Cannonball! Cassini's Final Dive
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1912.09192V2 [Astro-Ph.EP] 24 Feb 2020
Draft version February 25, 2020 Typeset using LATEX preprint style in AASTeX62 Photometric analyses of Saturn's small moons: Aegaeon, Methone and Pallene are dark; Helene and Calypso are bright. M. M. Hedman,1 P. Helfenstein,2 R. O. Chancia,1, 3 P. Thomas,2 E. Roussos,4 C. Paranicas,5 and A. J. Verbiscer6 1Department of Physics, University of Idaho, Moscow, ID 83844 2Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca NY 14853 3Center for Imaging Science, Rochester Institute of Technology, Rochester NY 14623 4Max Planck Institute for Solar System Research, G¨ottingen,Germany 37077 5APL, John Hopkins University, Laurel MD 20723 6Department of Astronomy, University of Virginia, Charlottesville, VA 22904 ABSTRACT We examine the surface brightnesses of Saturn's smaller satellites using a photometric model that explicitly accounts for their elongated shapes and thus facilitates compar- isons among different moons. Analyses of Cassini imaging data with this model reveals that the moons Aegaeon, Methone and Pallene are darker than one would expect given trends previously observed among the nearby mid-sized satellites. On the other hand, the trojan moons Calypso and Helene have substantially brighter surfaces than their co-orbital companions Tethys and Dione. These observations are inconsistent with the moons' surface brightnesses being entirely controlled by the local flux of E-ring par- ticles, and therefore strongly imply that other phenomena are affecting their surface properties. The darkness of Aegaeon, Methone and Pallene is correlated with the fluxes of high-energy protons, implying that high-energy radiation is responsible for darkening these small moons. Meanwhile, Prometheus and Pandora appear to be brightened by their interactions with nearby dusty F ring, implying that enhanced dust fluxes are most likely responsible for Calypso's and Helene's excess brightness. -
Cassini Update
Cassini Update Dr. Linda Spilker Cassini Project Scientist Outer Planets Assessment Group 22 February 2017 Sols%ce Mission Inclina%on Profile equator Saturn wrt Inclination 22 February 2017 LJS-3 Year 3 Key Flybys Since Aug. 2016 OPAG T124 – Titan flyby (1584 km) • November 13, 2016 • LAST Radio Science flyby • One of only two (cf. T106) ideal bistatic observations capturing Titan’s Northern Seas • First and only bistatic observation of Punga Mare • Western Kraken Mare not explored by RSS before T125 – Titan flyby (3158 km) • November 29, 2016 • LAST Optical Remote Sensing targeted flyby • VIMS high-resolution map of the North Pole looking for variations at and around the seas and lakes. • CIRS last opportunity for vertical profile determination of gases (e.g. water, aerosols) • UVIS limb viewing opportunity at the highest spatial resolution available outside of occultations 22 February 2017 4 Interior of Hexagon Turning “Less Blue” • Bluish to golden haze results from increased production of photochemical hazes as north pole approaches summer solstice. • Hexagon acts as a barrier that prevents haze particles outside hexagon from migrating inward. • 5 Refracting Atmosphere Saturn's• 22unlit February rings appear 2017 to bend as they pass behind the planet’s darkened limb due• 6 to refraction by Saturn's upper atmosphere. (Resolution 5 km/pixel) Dione Harbors A Subsurface Ocean Researchers at the Royal Observatory of Belgium reanalyzed Cassini RSS gravity data• 7 of Dione and predict a crust 100 km thick with a global ocean 10’s of km deep. Titan’s Summer Clouds Pose a Mystery Why would clouds on Titan be visible in VIMS images, but not in ISS images? ISS ISS VIMS High, thin cirrus clouds that are optically thicker than Titan’s atmospheric haze at longer VIMS wavelengths,• 22 February but optically 2017 thinner than the haze at shorter ISS wavelengths, could be• 8 detected by VIMS while simultaneously lost in the haze to ISS. -
Dynamics of Saturn's Small Moons in Coupled First Order Planar Resonances
Dynamics of Saturn's small moons in coupled first order planar resonances Maryame El Moutamid Bruno Sicardy and St´efanRenner LESIA/IMCCE | Paris Observatory 26 juin 2012 Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Saturn system Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Very small moons Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk New satellites : Anthe, Methone and Aegaeon (Cooper et al., 2008 ; Hedman et al., 2009, 2010 ; Porco et al., 2005) Very small (0.5 km to 2 km) Vicinity of the Mimas orbit (outside and inside) The aims of the work A better understanding : - of the dynamics of this population of news satellites - of the scenario of capture into mean motion resonances Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Dynamical structure of the system µ µ´ Mp We consider only : - The resonant terms - The secular terms causing the precessions of the orbit When µ ! 0 ) The symmetry is broken ) different kinds of resonances : - Lindblad Resonance - Corotation Resonance D'Alembert rules : 0 0 c = (m + 1)λ − mλ − $ 0 L = (m + 1)λ − mλ − $ Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Corotation Resonance - Aegaeon (7/6) : c = 7λMimas − 6λAegaeon − $Mimas - Methone (14/15) : c = 15λMethone − 14λMimas − $Mimas - Anthe (10/11) : c = 11λAnthe − 10λMimas − $Mimas Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Corotation resonances Mean motion resonance : n1 = m+q n2 m Particular case : Lagrangian Equilibrium Points Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Adam's ring and Galatea Maryame -
7 Planetary Rings Matthew S
7 Planetary Rings Matthew S. Tiscareno Center for Radiophysics and Space Research, Cornell University, Ithaca, NY, USA 1Introduction..................................................... 311 1.1 Orbital Elements ..................................................... 312 1.2 Roche Limits, Roche Lobes, and Roche Critical Densities .................... 313 1.3 Optical Depth ....................................................... 316 2 Rings by Planetary System .......................................... 317 2.1 The Rings of Jupiter ................................................... 317 2.2 The Rings of Saturn ................................................... 319 2.3 The Rings of Uranus .................................................. 320 2.4 The Rings of Neptune ................................................. 323 2.5 Unconfirmed Ring Systems ............................................. 324 2.5.1 Mars ............................................................... 324 2.5.2 Pluto ............................................................... 325 2.5.3 Rhea and Other Moons ................................................ 325 2.5.4 Exoplanets ........................................................... 327 3RingsbyType.................................................... 328 3.1 Dense Broad Disks ................................................... 328 3.1.1 Spiral Waves ......................................................... 329 3.1.2 Gap Edges and Moonlet Wakes .......................................... 333 3.1.3 Radial Structure ..................................................... -
The Orbits of Saturn's Small Satellites Derived From
The Astronomical Journal, 132:692–710, 2006 August A # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE ORBITS OF SATURN’S SMALL SATELLITES DERIVED FROM COMBINED HISTORIC AND CASSINI IMAGING OBSERVATIONS J. N. Spitale CICLOPS, Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301; [email protected] R. A. Jacobson Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 C. C. Porco CICLOPS, Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 and W. M. Owen, Jr. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 Received 2006 February 28; accepted 2006 April 12 ABSTRACT We report on the orbits of the small, inner Saturnian satellites, either recovered or newly discovered in recent Cassini imaging observations. The orbits presented here reflect improvements over our previously published values in that the time base of Cassini observations has been extended, and numerical orbital integrations have been performed in those cases in which simple precessing elliptical, inclined orbit solutions were found to be inadequate. Using combined Cassini and Voyager observations, we obtain an eccentricity for Pan 7 times smaller than previously reported because of the predominance of higher quality Cassini data in the fit. The orbit of the small satellite (S/2005 S1 [Daphnis]) discovered by Cassini in the Keeler gap in the outer A ring appears to be circular and coplanar; no external perturbations are appar- ent. Refined orbits of Atlas, Prometheus, Pandora, Janus, and Epimetheus are based on Cassini , Voyager, Hubble Space Telescope, and Earth-based data and a numerical integration perturbed by all the massive satellites and each other. -
Chapter 14. Saturn and Its Attendants
14. Saturn and Its Attendants 1 Chapter 14. Saturn and Its Attendants Figure 14.3. A Voyager portrait. Note. In this section we survey physical properties of Saturn. Note. Some general facts about Saturn include: Orbital Period 29.5 years Rotation Period 10 hours 40 minutes Tilt of Axis 26◦ Mass 95 times Earth’s mass Surface Gravity 1.13 of Earth’s Albedo 34% Satellites 17 known Galileo was the first to see Saturn’s rings. Huygens explained them as rings and discovered the moon Titan. Cassini observed gaps in the rings and discovered four satellites. Saturn also has differential rotation, and a composition similar to that of Jupiter. 14. Saturn and Its Attendants 2 Note. Saturn is similar to Jupiter, with belts and zones, but the contrast on Saturn is less extreme. Rising and descending gas combines with rapid rotation to form strips circling the planet, as on Jupiter. The interior is similar to Jupiter, with a very thick layer of clouds, a layer of liquid hydrogen and helium, a layer of liquid metallic hydrogen, and a rock-and-ice solid core. Saturn puts out 1.8 times as much energy as it takes in, the excess is from continued differentiation (the heavy stuff sinks and releases energy). Saturn has a magnetic field slightly stronger than Earth’s and its magnetosphere fluctuates in size with solar activity. Figure 14.7. The internal structure of Saturn. Note. There is evidence for as many as 22 satellites. Of primary concern are (in no particular order): Titan. It is only one of two satellites that has an atmosphere. -
Lecture 12 the Rings and Moons of the Outer Planets October 15, 2018
Lecture 12 The Rings and Moons of the Outer Planets October 15, 2018 1 2 Rings of Outer Planets • Rings are not solid but are fragments of material – Saturn: Ice and ice-coated rock (bright) – Others: Dusty ice, rocky material (dark) • Very thin – Saturn rings ~0.05 km thick! • Rings can have many gaps due to small satellites – Saturn and Uranus 3 Rings of Jupiter •Very thin and made of small, dark particles. 4 Rings of Saturn Flash movie 5 Saturn’s Rings Ring structure in natural color, photographed by Cassini probe July 23, 2004. Click on image for Astronomy Picture of the Day site, or here for JPL information 6 Saturn’s Rings (false color) Photo taken by Voyager 2 on August 17, 1981. Click on image for more information 7 Saturn’s Ring System (Cassini) Mars Mimas Janus Venus Prometheus A B C D F G E Pandora Enceladus Epimetheus Earth Tethys Moon Wikipedia image with annotations On July 19, 2013, in an event celebrated the world over, NASA's Cassini spacecraft slipped into Saturn's shadow and turned to image the planet, seven of its moons, its inner rings -- and, in the background, our home planet, Earth. 8 Newly Discovered Saturnian Ring • Nearly invisible ring in the plane of the moon Pheobe’s orbit, tilted 27° from Saturn’s equatorial plane • Discovered by the infrared Spitzer Space Telescope and announced 6 October 2009 • Extends from 128 to 207 Saturnian radii and is about 40 radii thick • Contributes to the two-tone coloring of the moon Iapetus • Click here for more info about the artist’s rendering 9 Rings of Uranus • Uranus -- rings discovered through stellar occultation – Rings block light from star as Uranus moves by. -
The Gravity Field and Interior Structure of Dione
The gravity field and interior structure of Dione Marco Zannoni1*, Douglas Hemingway2,3, Luis Gomez Casajus1, Paolo Tortora1 1Dipartimento di Ingegneria Industriale, Università di Bologna, Forlì, Italy 2Department of Earth & Planetary Science, University of California Berkeley, Berkeley, California, USA 3Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC, USA *Corresponding author. Abstract During its mission in the Saturn system, Cassini performed five close flybys of Dione. During three of them, radio tracking data were collected during the closest approach, allowing estimation of the full degree-2 gravity field by precise spacecraft orbit determination. 6 The gravity field of Dione is dominated by J2 and C22, for which our best estimates are J2 x 10 = 1496 ± 11 and 6 C22 x 10 = 364.8 ± 1.8 (unnormalized coefficients, 1-σ uncertainty). Their ratio is J2/C22 = 4.102 ± 0.044, showing a significative departure (about 17-σ) from the theoretical value of 10/3, predicted for a relaxed body in slow, synchronous rotation around a planet. Therefore, it is not possible to retrieve the moment of inertia directly from the measured gravitational field. The interior structure of Dione is investigated by a combined analysis of its gravity and topography, which exhibits an even larger deviation from hydrostatic equilibrium, suggesting some degree of compensation. The gravity of Dione is far from the expectation for an undifferentiated hydrostatic body, so we built a series of three-layer models, and considered both Airy and Pratt compensation mechanisms. The interpretation is non-unique, but Dione’s excess topography may suggest some degree of Airy-type isostasy, meaning that the outer ice shell is underlain by a higher density, lower viscosity layer, such as a subsurface liquid water ocean. -
Planetary Rings
CLBE001-ESS2E November 10, 2006 21:56 100-C 25-C 50-C 75-C C+M 50-C+M C+Y 50-C+Y M+Y 50-M+Y 100-M 25-M 50-M 75-M 100-Y 25-Y 50-Y 75-Y 100-K 25-K 25-19-19 50-K 50-40-40 75-K 75-64-64 Planetary Rings Carolyn C. Porco Space Science Institute Boulder, Colorado Douglas P. Hamilton University of Maryland College Park, Maryland CHAPTER 27 1. Introduction 5. Ring Origins 2. Sources of Information 6. Prospects for the Future 3. Overview of Ring Structure Bibliography 4. Ring Processes 1. Introduction houses, from coalescing under their own gravity into larger bodies. Rings are arranged around planets in strikingly dif- Planetary rings are those strikingly flat and circular ap- ferent ways despite the similar underlying physical pro- pendages embracing all the giant planets in the outer Solar cesses that govern them. Gravitational tugs from satellites System: Jupiter, Saturn, Uranus, and Neptune. Like their account for some of the structure of densely-packed mas- cousins, the spiral galaxies, they are formed of many bod- sive rings [see Solar System Dynamics: Regular and ies, independently orbiting in a central gravitational field. Chaotic Motion], while nongravitational effects, includ- Rings also share many characteristics with, and offer in- ing solar radiation pressure and electromagnetic forces, valuable insights into, flattened systems of gas and collid- dominate the dynamics of the fainter and more diffuse dusty ing debris that ultimately form solar systems. Ring systems rings. Spacecraft flybys of all of the giant planets and, more are accessible laboratories capable of providing clues about recently, orbiters at Jupiter and Saturn, have revolutionized processes important in these circumstellar disks, structures our understanding of planetary rings. -
Abstracts of the 50Th DDA Meeting (Boulder, CO)
Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011). -
The Sources and Dynamical Mechanisms Responsible for Differing Regolith Cover on Satellites Embedded in Saturn’S E Ring
50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 2790.pdf WHY SO MUTED? THE SOURCES AND DYNAMICAL MECHANISMS RESPONSIBLE FOR DIFFERING REGOLITH COVER ON SATELLITES EMBEDDED IN SATURN’S E RING. S. J. Morrison1 and S. G. Zaidi1, 1Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, The Pennsylvania State Uni- versity, University Park, PA, 16802, USA ([email protected]) Introduction: Saturn’s E ring, sourced primarily by resonances with Tethys and Dione. We also numerically cryovolcanic material erupted from Enceladus, extends integrate E ring particle trajectories including these outward from Enceladus’ orbit to beyond Dione’s orbit forces using the integrator package REBOUND and RE- [1][2]. Amongst the satellites embedded in this ring, BOUNDx [10-12]. We use initial orbits for the Satur- there are observed differences in regolith cover. In par- nian System from [13] and estimated masses for the tad- ticular, the small satellites Telesto, Calypso, Helene, pole moons from [7] that assume an average density of and Polydeuces have more muted surfaces, an absence 0.6 g/cc. We include Saturn’s gravitational harmonics of small craters, and downslope transport of regolith up to J4 and plasma drag forces arising from collisions within large craters than observed on Tethys and Dione with co-rotating O+ ions, the primary constituent of on similar distance scales [3][4]. However, these small plasma in the region of the Saturnian system of interest. satellites orbit in a different dynamical environment: Results: To provide insight into whether outwardly Telesto and Calypso are on leading and trailing tadpole drifting E ring particles should accumulate in the 1:1 orbits about the L4 and L5 Lagrange points in the co- resonances with Tethys and Dione, we compare the orbital 1:1 mean motion resonance with Tethys, respec- timescale for a particle of a given size to drift across the tively, as are Helene and Polydeuces tadpoles of Dione maximum libration width of this resonance to the corre- [e.g. -
CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data Provided by NASA/JPL and Other Official Sources
CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data provided by NASA/JPL and other official sources. This handout ©July 2013 by Clark Planetarium (www.clarkplanetarium.org). May be freely copied by professional educators for classroom use only. The known satellites of the Solar System shown here next to their planets with their sizes (mean diameter in km) in parenthesis. The planets and satellites (with diameters above 1,000 km) are depicted in relative size (with Earth = 0.500 inches) and are arranged in order by their distance from the planet, with the closest at the top. Distances from moon to planet are not listed. Mercury Jupiter Saturn Uranus Neptune Pluto • 1- Metis (44) • 26- Hermippe (4) • 54- Hegemone (3) • 1- S/2009 S1 (1) • 33- Erriapo (10) • 1- Cordelia (40.2) (Dwarf Planet) (no natural satellites) • 2- Adrastea (16) • 27- Praxidike (6.8) • 55- Aoede (4) • 2- Pan (26) • 34- Siarnaq (40) • 2- Ophelia (42.8) • Charon (1186) • 3- Bianca (51.4) Venus • 3- Amalthea (168) • 28- Thelxinoe (2) • 56- Kallichore (2) • 3- Daphnis (7) • 35- Skoll (6) • Nix (60?) • 4- Thebe (98) • 29- Helike (4) • 57- S/2003 J 23 (2) • 4- Atlas (32) • 36- Tarvos (15) • 4- Cressida (79.6) • Hydra (50?) • 5- Desdemona (64) • 30- Iocaste (5.2) • 58- S/2003 J 5 (4) • 5- Prometheus (100.2) • 37- Tarqeq (7) • Kerberos (13-34?) • 5- Io (3,643.2) • 6- Pandora (83.8) • 38- Greip (6) • 6- Juliet (93.6) • 1- Naiad (58) • 31- Ananke (28) • 59- Callirrhoe (7) • Styx (??) • 7- Epimetheus (119) • 39- Hyrrokkin (8) • 7- Portia (135.2) • 2- Thalassa (80) • 6- Europa (3,121.6)