates into physiological functions at the cellular and organism levels. We then go on to show how fine-tuning of microtubule function by some tubulin modifications can affect homeostasis and how perturbation of this fine- tuning can lead to a range of dysfunctions, many of which are linked to human disease. 20 Axonemes Microtubules are cytoskeletal filaments with an outer cellular structures . Other MAPs bind to the micro- A tubular structure built from diameter of approximately 25 nm, and are composed of tubule lattice along its entire length and are thus con- microtubules and associated heterodimers of globular α- tubulin and β- tubulin mol- sidered to regulate microtubule dynamics and stability, proteins at the core of all ecules. As they are hollow cylinders, microtubules are but might also have additional roles that in many cases eukaryotic cilia and flagella.
    [Show full text]
  • Post-Translational Modifications Regulate Microtubule Function
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by MPG.PuRe REVIEWS POST-TRANSLATIONAL MODIFICATIONS REGULATE MICROTUBULE FUNCTION Stefan Westermann* and Klaus Weber ‡ The αβ-tubulin heterodimer, the building block of microtubules, is subject to a large number of post-translational modifications, comparable in diversity to the intensively studied histone modifications. Although these unusual modifications are conserved throughout evolution, their functions have remained almost completely elusive. Recently, however, important advances in the understanding of how tubulin modifications regulate function and organization have been made. αβ MITOTIC SPINDLE Microtubules are an important component of the domain of -tubulins, which is located on the outside 3 A bipolar array of microtubules cytoskeleton and carry out a variety of essential func- of the microtubule where it is well positioned to influ- that functions to move the tions. During cell division, microtubules form the ence interactions with other proteins. duplicated chromosomes MITOTIC SPINDLE, the structure that is required to faith- Here,we review the literature on the occurrence of during mitosis and meiosis. fully segregate replicated sister chromatids. Together these modifications, the enzymes that are involved in AXONEME with accessory proteins, they constitute the AXONEME of generating them, and their potential functions. A bundle of microtubules and CILIA and FLAGELLA and so contribute to cell motility. In associated proteins that form the addition, they are important factors in the generation The role of the tubulin tails core of a flagellum or cilium. of cell polarity and also function as tracks along which Electron crystallographic studies of the αβ-tubulin CILIA — with the help of motor proteins — organelles and dimer have provided important insights into its struc- Hair-like extensions of cells, vesicles are transported through the cell.
    [Show full text]
  • Subpellicular and Flagellar Microtubules of Trypanosoma
    Journal of Cell Science 110, 431-437 (1997) 431 Printed in Great Britain © The Company of Biologists Limited 1997 JCS3502 Subpellicular and flagellar microtubules of Trypanosoma brucei are extensively glutamylated André Schneider1, Uwe Plessmann2 and Klaus Weber2,* 1University of Fribourg, Institute of Zoology, Pérolles, CH 1700 Fribourg, Switzerland 2Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, PO Box 2841, D-37018, Goettingen, Germany *Author for correspondence SUMMARY To determine the spectrum of tubulin variants in cytoskel- residues 445 of α- and 435 of β-tubulin. The same sites are etons of Trypanosoma brucei carboxy-terminal fragments used in glutamylated tubulins of mammalian brain. No of α- and β-tubulin were isolated and characterized by tubulin variants based on polyglycylation are detected in sequencing and mass spectrometry. All variants arise by cytoskeletal preparations or in isolated flagella. Tubulin posttranslational modifications. We confirm the presence of specific incorporation of radioactive glutamate but not of tyrosinated and detyrosinated α-tubulin. Unexpectedly, but glycine is observed when protein biosynthesis is completely in line with its sequence, β-tubulin also occurs with and inhibited in Trypanosoma cells. Possible reasons for the without its carboxy-terminal tyrosine. Both tyrosinated absence of polyglycylated tubulins from the trypanosomal and detyrosinated α- and β-tubulins are extensively glu- axoneme are discussed. Finally we show that lysine 40 of tamylated. Unglutamylated tubulins are only trace compo- the flagellar α-tubulin is completely acetylated. nents of the cytoskeletal microtubules. The maximal numbers of glutamyl residues in the lateral chain are 15 and 6 for α- and β-tubulin, respectively. The oligoglutamyl Key words: Acetylation, Carboxypeptidase, Polyglutamylation, side chain is linked via an isopeptide bond to glutamic acid Posttranslational modification, Tyrosination INTRODUCTION and β-tubulin.
    [Show full text]
  • Cytoskeletal Proteins in Neurological Disorders
    cells Review Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders Diana C. Muñoz-Lasso 1 , Carlos Romá-Mateo 2,3,4, Federico V. Pallardó 2,3,4 and Pilar Gonzalez-Cabo 2,3,4,* 1 Department of Oncogenomics, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; [email protected] 2 Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, 46010 Valencia, Spain; [email protected] (C.R.-M.); [email protected] (F.V.P.) 3 CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain 4 Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain * Correspondence: [email protected]; Tel.: +34-963-395-036 Received: 10 December 2019; Accepted: 29 January 2020; Published: 4 February 2020 Abstract: Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.
    [Show full text]
  • WO 2010/037397 Al
    (12) INTERNATIONALAPPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 8 April 2010 (08.04.2010) WO 2010/037397 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 38/17 (2006.01) C07K 14/705 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 47/48 (2006.01) GOlN 33/50 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/DK2009/050257 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 1 October 2009 (01 .10.2009) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every PA 2008 0 1381 1 October 2008 (01 .10.2008) DK kind of regional protection available): ARIPO (BW, GH, 61/101,898 1 October 2008 (01 .10.2008) US GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (71) Applicant (for all designated States except US): DAKO TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, DENMARK A/S [DK/DK]; Produktionsvej 42, DK-2600 ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, Glostrup (DK).
    [Show full text]
  • Reviews/0006.1
    http://genomebiology.com/2002/3/5/reviews/0006.1 Review The diversity of acetylated proteins comment Bogdan Polevoda and Fred Sherman Address: Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA. Correspondence: Fred Sherman. E-mail: [email protected] reviews Published: 30 April 2002 Genome Biology 2002, 3(5):reviews0006.1–0006 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2002/3/5/reviews/0006 © BioMed Central Ltd (Print ISSN 1465-6906; Online ISSN 1465-6914) Abstract reports Acetylation of proteins, either on various amino-terminal residues or on the 0-amino group of lysine residues, is catalyzed by a wide range of acetyltransferases. Amino-terminal acetylation occurs on the bulk of eukaryotic proteins and on regulatory peptides, whereas lysine acetylation occurs at different positions on a variety of proteins, including histones, transcription factors, nuclear import factors, and ,-tubulin. deposited research Modification of proteins extends the range of possible mole- Amino-terminal acetylation cular structures beyond the limits imposed by the 20 Cotranslational amino-terminal acetylation of encoded amino acids and, if reversible, gives a means of eukaryotic proteins control and signaling. Many proteins are acetylated, both co- Studies in vitro indicate that amino-terminal acetylation of and post-translationally, and at least for eukaryotic proteins, eukaryotic proteins takes place when there are between 20 acetylation is the most common covalent modification out of and 50 residues protruding from the ribosome [1,11]. Proteins refereed research over 200 types that have been reported.
    [Show full text]
  • Novel Biomedical Applications of Maldi and Electrospray Mass Spectrometry
    NOVEL BIOMEDICAL APPLICATIONS OF MALDI AND ELECTROSPRAY MASS SPECTROMETRY by Kim Yoke Ching Fung A dissertation submitted in fulfillment of the requirements for the degree of Doctor of Philosophy University of New South Wales Sydney, Australia 2001 I hereby declare that this submission is my own work and to the best of my knowledge it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged. December, 2001 ACKNOWLEDGEMENTS I would like to express my appreciation to the following people: • Prof. Mark Duncan for the support, advice and guidance with every aspect of my degree and for the many opportunities presented to me over the past four years. • Dr. George Smythe for being my co-advisor and for the support you have given me throughout my degree. • Dr. Carol Morris and Dr. Robert Sack for providing the tear samples and for your advice and insight regarding the data generated. • Dr. David Friedman for your help with the prostate fluid experiments. • Martin Bucknall for your help with the studies on quantitative MALDI.
    [Show full text]
  • Highlights Microtubules, Key Elements of the Cytoskeleton, Are Involved In
    Controlling Microtubule Dynamics and Function with the tubulin code UMR3348 – Genome integrity, RNA and Cancer Carsten Janke Team Leader [email protected] Tel: +33 (0)1 69 86 31 27 Highlights Tubulin polyglutamylation induces neurodegeneration Tubulin glycylation coordinates sperm swimming Microtubules, key elements of the cytoskeleton, are involved in a large number of functions in eukaryotic INSTITUT CURIE, 20 rue d’Ulm, 75248 Paris Cedex 05, France | 1 Controlling Microtubule Dynamics and Function with the tubulin code UMR3348 – Genome integrity, RNA and Cancer cells. They assemble from a protein dimer of a- and b-tubulin, two highly similar and conserved proteins. Tubulins are subject to a large variety of posttranslational modifications (Fig. 1), which provide a rapid and reversible mechanism to diversify microtubule functions in cells. Our team is studying the mechanisms and functional roles of these modifications by using an interdisciplinary approach. INSTITUT CURIE, 20 rue d’Ulm, 75248 Paris Cedex 05, France | 2 Controlling Microtubule Dynamics and Function with the tubulin code UMR3348 – Genome integrity, RNA and Cancer INSTITUT CURIE, 20 rue d’Ulm, 75248 Paris Cedex 05, France | 3 Controlling Microtubule Dynamics and Function with the tubulin code UMR3348 – Genome integrity, RNA and Cancer Figure 1: Schematic representation of tubulin post-translational modifications The three modifications that directly modify the C-terminal tail of tubulin, their mechanisms and enzymes involved in the modifications are depicted. Polyglutamylation and polyglycylation take place on both, α- and β-tubulin, whereas detyrosination is restricted to α-tubulin. Our team has identified the enzymes involved in the posttranslational polyglutamylation (1, 2), deglutamylation (3, 4) and polyglycylation (5) of tubulin.
    [Show full text]