Superconducting Qubits: Current State of Play Morten Kjaergaard,1 Mollie E. Schwartz,2 Jochen Braum¨uller,1 Philip Krantz,3 Joel I-J Wang,1, Simon Gustavsson,1 and William D. Oliver,1;2;4 1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, USA, MA 02139. MK email:
[email protected] 2MIT Lincoln Laboratory, 244 Wood Street, Lexington, USA, MA 02421 3Microtechnology and Nanoscience, Chalmers University of Technology, G¨oteborg, Sweden, SE-412 96 4Department of Physics, Massachusetts Institute of Technology, Cambridge, USA, MA 02139. WDO email:
[email protected] Keywords superconducting qubits, superconducting circuits, quantum algorithms, quantum simulation, quantum error correction, NISQ era Abstract Superconducting qubits are leading candidates in the race to build a quantum computer capable of realizing computations beyond the reach of modern supercomputers. The superconducting qubit modality has been used to demonstrate prototype algorithms in the `noisy intermedi- ate scale quantum' (NISQ) technology era, in which non-error-corrected qubits are used to implement quantum simulations and quantum al- gorithms. With the recent demonstrations of multiple high fidelity two-qubit gates as well as operations on logical qubits in extensible superconducting qubit systems, this modality also holds promise for the longer-term goal of building larger-scale error-corrected quantum computers. In this brief review, we discuss several of the recent ex- perimental advances in qubit hardware, gate implementations, readout capabilities, early NISQ algorithm implementations, and quantum er- ror correction using superconducting qubits. While continued work on many aspects of this technology is certainly necessary, the pace of both conceptual and technical progress in the last years has been impres- arXiv:1905.13641v3 [quant-ph] 21 Apr 2020 sive, and here we hope to convey the excitement stemming from this progress.