Gaussplot 8.0.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tools and Prerequisites for Image Processing
Tools and Prerequisites for Image Processing EE4830 Digital Image Processing http://www.ee.columbia.edu/~xlx/ee4830/ Lecture 1, Jan 26 th , 2009 Part 2 by Lexing Xie -2- Outline Review and intro in MATLAB A light-weight review of linear algebra and probability An introduction to image processing toolbox A few demo applications Image formats in a nutshell Pointers to image processing software and programming packages -3- Matlab is … : a numerical computing environment and programming language. Created by The MathWorks, MATLAB allows easy matrix manipulation, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs in other languages. Main Features: basic data structure is matrix optimized in speed and syntax for matrix computation Accessing Matlab on campus Student Version Matlab + Simulink $99 Image Processing Toolbox $59 Other relevant toolboxes $29~59 (signal processing, statistics, optimization, …) th CUNIX and EE lab (12 floor) has Matlab installed with CU site- license -4- Why MATLAB? Shorter code, faster computation Focus on ideas, not implementation C: #include <math.h> double x, f[500]; for( x=1.; x < 1000; x=x+2) f[(x-1)/2]=2*sin(pow(x,3.))/3+4.56; MATLAB: f=2*sin((1:2:1000).^3)/3+4.56; But: scripting language, interpreted, … … -5- MATLAB basic constructs M-files: functions scripts Language constructs Comment: % if .. else… for… while… end Help: help function_name, helpwin, helpdesk lookfor, demo -6- matrices … are rectangular “tables” of entries where the entries are numbers or abstract quantities … Some build-in matrix constructors a = rand(2), b = ones(2), c=eye(2), Addition and scalar product d = c*2; Dot product, dot-multiply and matrix multiplication c(:)’*a(:), d.*a, d*a Matrix inverse, dot divide, etc. -
Supported Formats (August 2020)
Oracle Outside In Technology 8.5.5 Supported Formats (August 2020) Archive Version Multimedia Version 7z split archives not supported) AVI (Metadata only) 7z Self Extracting exe (split archives not DICOM (File ID only) supported) LZA Self Extracting Compres Flash (text extraction only) 6.x, 7.x, Lite LZH Compress Flash (File ID only) 9,10 Microsoft Office Binder Real Media (File ID only) Microsoft Cabinet (CAB) 95 – 97 MP3 (ID3 metadata only) RAR 1.5, 2.0, 2.9, MPEG-1 Audio layer 3 V ID3 v1 5.0 (Metadata only) Self-extracting .exe MPEG-1 Audio layer 3 V ID3 v2 (Metadata only) UNIX Compress MPEG-1 Video V 2 (File ID only) UNIX GZip MPEG-1 Video V 3 (File ID only) UNIX tar MPEG-2 Audio (File ID only) Uuencode MPEG-4 (Metadata only) ZIP PKZip MPEG-7 (Metadata only) ZIP WinZip QuickTime (Metadata only) ZIP ZIP64 Windows Media ASF (Metadata only) Database Version Windows Media DVR-MS (Metadata only) DataEase 4.x Windows Media Audio WMA (Metadata only) DBase III, IV, V, X, X1 Windows Media Playlist (File ID only) First Choice DB Through 3.0 Windows Media Video WMV (Metadata only) Framework DB 3.0 WAV (Metadata only) Microsoft Access (text only) 1.0, 2.0, 95 … Other Version 2019 Microsoft Access Report Snapshot (File ID 2000 – 2003 AOL Messenger (File ID only) 7.3 only) Microsoft Works DB for DOS 2.0 Microsoft InfoPath (File ID only) 2007 Microsoft Works DB for Macintosh 2.0 Microsoft Live Messenger (via XML filter) 10.0 Microsoft Works DB for Windows 3.0, 4.0 Microsoft Office Theme files (File ID only) 2007 … 2019 Microsoft Works DB for DOS -
Encapsulated Postscript File Format Specification
® Encapsulated PostScript File Format Specification ®® Adobe Developer Support Version 3.0 1 May 1992 Adobe Systems Incorporated Adobe Developer Technologies 345 Park Avenue San Jose, CA 95110 http://partners.adobe.com/ PN LPS5002 Copyright 1985–1988, 1990, 1992 by Adobe Systems Incorporated. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of the publisher. Any software referred to herein is furnished under license and may only be used or copied in accordance with the terms of such license. PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name PostScript in the text are references to the PostScript language as defined by Adobe Systems Incorpo- rated unless otherwise stated. The name PostScript also is used as a product trademark for Adobe Sys- tems’ implementation of the PostScript language interpreter. Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers, files, and driver programs (respectively) which are written in or support the PostScript language. The sentences in this book that use “PostScript language” as an adjective phrase are so constructed to rein- force that the name refers to the standard language definition as set forth by Adobe Systems Incorpo- rated. PostScript, the PostScript logo, Display PostScript, Adobe, the Adobe logo, Adobe Illustrator, Tran- Script, Carta, and Sonata are trademarks of Adobe Systems Incorporated registered in the U.S.A. and other countries. Adobe Garamond and Lithos are trademarks of Adobe Systems Incorporated. -
Openimageio 1.7 Programmer Documentation (In Progress)
OpenImageIO 1.7 Programmer Documentation (in progress) Editor: Larry Gritz [email protected] Date: 31 Mar 2016 ii The OpenImageIO source code and documentation are: Copyright (c) 2008-2016 Larry Gritz, et al. All Rights Reserved. The code that implements OpenImageIO is licensed under the BSD 3-clause (also some- times known as “new BSD” or “modified BSD”) license: Redistribution and use in source and binary forms, with or without modification, are per- mitted provided that the following conditions are met: • Redistributions of source code must retain the above copyright notice, this list of condi- tions and the following disclaimer. • Redistributions in binary form must reproduce the above copyright notice, this list of con- ditions and the following disclaimer in the documentation and/or other materials provided with the distribution. • Neither the name of the software’s owners nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB- UTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT- NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD- ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL- ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -
Netpbm Format - Wikipedia, the Free Encyclopedia
Netpbm format - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Portable_anymap Netpbm format From Wikipedia, the free encyclopedia (Redirected from Portable anymap) The phrase Netpbm format commonly refers to any or all Portable pixmap of the members of a set of closely related graphics formats used and defined by the Netpbm project. The portable Filename .ppm, .pgm, .pbm, pixmap format (PPM), the portable graymap format extension .pnm (PGM) and the portable bitmap format (PBM) are image file formats designed to be easily exchanged between Internet image/x-portable- platforms. They are also sometimes referred to collectively media type pixmap, -graymap, [1] as the portable anymap format (PNM). -bitmap, -anymap all unofficial Developed Jef Poskanzer Contents by 1 History Type of Image file formats 2 File format description format 2.1 PBM example 2.2 PGM example 2.3 PPM example 3 16-bit extensions 4 See also 5 References 6 External links History The PBM format was invented by Jef Poskanzer in the 1980s as a format that allowed monochrome bitmaps to be transmitted within an email message as plain ASCII text, allowing it to survive any changes in text formatting. Poskanzer developed the first library of tools to handle the PBM format, Pbmplus, released in 1988. It mainly contained tools to convert between PBM and other graphics formats. By the end of 1988, Poskanzer had developed the PGM and PPM formats along with their associated tools and added them to Pbmplus. The final release of Pbmplus was December 10, 1991. In 1993, the Netpbm library was developed to replace the unmaintained Pbmplus. -
Data Format Guide
Data Format Guide Tecplot, Inc. Bellevue, WA 2006 COPYRIGHT NOTICE Tecplot 360TMData Format Guide is for use with Tecplot 360TM 2006. Copyright © 1988-2006 Tecplot, Inc. All rights reserved worldwide. Except for personal use, this manual may not be reproduced, trans- mitted, transcribed, stored in a retrieval system, or translated in any form, in whole or in part, without the express written permission of Tecplot, Inc., 3535 Factoria Blvd., Ste 550, Bellevue, Washington, 98006, U.S.A. The software discussed in this documentation and the documentation itself are furnished under license for utilization and duplication only according to the license terms. The copyright for the software is held by Tecplot, Inc. Documentation is provided for information only. It is subject to change without notice. It should not be interpreted as a commitment by Tecplot, Inc. Tecplot, Inc. assumes no liabil- ity or responsibility for documentation errors or inaccuracies. Tecplot, Inc PO Box 52708 Bellevue, WA 98015-2708 U.S.A. Tel: 1.800.763.7005 (within the U.S. or Canada), 00 1 (425)653-1200 (internationally) email: [email protected], [email protected] Questions, comments or concerns regarding this documentation: [email protected] For more information, visit http://www.tecplot.com THIRD PARTY SOFTWARE COPYRIGHT NOTICES ENCSA Hierarchical Data Format (HDF) Software Library and Utilities © 1988-1998 The Board of Trustees of the University of Illi- nois. All rights reserved. Contributors include National Center for Supercomputing Applications (NCSA) at the University of Illinois, Fortner Software (Windows and Mac), Unidata Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip). -
Multi-Media Imager Horizon ® G1 Multi-Media Imager
Hori zon ® G1 Multi-media Imager Horizon ® G1 Multi-media Imager Ove rview The Horizon G1 is an intelligent, desktop dry imager that produces diagnostic quality medical films plus grayscale paper prints if you choose the optional paper feature. The imager is compatible with many industry standard protocols including DICOM and Windows network printing. Horizon also features direct modality connection, with up to 24 simultaneous DICOM connections . High speed image processing, Optional A, A4 ,14”x17” 8” x10”, 14” x17” 11” x 14” Grayscale Pape r Blue and Clear Film Blue Film networking and spooling are standard. Speci fica tions Print Technology: Direct thermal (dry, daylight safe operatio n) Spatial Resolution: 320 DP I (12.6 pixels/mm) Throughput: Up to 100 films per hour Time To Operate: 5 minutes (ready to print from “of f”) Grayscale Contrast Resolutio n: 12 bits (4096) Media Inputs: One supply cassette, 8 0-100 sheets Media Outputs: One receive tray, 5 0-sheet capacity Media Sizes: 8” x 1 0”, 14” x 17” (blue and clea r), 11” x 14 ”(blu e) DirectVista ® Film Optional A, A4, 14” x 17” Direct Vista Grayscale Paper Dmax: >3.10 with Direct Vista Film Archival: >20 years with DirectVista Film, under ANSI extended-term storage conditions Media Supply: All media is pre-packaged and factory sealed Interfaces: Standard: 10/ 100/1,000 Base-T Ethernet (RJ- 45), Serial Console Network Protocols: Standard: 24 DICOM connections, FT P, LPR Optional: Windows network printing Image Formats: Standard: DICOM, TIFF, GIF, PCX, BMP, PGM, PNG, PPM, XWD, JPEG, SGI (RGB), Sunrise Express “Swa p” Service Sun Raster, Targa Smart Card from imager being replaced Optional: PostScript™ compatibility contains all of your internal settings such a s Image Qualit y: Manual calibration IP addresses, gamma and contras t . -
FILE FORMATS Darry D
WordPerfect FILE FORMATS Darry D In WordPerfect, when you select File > Open, you are taken to “My Documents.” However, that does not mean that you can open all the files that are stored there. Here are the programs that can open a file, based upon its file extension. A file extension is a string of characters beginning with a period and followed by one to three letters; the optional second part of a PC computer filename; “most applications provide extensions for the files they create”; for example, WordPerfect uses the file extension “wpd”. o .cgm — CGM (Computer Graphics Metafile) was a once-standard for- mat for interchanging graphics images. CGM stores images primarily in vector graphics, but also provides a raster format. Earlier GDM and VDM formats have been merged into CGM. There are many non-standard varieties of CGM in use. Usually found in the “My Pictures” folder of “My Documents” or some other graphics folder (such as “Art”), it can be inserted into WordPerfect 9 using Insert > Graphics > From File (from the MenuBar). o .cvs — comma-delimited file (a database with items separated by commas); this one can be opened only by importing it into the Outlook Express Address Book. o .doc — Created with MS Word; WordPerfect can open it. o .eml — Email created by Outlook Express or Outlook either of which can open it. Http://DarryD.com (5 November 2020) Page 1 of 4 WORDPERFECT 5 NOVEMBER 2020 o .htm —. It is the file extension of HTML, created by programs like Microsoft FrontPage and others, including WordPerfect. -
TP1 Image File Manipulation
M1Mosig Introduction to Visual Computing TP1 Image File Manipulation The objective of this practical work is to implement basic image manipu- lation tools, e.g. read, write and convert. To this aim, and without loss of generality, the simple image file formats PBM (Portable Map) will be consid- ered. 1 "Portable Map" image file formats The netpbm file formats PBM, PGM and PPM are respectively: portable bitmap, portable grayscalemap and portable pixmap (also called PNM for portable anymap). They were originally designed in the early 80’s to ease image exchange between platforms. They offer a simple and pedagogical solution to develop image manipulation tools. In these formats, an image is a matrix of pixels where values represent the illumination in each pixel: white and black (PBM), grayscale (PGM) or 3 values RGB (PPM). Definition The PNM file content is as follows: 1. A ’magic number’ that identifies the file type. A pbm image’s magic number is the two characters ’P1’ (ASCII) or ’P4’ (binary). 2. Whitespace (blanks, TABs, CRs, LFs). 3. The width and height (separated with a whitespace) in pixels of the image, formatted as ASCII characters in decimal. 4. Only for PGM and PPM: The maximum intensity value between 0 and 255, again in ASCII decimal, followed by a whitespace. 5. Width × Height numbers. Those numbers are either decimal values coded in ASCII et separated by a whitespace for the formats P1, P2, P3, or directly binary values (usually 1 byte) in the case of P4, P5, P6. In the latter case, there is no whitespace between values. -
Image Formats
Image Formats Ioannis Rekleitis Many different file formats • JPEG/JFIF • Exif • JPEG 2000 • BMP • GIF • WebP • PNG • HDR raster formats • TIFF • HEIF • PPM, PGM, PBM, • BAT and PNM • BPG CSCE 590: Introduction to Image Processing https://en.wikipedia.org/wiki/Image_file_formats 2 Many different file formats • JPEG/JFIF (Joint Photographic Experts Group) is a lossy compression method; JPEG- compressed images are usually stored in the JFIF (JPEG File Interchange Format) >ile format. The JPEG/JFIF >ilename extension is JPG or JPEG. Nearly every digital camera can save images in the JPEG/JFIF format, which supports eight-bit grayscale images and 24-bit color images (eight bits each for red, green, and blue). JPEG applies lossy compression to images, which can result in a signi>icant reduction of the >ile size. Applications can determine the degree of compression to apply, and the amount of compression affects the visual quality of the result. When not too great, the compression does not noticeably affect or detract from the image's quality, but JPEG iles suffer generational degradation when repeatedly edited and saved. (JPEG also provides lossless image storage, but the lossless version is not widely supported.) • JPEG 2000 is a compression standard enabling both lossless and lossy storage. The compression methods used are different from the ones in standard JFIF/JPEG; they improve quality and compression ratios, but also require more computational power to process. JPEG 2000 also adds features that are missing in JPEG. It is not nearly as common as JPEG, but it is used currently in professional movie editing and distribution (some digital cinemas, for example, use JPEG 2000 for individual movie frames). -
Avid Media Composer and Film Composer Input and Output Guide • Part 0130-04531-01 Rev
Avid® Media Composer® and Film Composer® Input and Output Guide a tools for storytellers® © 2000 Avid Technology, Inc. All rights reserved. Avid Media Composer and Film Composer Input and Output Guide • Part 0130-04531-01 Rev. A • August 2000 2 Contents Chapter 1 Planning a Project Working with Multiple Formats . 16 About 24p Media . 17 About 25p Media . 18 Types of Projects. 19 Planning a Video Project. 20 Planning a 24p or 25p Project. 23 NTSC and PAL Image Sizes . 23 24-fps Film Source, SDTV Transfer, Multiformat Output . 24 24-fps Film or HD Video Source, SDTV Downconversion, Multiformat Output . 27 25-fps Film or HD Video Source, SDTV Downconversion, Multiformat Output . 30 Alternative Audio Paths . 33 Audio Transfer Options for 24p PAL Projects . 38 Film Project Considerations. 39 Film Shoot Specifications . 39 Viewing Dailies . 40 Chapter 2 Film-to-Tape Transfer Methods About the Transfer Process. 45 Transferring 24-fps Film to NTSC Video. 45 Stage 1: Transferring Film to Video . 46 Frames Versus Fields. 46 3 Part 1: Using a 2:3 Pulldown to Translate 24-fps Film to 30-fps Video . 46 Part 2: Slowing the Film Speed to 23.976 fps . 48 Maintaining Synchronized Sound . 49 Stage 2: Digitizing at 24 fps. 50 Transferring 24-fps Film to PAL Video. 51 PAL Method 1. 52 Stage 1: Transferring Sound and Picture to Videotape. 52 Stage 2: Digitizing at 24 fps . 52 PAL Method 2. 53 Stage 1: Transferring Picture to Videotape . 53 Stage 2: Digitizing at 24 fps . 54 How the Avid System Stores and Displays 24p and 25p Media . -
Windows Metafiles
Windows Metafiles An Analysis of the EMF Attack Surface & Recent Vulnerabilities Mateusz “j00ru” Jurczyk Ruxcon, Melbourne 2016 PS> whoami • Project Zero @ Google • Low-level security researcher with interest in all sorts of vulnerability research and software exploitation • http://j00ru.vexillium.org/ • @j00ru Agenda • Windows Metafile primer, GDI design, attack vectors. • Hacking: • Internet Explorer (GDI) • Windows Kernel (ATMFD.DLL) • Microsoft Office (GDI+) • VMware virtualization (Print Spooling) • Final thoughts. Windows GDI & Metafile primer Windows GDI • GDI stands for Graphics Device Interface. • Enables user-mode applications to use graphics and formatted text on video displays and printers. • Major part of the system API (nearly 300 documented functions). • Present in the OS since the very beginning (Windows 1.0 released in 1985). • One of the oldest subsystems, with most of its original code still running 31 years later. • Concidentally (?) also one of the most buggy components. How to draw 1. Grab a handle to a Device Context (HDC). • Identifies a persistent container of various graphical settings (pens, brushes, palettes etc.). • Can be used to draw to a screen (most typically), a printer, or a metafile. • Most trivial example: HDC hdc = GetDC(NULL); (obtains a HDC for the entire screen) How to draw 2. Use a drawing function. Ellipse(hdc, 100, 100, 500, 300); RoundRect(hdc, 100, 100, 500, 500, 100, 100); Windows GDI – simplified architecture NT OS Kernel Display Drivers Printer Drivers Font Drivers Kernel-mode GDI (win32k.sys) ring-0 ring-3 User-mode GDI (gdi32.dll) GDI+ (gdiplus.dll) app1.exe app2.exe app3.exe app4.exe User to kernel API mappings Most user-mode GDI functions have their direct counterparts in the kernel: GDI32.DLL win32k.sys AbortDoc NtGdiAbortDoc AbortPath NtGdiAbortPath AddFontMemResourceEx NtGdiAddFontMemResourceEx AddFontResourceW NtGdiAddFontResourceW AlphaBlend NtGdiAlphaBlend ..