Colleen S Peterson , Alastair Ferguson , W Mark

Total Page:16

File Type:pdf, Size:1020Kb

Colleen S Peterson , Alastair Ferguson , W Mark The verified ion channelome of the rat subfornical organ. Colleen S Peterson1, Alastair Ferguson2, W Mark Fry1 1.Department of Biological Sciences, University of Manitoba 2. Centre for Neuroscience, Queen's University Background Results Sensory circumventricular organs (CVOs) lack a blood- Voltage-gated Na+ channels 3 Not present Scn9a brain-barrier, and they express a high density and wide Only detected by RNAseq Scn1a Scn2a variety of receptors. Therefore, CVOs can detect numerous 2 Only detected by microarray Table 1. Voltage-gated Na+ Present Scn3a circulating hormones and signalling molecules, and +60 mV 1 500 pA channels in the SFO. communicate this information to homeostatic control 0 Scn8a 100 ms -70 mV Present Absent centres. -1 -100 mV SCN1A SCN4A Scn10a -2 The subfornical organ (SFO) is an AV3V CVO which is well 1 SCN2A SCN5A -3 Scn5a known to play critical roles in osmoregulation , Scn11a cardiovascular regulation2, and energy balance3. The SCN3A SCNA10A -4 electrical behaviour of SFO neurons is determined by the log2(intensity) Microarray -5 Scn4a SCN8A SCN11A ion channels and receptors present. With the aim of -6 improving our understanding this unique and important -5 -4 -3 -2 -1 0 1 2 3 4 5 structure, we have characterised the transcriptome of the SCN9A RNAseq log2 (FPKM) Figure 1. Voltage-gated Na+ *bold indicates only detected by RNAseq SFO using RNA sequencing. currents from SFO neurons. Figure 2. Correlation between RNAseq FPKM and microarray intensity for Here we present data outlining the ion channel and G- Voltage-gated K+ channels voltage-gated Na+ channels. protein coupled receptors (GPCR) expressed. R2: 0.9247. n = 10. A Table 2. Voltage-gated K+ channels Methods +60 mV 500 pA in the SFO. Animals: All procedures complied with CCAC and were 100 ms -70 mV Present Absent 4 Not present approved by the University of Manitoba. -100 mV Only detected by RNAseq KCNA 1, 2, 3-6 KCNA 7, 10 3 Only detected by microarray Pups were from timed-pregnant Sprague Dawley dams and ITotal Present randomly assigned to dams in litters of 12. At age 6 weeks, KCNB 1, 2 2 rats were sacrificed, SFO carefully dissected out and stored KCNC 1-4 1 B +60 mV KCND 1, 3 in RNAlater at -20 °C until time of RNA extraction. Six +40 mV 0 -70 mV KCNF 1 samples from the same litter were pooled. -1 KCNG 1, 2, 4 KCNG3 -2 Library Prep, RNAseq, and Analysis: KCNH 1, 2, 4, 5, KCNH3, 5, 8 I -3 RNA was extracted using PureLink RNA Mini Kit (Thermo K 6, 7 V Fisher), and analysed using a Bioanalyzer (Agilent). Two µg KCNJ 2, 3, 5, 8- KCNJ1, 4, 15 -4 of RNA were prepared for library contruction using the C 10, 12-14, 16 log2(intensity) Microarray -5 TruSeq Standard mRNA Library Prep Kit (Illumina), then KCNK 1-3, 5, 9, KCNK4, 6, 7, 12, 15, -6 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 sequenced on the NextSeq 500 platform with 2x 75 bp end ITO 10, 13,16 17 sequencing. Reads aligned to RNOR 6.0 genome assembly KCNMA1 RNAseq log2 (FPKM) Figure 3. Voltage-gated K+ (Hisat2). FPKM was used as measure of transcript levels KCNN 1-3 Figure 4. Correlation between RNAseq currents from SFO neurons. (Stringtie). Ion channels and G protein coupled receptors KCNQ 1, 2-4 KCNQ1 FPKM and microarray intensity for (A) Total K+ current. were identified by comparison to the IUPHAR-DB. Data KCNS2 KCNS1, 3 voltage-gated K+ channels. R2: 0.2619. (B) Non-inactivating K+ current. were compared to previously published microarray data for KCNT 1, 2 n = 69. validation, where possible7. (C)Transient K+ current. (B-A) KCNV2 HCN 1, 3, 4 Not present Neuron Culture and Electrophysiology *bold indicates only detected by RNAseq Only detected by RNAseq 8 Only detected by microarray Rats were sacrificed, brain removed, and cultures of G-protein-coupled receptors Present dissociated cells prepared. Cells were plated on 35mm 7 glass culture dishes in B-27 supplemented Neurobasal 1 uM SP 100 nM NT 6 media and cultured up to 5 days at 37 ̊C with 5% CO2. Whole cell patch-clamp of dissociated neurons was 5 conducted in the current clamp and voltage clamp (intensity) 4 2 configuration using using HEKA EPC 10 amplifier and 20 mV 3 PatchMaster V2x90 software. 2 min 2 Figure 5. Response of a Figure 6. Response of dissociated 1 Literature SFO neuron to 100nM neurotensin. dissociated SFO neuron to 1µM 0 1. Felix, D. Naunyn-Schmiedebergs Arch Pharmacol. 292 15–20 substance P. TACR1 is NTSR2 and SORT1 are highly log Microarray (1976) expressed in rat SFO. -1 2. Mangiapane, M.L., and Simpson, J.B. AJP Regul Integr Comp expressed in rat SFO. -2 -1 0 1 2 3 4 5 Physiol. 244 R508-13 (1983) RNAseq log2 (FPKM) 3. Smith, P.M., et al. 2010. Physiol Behav. 99 534–7 (2010) Figure 7. Correlation between RNA- 4. Miselis, R.R. Peptides. 3 501–502. (1982) For a full list of GPCRs and ion channels, 5. Whyment, A., et al. Nat Neurosci. 7 493–494 (2004) seq FPKM and microarray intensity for please visit this website: GPCRs. R2: 0.6274. n = 73. 6. Burton, M.J., et al. Exp Neurol. 51 668–677 (1976) sites.google.com/site/sfochannelome 7. Hindmarch, C. et al. Am J Physiol. 295 R1914-R1920 (2008) .
Recommended publications
  • Potassium Channels in Epilepsy
    Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Potassium Channels in Epilepsy Ru¨diger Ko¨hling and Jakob Wolfart Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany Correspondence: [email protected] This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dy- namic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With 80 potassium channel types, of which 10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models. INTRODUCTION TO POTASSIUM evolutionary appearance of voltage-gated so- CHANNELS dium (Nav)andcalcium (Cav)channels, Kchan- nels are further diversified in relation to their otassium (K) channels are related to epilepsy newer function, namely, keeping neuronal exci- Psyndromes on many different levels, ranging tation within limits (Anderson and Greenberg from direct control of neuronal excitability and 2001; Hille 2001).
    [Show full text]
  • An Advance About the Genetic Causes of Epilepsy
    E3S Web of Conferences 271, 03068 (2021) https://doi.org/10.1051/e3sconf/202127103068 ICEPE 2021 An advance about the genetic causes of epilepsy Yu Sun1, a, *, †, Licheng Lu2, b, *, †, Lanxin Li3, c, *, †, Jingbo Wang4, d, *, † 1The School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3633, US 2High School Affiliated to Shanghai Jiao Tong University, Shanghai, 200441, China 3Applied Biology program, University of British Columbia, Vancouver, V6r3b1, Canada 4School of Chemical Machinery and Safety, Dalian University of Technology, Dalian, 116023, China †These authors contributed equally. Abstract: Human hereditary epilepsy has been found related to ion channel mutations in voltage-gated channels (Na+, K+, Ca2+, Cl-), ligand gated channels (GABA receptors), and G-protein coupled receptors, such as Mass1. In addition, some transmembrane proteins or receptor genes, including PRRT2 and nAChR, and glucose transporter genes, such as GLUT1 and SLC2A1, are also about the onset of epilepsy. The discovery of these genetic defects has contributed greatly to our understanding of the pathology of epilepsy. This review focuses on introducing and summarizing epilepsy-associated genes and related findings in recent decades, pointing out related mutant genes that need to be further studied in the future. 1 Introduction Epilepsy is a neurological disorder characterized by 2 Malfunction of Ion channel epileptic seizures caused by abnormal brain activity. 1 in Functional variation in voltage or ligand-gated ion 100 (50 million people) people are affected by symptoms channel mutations is a major cause of idiopathic epilepsy, of this disorder worldwide, with men, young children, and especially in rare genetic forms.
    [Show full text]
  • Ion Channels 3 1
    r r r Cell Signalling Biology Michael J. Berridge Module 3 Ion Channels 3 1 Module 3 Ion Channels Synopsis Ion channels have two main signalling functions: either they can generate second messengers or they can function as effectors by responding to such messengers. Their role in signal generation is mainly centred on the Ca2 + signalling pathway, which has a large number of Ca2+ entry channels and internal Ca2+ release channels, both of which contribute to the generation of Ca2 + signals. Ion channels are also important effectors in that they mediate the action of different intracellular signalling pathways. There are a large number of K+ channels and many of these function in different + aspects of cell signalling. The voltage-dependent K (KV) channels regulate membrane potential and + excitability. The inward rectifier K (Kir) channel family has a number of important groups of channels + + such as the G protein-gated inward rectifier K (GIRK) channels and the ATP-sensitive K (KATP) + + channels. The two-pore domain K (K2P) channels are responsible for the large background K current. Some of the actions of Ca2 + are carried out by Ca2+-sensitive K+ channels and Ca2+-sensitive Cl − channels. The latter are members of a large group of chloride channels and transporters with multiple functions. There is a large family of ATP-binding cassette (ABC) transporters some of which have a signalling role in that they extrude signalling components from the cell. One of the ABC transporters is the cystic − − fibrosis transmembrane conductance regulator (CFTR) that conducts anions (Cl and HCO3 )and contributes to the osmotic gradient for the parallel flow of water in various transporting epithelia.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Genomics Analysis of Potassium Channel Genes in Songbirds Reveals
    Lovell et al. BMC Genomics 2013, 14:470 http://www.biomedcentral.com/1471-2164/14/470 RESEARCH ARTICLE Open Access Genomics analysis of potassium channel genes in songbirds reveals molecular specializations of brain circuits for the maintenance and production of learned vocalizations Peter V Lovell, Julia B Carleton and Claudio V Mello* Abstract Background: A fundamental question in molecular neurobiology is how genes that determine basic neuronal properties shape the functional organization of brain circuits underlying complex learned behaviors. Given the growing availability of complete vertebrate genomes, comparative genomics represents a promising approach to address this question. Here we used genomics and molecular approaches to study how ion channel genes influence the properties of the brain circuitry that regulates birdsong, a learned vocal behavior with important similarities to human speech acquisition. We focused on potassium (K-)Channels, which are major determinants of neuronal cell excitability. Starting with the human gene set of K-Channels, we used cross-species mRNA/protein alignments, and syntenic analysis to define the full complement of orthologs, paralogs, allelic variants, as well as novel loci not previously predicted in the genome of zebra finch (Taeniopygia guttata). We also compared protein coding domains in chicken and zebra finch orthologs to identify genes under positive selective pressure, and those that contained lineage-specific insertions/deletions in functional domains. Finally, we conducted comprehensive in situ hybridizations to determine the extent of brain expression, and identify K-Channel gene enrichments in nuclei of the avian song system. Results: We identified 107 K-Channel finch genes, including 6 novel genes common to non-mammalian vertebrate lineages.
    [Show full text]
  • Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery
    fphar-07-00121 May 7, 2016 Time: 11:45 # 1 REVIEW published: 10 May 2016 doi: 10.3389/fphar.2016.00121 Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery Paola Imbrici1*, Antonella Liantonio1, Giulia M. Camerino1, Michela De Bellis1, Claudia Camerino2, Antonietta Mele1, Arcangela Giustino3, Sabata Pierno1, Annamaria De Luca1, Domenico Tricarico1, Jean-Francois Desaphy3 and Diana Conte1 1 Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy, 2 Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy, 3 Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Bari, Italy In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, Edited by: disabling, or life-threatening. In spite of this, ion channels are the primary target of only Maria Cristina D’Adamo, University of Perugia, Italy about 5% of the marketed drugs suggesting their potential in drug discovery. The current Reviewed by: review summarizes the therapeutic management of the principal ion channelopathies Mirko Baruscotti, of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and University of Milano, Italy Adrien Moreau, pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion Institut Neuromyogene – École channels.
    [Show full text]
  • Kv5, Kv6, Kv8, and Kv9 Subunits: No Simple Silent Bystanders
    Published January 11, 2016 R e v i e w Kv5, Kv6, Kv8, and Kv9 subunits: No simple silent bystanders Elke Bocksteins Laboratory for Molecular Biophysics, Physiology, and Pharmacology, Department for Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium Members of the electrically silent voltage-gated K+ (Kv) subfamilies (Kv5, Kv6, Kv8, and Kv9, collectively identified as electrically silent voltage-gated K+ channel [KvS] subunits) do not form functional homotetrameric channels but assemble with Kv2 subunits into heterotetrameric Kv2/KvS channels with unique biophysical properties. Unlike the ubiquitously expressed Kv2 subunits, KvS subunits show a more restricted expression. This raises the possibility that Kv2/KvS heterotetramers have tissue-specific functions, making them potential targets for the development of novel therapeutic strategies. Here, I provide an overview of the expression of KvS subunits in different tissues and discuss their proposed role in various physiological and pathophysiological processes. This overview demonstrates the importance of KvS subunits and Kv2/KvS heterotetramers in vivo and the importance of considering KvS sub- units and Kv2/KvS heterotetramers in the development of novel treatments. Kv2 channels Downloaded from The voltage-gated K+ (Kv) channel Kv2.1 plays a crucial functions in a host of different excitable and nonexcit- role in many cell types, with its contribution to various able cells depends on Kv2.1 channel diversity, which is processes depending on both its conductive and non-
    [Show full text]
  • Structure and Function Studies on the Herg Potassium Channel Including the Development and Characteriza Tion of Membrane Mimetics
    UNIVERSITÉ DU QUÉBEC À MONTRÉAL STRUCTURE AND FUNCTION STUDIES ON THE HERG POTASSIUM CHANNEL INCLUDING THE DEVELOPMENT AND CHARACTERIZA TION OF MEMBRANE MIMETICS DISSERTATION PRESENTED AS PARTIAL REQUIREMENT OF THE DOCTORA TE OF BIOCHEMISTRY BY MAÏWENN BEAUGRAND OCTOBER 2015 UNIVERSITÉ DU QUÉBEC À MONTRÉAL Service des bibliothèques Avertissement La diffusion de cette thèse se fait dans le respect des droits de son auteur, qui a signé le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles supérieurs (SDU-522 - Rév.0?-2011 ). Cette autorisation stipule que «conformément à l'article 11 du Règlement no 8 des études de cycles supérieurs, [l'auteur] concède à l'Université du Québec à Montréal une licence non exclusive d'utilisation et de publication de la totalité ou d'une partie importante de [son] travail de recherche pour des fins pédagogiques et non commerciales. Plus précisément, [l 'auteur] autorise l'Université du Québec à Montréal à reproduire , diffuser, prêter, distribuer ou vendre des copies de [son] travail de recherche à des fins non commerciales sur quelque support que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété intellectuelle. Sauf entente contraire, [l 'auteur] conserve la liberté de diffuser et de commercialiser ou non ce travail dont [il] possède un exemplaire. •• UNIVERSITÉ DU QUÉBEC À MONTRÉAL ÉTUDE STRUCTURALE ET FONCTIONNELLE DU CANAL POTASSIQUE HERG, INCLUANT LE DÉVELOPPEMENT ET LA CARACTÉRISATION DE MEMBRANES MODÈLES THÈSE PRÉSENTÉE COMME EXIGENCE PARTIELLE DU DOCTORAT EN BIOCHIMIE PAR MAÏWENN BEAUGRAND OCTOBRE 2015 DEDICATION Je dédicace cette thèse à Erwan Beaugrand J'espère que tu aurais été .fier de ta petite sœur "Th e greatest mistake you can make in !ife is to be continually .fearing you will make one " - Elbert Hubbard (1 859-1915) ACKNOWLEDGEMENTS Throughout my doctoral studies I have received support from family, friends and co­ workers.
    [Show full text]
  • Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer
    Epigenetic mechanisms are involved in the oncogenic properties of ZNF518B in colorectal cancer Francisco Gimeno-Valiente, Ángela L. Riffo-Campos, Luis Torres, Noelia Tarazona, Valentina Gambardella, Andrés Cervantes, Gerardo López-Rodas, Luis Franco and Josefa Castillo SUPPLEMENTARY METHODS 1. Selection of genomic sequences for ChIP analysis To select the sequences for ChIP analysis in the five putative target genes, namely, PADI3, ZDHHC2, RGS4, EFNA5 and KAT2B, the genomic region corresponding to the gene was downloaded from Ensembl. Then, zoom was applied to see in detail the promoter, enhancers and regulatory sequences. The details for HCT116 cells were then recovered and the target sequences for factor binding examined. Obviously, there are not data for ZNF518B, but special attention was paid to the target sequences of other zinc-finger containing factors. Finally, the regions that may putatively bind ZNF518B were selected and primers defining amplicons spanning such sequences were searched out. Supplementary Figure S3 gives the location of the amplicons used in each gene. 2. Obtaining the raw data and generating the BAM files for in silico analysis of the effects of EHMT2 and EZH2 silencing The data of siEZH2 (SRR6384524), siG9a (SRR6384526) and siNon-target (SRR6384521) in HCT116 cell line, were downloaded from SRA (Bioproject PRJNA422822, https://www.ncbi. nlm.nih.gov/bioproject/), using SRA-tolkit (https://ncbi.github.io/sra-tools/). All data correspond to RNAseq single end. doBasics = TRUE doAll = FALSE $ fastq-dump -I --split-files SRR6384524 Data quality was checked using the software fastqc (https://www.bioinformatics.babraham. ac.uk /projects/fastqc/). The first low quality removing nucleotides were removed using FASTX- Toolkit (http://hannonlab.cshl.edu/fastxtoolkit/).
    [Show full text]
  • 1 1 2 3 Cell Type-Specific Transcriptomics of Hypothalamic
    1 2 3 4 Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to 5 weight-loss 6 7 Fredrick E. Henry1,†, Ken Sugino1,†, Adam Tozer2, Tiago Branco2, Scott M. Sternson1,* 8 9 1Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 10 20147, USA. 11 2Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, 12 Cambridge CB2 0QH, UK 13 14 †Co-first author 15 *Correspondence to: [email protected] 16 Phone: 571-209-4103 17 18 Authors have no competing interests 19 1 20 Abstract 21 Molecular and cellular processes in neurons are critical for sensing and responding to energy 22 deficit states, such as during weight-loss. AGRP neurons are a key hypothalamic population 23 that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific 24 transcriptomics can be used to identify pathways that counteract weight-loss, and here we 25 report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived 26 young adult mice. For comparison, we also analyzed POMC neurons, an intermingled 27 population that suppresses appetite and body weight. We find that AGRP neurons are 28 considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell 29 type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion 30 channels, neuropeptides, and receptors. Combined with methods to validate and manipulate 31 these pathways, this resource greatly expands molecular insight into neuronal regulation of 32 body weight, and may be useful for devising therapeutic strategies for obesity and eating 33 disorders.
    [Show full text]
  • Heteromeric KV2/KV8.2 Channels Mediate Delayed Rectifier Potassium Currents in Primate Photoreceptors
    3414 • The Journal of Neuroscience, April 4, 2018 • 38(14):3414–3427 Systems/Circuits Heteromeric KV2/KV8.2 Channels Mediate Delayed Rectifier Potassium Currents in Primate Photoreceptors Jacqueline Gayet-Primo,1 Daniel B. Yaeger,3 Roupen A. Khanjian,3 and XTeresa Puthussery1,2,3 1School of Optometry, 2Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, and 3Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239 Silent voltage-gated potassium channel subunits (KVS) interact selectively with members of the KV2 channel family to modify their functional properties. The localization and functional roles of these silent subunits remain poorly understood. Mutations in the KVS subunit, KV8.2 (KCNV2), lead to severe visual impairment in humans, but the basis of these deficits remains unclear. Here, we examined the localization, native interactions, and functional properties of KV8.2-containing channels in mouse, macaque, and human photore- ceptors of either sex. In human retina, KV8.2 colocalized with KV2.1 and KV2.2 in cone inner segments and with KV2.1 in rod inner segments. KV2.1 and KV2.2 could be coimmunoprecipitated with KV8.2 in retinal lysates indicating that these subunits likely interact directly. Retinal KV2.1 was less phosphorylated than cortical KV2.1, a difference expected to alter the biophysical properties of these channels. Using voltage-clamp recordings and pharmacology, we provide functional evidence for Kv2-containing channels in primate rods and cones. We propose that the presence of KV8.2, and low levels of KV2.1 phosphorylation shift the activation range of KV2 channels toalignwiththeoperatingrangeofrodandconephotoreceptors.OurdataindicatearoleforKV2/KV8.2channelsinhumanphotoreceptor function and suggest that the visual deficits in patients with KCNV2 mutations arise from inadequate resting activation of KV channels in rod and cone inner segments.
    [Show full text]
  • Molecular Specializations of Deep Cortical Layer Analogs in Songbirds Alexander A
    www.nature.com/scientificreports OPEN Molecular specializations of deep cortical layer analogs in songbirds Alexander A. Nevue, Peter V. Lovell, Morgan Wirthlin & Claudio V. Mello* How the evolution of complex behavioral traits is associated with the emergence of novel brain pathways is largely unknown. Songbirds, like humans, learn vocalizations via tutor imitation and possess a specialized brain circuitry to support this behavior. In a comprehensive in situ hybridization efort, we show that the zebra fnch vocal robust nucleus of the arcopallium (RA) shares numerous markers (e.g. SNCA, PVALB) with the adjacent dorsal intermediate arcopallium (AId), an avian analog of mammalian deep cortical layers with involvement in motor function. We also identify markers truly unique to RA and thus likely linked to modulation of vocal motor function (e.g. KCNC1, GABRE), including a subset of the known shared markers between RA and human laryngeal motor cortex (e.g. SLIT1, RTN4R, LINGO1, PLXNC1). The data provide novel insights into molecular features unique to vocal learning circuits, and lend support for the motor theory for vocal learning origin. An in-depth understanding of how the brain controls learned behaviors and how these behaviors arise in specifc animal lineages requires detailed knowledge of the molecular organization of the underlying circuits. Songbirds ofer an excellent model for investigating these questions. Teir vocal circuitry has been extensively studied, and consists of interconnected pallial, basal ganglia, and thalamic components that control the production and acquisition of learned vocalizations1. As is typical of birds, the pallial (cortical-like) areas consist of discrete nuclei, in contrast to the layered cortex of mammals2–4.
    [Show full text]