BN46/51, a New Nucleolar Protein, Binds to the Basal Body Region in Naegleria Gruberi Flagellates

Total Page:16

File Type:pdf, Size:1020Kb

BN46/51, a New Nucleolar Protein, Binds to the Basal Body Region in Naegleria Gruberi Flagellates Journal of Cell Science 103, 167-181 (1992) 167 Printed in Great Britain © The Company of Biologists Limited 1992 BN46/51, a new nucleolar protein, binds to the basal body region in Naegleria gruberi flagellates GIN A M. TRIMBUR and CHARLES J. WALSH* Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA •Author for correspondence Summary Indirect immunofluorescence with the monoclonal anti- body region is resistant to extraction, even with 2 M body, BN5.1, labels the nucleolus of amebae of the NaCl. Solubilized BN46/51 exists as a heterogeneous amebo-flagellate Naegleria gruberi. When amebae dif- multimer that elutes on gel filtration with a peak at 400 ferentiate into flagellates, BN5.1 binds to nucleoli and to to 500 kDa and sediments on sucrose gradients at 5.5 S. the basal body region. The BN5.1 antigen is not present The multimers consist of only the 46 kDa and the 51 kDa in basal bodies when basal bodies form at about 60 min subunits in equal amounts as judged by glutaraldehyde after initiation of the differentiation or when flagella cross-linking and by chromatography on BN5.1 affinity form at about 70 min. The BN5.1 antigen is first columns. Nucleolar BN46/51 is associated with the dense detectable in the basal body region at 85 min after fibrillar and granular components of the nucleolus. initiation, a time when the basal body region acts as a However, it does not resemble any previously described microtubule organizing center for the formation of the nucleolar protein. Neither BN5.1, nor three other mAbs microtubule cytoskeleton (MTCS) of flagellates. When that recognize additional epitopes on both the 46 kDa flagellates revert spontaneously to amebae, the BN5.1 and 51 kDa subunits of BN46/51, binds to nucleoli from antigen is lost from the basal body region coincident with Saccharomyces cerevisiae or mammalian cells. BN5.1 the loss of the MTCS. The BN5.1 antigen, composed of does not bind to the nucleoli of Dictyostelium discoideum approximately equal amounts of two subunits of 46 kDa or Euglena gracilis. Thus BN46/51 is an unusual and and 51 kDa, both of which carry the BN5.1 epitope, has perhaps unique nucleolar component whose presence in been named BN46/51. BN46/51 in the basal body region the basal body region presents a challenge to our comigrates with the nucleolar antigen by two-dimen- understanding of the cytoskeleton. sional gel electrophoresis. Approximately 75% of the nucleolar BN46/51 is solubilized by extracton with 0.4 M Key words: nucleolar antigen, basal body, cytoskeleton, NaCl. However, the antigen associated with the basal Naegleria. Introduction evidence, however, favors the DFC as the site of transcription. rDNA has been localized to the DFC by Nucleoli are the sites of rRNA transcription, rRNA Wachtler et al. (1989, 1992). By pulse-chase labelling, processing and the assembly of ribosomal subunits nascent rRNA transcripts were found first in the DFC (Scheer and Benavente, 1990; Sommerville, 1986; (Deltour and Mosen, 1987; Goessens, 1976). Topo- Warner, 1990). The nucleolus is composed of three isomerase I and RNA polymerase I have both been generally recognized morphological components: the localized in the DFC (Raska et al., 1989; reviewed by fibrillar centers (FC), the dense fibrillar component Jordan, 1991). Fibrillarin (Ochs et al., 1985), a (DFC), and the granular component (GC) (Jordan, component of the U3 snRNP involved in the first 1984; Goessens, 1984; Warner, 1990). However, despite preribosomal RNA processing step (Kass et al., 1990), extensive investigation, the functional significance of is localized to the DFC (Scheer and Benavente, 1990). these morphological components is unclear. Most of the In contrast it is generally agreed that the GC represents discussion has been focused on the function of the FC ribosomal subunits in various stages of assembly (Hiigle and DFC components. For example, the presence of et al., 1985; Warner, 1990). RNA polymerase I (Scheer and Rose, 1984) and rRNA Nuclei of the amebo-flagellate Naegleria gruberi have genes in the FC of nucleoli (Knibiehler et al., 1977; a single large nucleolus (Fulton, 1970; Schuster, 1975). Jordan and Rawlins, 1990) suggests that the FC is the Despite its large size, the Naegleria nucleolus is site of transcription of the rRNA genes. Other composed of the three characteristic morphological 168 G. M. Trimbur and C. J. Walsh components. It is rapidly labeled by RNA precursors vortexed in the presence of non-ionic detergents (Walsh and and it is enriched in 28 S rRNA (Walsh and Fulton, Fulton, 1973). In contrast, nucleoli are quite resistant and 1973) as are nucleoli in other cells. However, the remain intact. The lysate was centrifuged in an IEC Clinical Naegleria nucleolus does differ from most nucleoli in centrifuge at a setting of 6 for 1 min to pellet cysts and unlysed cells. (As noted by Fulton (1970), expression of these brief the organization of the rRNA genes. Instead of a centrifugations as g forces is meaningless because the tandem array of rRNA genes at one or more chromo- centrifuge is accelerating during this time; they are, however, somal locations, the Naegleria rRNA genes are found reproducible.) Nucleoli were pelleted by centrifugation of the exclusively on approximately 4000 copies of a 17 kbp resulting supernatant at 10,400 g for 2 min. Additional plasmid (Clark and Cross, 1987, 1988). Another nucleoli were collected by centrifuging the supematent a unusual feature of the Naegleria nucleolus is that it does second time as above. When flagellates were used, the final not disperse during mitosis (Fulton, 1970; Schuster, supernatant was saved for the isolation of flagellar rootletyfoa- 1975). Mitosis in Naegleria is closed and the nucleolus sal body complexes, described below. divides as the chromosomes separate on the intra- The nucleolar pellets were pooled by resuspension in 4 ml nuclear spindle. of 1 M sucrose-RLB, overlayed on a 1.62 M sucrose-RLB pad and centrifuged for 13 min at 10,400 g. The pellet was This report describes the identification and character- resuspended in 1 ml of SPMG (63 mM sucrose, 25 mM sodium ization of a novel protein, BN46/51, found in the DFC phosphate, pH 7.2, 2.5 mM MgCI, and 0.5 mM EGTA) and and GC of Naegleria nucleoli. BN46/51 is unusual in nucleoli were counted in a hemocytometer. The nucleoli were that it is also associated with the basal body region of pelleted by centrifugation at 15,000g for 1 min. Nucleoli were Naegleria flagellates. Amebae of N. gruberi can solubilized by resuspension in 0.4 M NaCI-SPMG at 4 x 108 synchronously and rapidly differentiate into swimming nucleoli/ml for 30 min on ice. This extract was centrifuged for flagellates when washed free of their food source 10 min at 15,000 g. The supernatant was saved and used as a (Fulton, 1970; Fulton, 1977; Fulton and Dingle, 1967). source of soluble BN46/51. The differentiation results in the de novo assembly of When nucleoli were prepared for immunofluorescence, basal bodies (Dingle and Fulton, 1966; Fulton, 1970; nucleoli were resuspended in SPMG and an equal volume of Fulton and Dingle, 1971), flagellar axonemes (Dingle fixative (MgCF) was added as described below. Nucleolar fractions contained few if any rootlet/basal body complexes and Fulton, 1966), flagellar rootlets (Dingle and Fulton, when observed by phase-contrast microscopy. 1966; Larson and Dingle, 1981a,b), and a microtubule Rootlet/basal body complexes were prepared from the final cytoskeleton (MTCS) (Walsh, 1984). BN46/51 is associ- nucleolar-depleted supernatant by addition of 1 M KI in RLB ated with the nucleolus in amebae, and appears in the without glycerol to make the extract 0.1 M KI as described by basal body region when the MTCS assembles in Larson and Dingle (1981a). This extract was centrifuged at flagellates. This unexpected observation raises a num- 16,300 g for 10 min. The pellet was resuspended in 1 ml of 0.1 ber of interesting questions about the role of BN46/51 in M KC1-RLB without glycerol, and centrifuged at 15,000 g. the cell. As a first step in examining these questions we The pellet was rinsed with 1 ml of SPMG and resuspended in 9 9 have undertaken a characterization of BN46/51. SPMG at 1 x 10 to 2 x 10 cell equivalents/ml. Rootlet/basal body fractions contained no nucleoli as judged by phase- contrast microscopy. Materials and methods Antigen preparation, monoclonal antibody and ascites production Growth and differentiation of Naegleria gruberi Rootlet/basal body complexes from 2 X 109 flagellates were Naegleria gruberi strain NB-1 (Fulton, 1970; Fulton and solubilized in Laemmli sample buffer (Laemmli, 1970) by Dingle, 1967) was grown on NM or PM agar with Klebsiella heating in boiling water for 2 min and electrophoresed on pneumoniae as previously described (Fulton and Dingle, 7.5% SDS-polyacrylamide gels (Laemmli, 1970). Gels were 1967). Amebae were harvested and washed free of bacteria in stained for 5 min with Coomassie Blue and destained in ice-cold 2 mM Tris-HCl (pH 7.6 at 20°C). Differentiation was deionized water. Proteins in the size range of 46 to 48 kDa initiated in this same buffer at 25°C with 15 ml in 125 ml were cut out of the gel and the gel piece was minced in TBS Erlenmeyer flasks or 25 ml in 250 ml Erlenmeyer flasks on a (50 mM Tris-HCl, pH 7.4, 200 mM NaCl). Complete Fruend's reciprocating shaker as described by Fulton and Dingle adjuvant was added at a 3:1 ratio and the mixture emulsified. (1967).
Recommended publications
  • The Cytoskeleton of Giardia Lamblia
    International Journal for Parasitology 33 (2003) 3–28 www.parasitology-online.com Invited review The cytoskeleton of Giardia lamblia Heidi G. Elmendorfa,*, Scott C. Dawsonb, J. Michael McCafferyc aDepartment of Biology, Georgetown University, 348 Reiss Building 37th and O Sts. NW, Washington, DC 20057, USA bDepartment of Molecular and Cell Biology, University of California Berkeley, 345 LSA Building, Berkeley, CA 94720, USA cDepartment of Biology, Johns Hopkins University, Integrated Imaging Center, Baltimore, MD 21218, USA Received 18 July 2002; received in revised form 18 September 2002; accepted 19 September 2002 Abstract Giardia lamblia is a ubiquitous intestinal pathogen of mammals. Evolutionary studies have also defined it as a member of one of the earliest diverging eukaryotic lineages that we are able to cultivate and study in the laboratory. Despite early recognition of its striking structure resembling a half pear endowed with eight flagella and a unique ventral disk, a molecular understanding of the cytoskeleton of Giardia has been slow to emerge. Perhaps most importantly, although the association of Giardia with diarrhoeal disease has been known for several hundred years, little is known of the mechanism by which Giardia exacts such a toll on its host. What is clear, however, is that the flagella and disk are essential for parasite motility and attachment to host intestinal epithelial cells. Because peristaltic flow expels intestinal contents, attachment is necessary for parasites to remain in the small intestine and cause diarrhoea, underscoring the essential role of the cytoskeleton in virulence. This review presents current day knowledge of the cytoskeleton, focusing on its role in motility and attachment.
    [Show full text]
  • Cytoskeleton Cytoskeleton
    CYTOSKELETON CYTOSKELETON The cytoskeleton is composed of three principal types of protein filaments: actin filaments, intermediate filaments, and microtubules, which are held together and linked to subcellular organelles and the plasma membrane by a variety of accessory proteins Muscle Contraction • Skeletal muscles are bundles of muscle fibers • Most of the cytoplasm consists of myofibrils, which are cylindrical bundles of two types of filaments: thick filaments of myosin (about 15 run in diameter) and thin filaments of actin (about 7 nm in diameter). • Each myofibril is organized as a chain of contractile units called sarcomeres, which are responsible for the striated appearance of skeletal and cardiac muscle. Structure of muscle cells Sarcomere • The ends of each sarcomere are defined by the Z disc. • Within each sarcomere, dark bands (called A bands because they are anisotropic when viewed with polarized light) alternate with light bands (called I bands for isotropic). • The I bands contain only thin (actin) filaments, whereas the A bands contain thick (myosin) filaments. • The myosin and actin filaments overlap in peripheral regions of the A band, whereas a middle region (called the H zone) contains only myosin. Muscle contraction • The basis for understanding muscle contraction is the sliding filament model, first proposed in 1954 both by Andrew Huxley and Ralph Niedergerke and by Hugh Huxley and Jean Hanson • During muscle contraction each sarcomere shortens, bringing the Z discs closer together. • There is no change in the width of the A band, but both the I bands and the H zone almost completely disappear. • These changes are explained by the actin and myosin filaments sliding past one another so that the actin filaments move into the A band and H zone.
    [Show full text]
  • Cilia and Flagella: from Discovery to Disease Dylan J
    Dartmouth Undergraduate Journal of Science Volume 20 Article 2 Number 1 Assembly 2017 Cilia and Flagella: From Discovery to Disease Dylan J. Cahill Dylan Cahill, [email protected] Follow this and additional works at: https://digitalcommons.dartmouth.edu/dujs Part of the Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Cahill, Dylan J. (2017) "Cilia and Flagella: From Discovery to Disease," Dartmouth Undergraduate Journal of Science: Vol. 20 : No. 1 , Article 2. Available at: https://digitalcommons.dartmouth.edu/dujs/vol20/iss1/2 This Research Article is brought to you for free and open access by the Student-led Journals and Magazines at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth Undergraduate Journal of Science by an authorized editor of Dartmouth Digital Commons. For more information, please contact [email protected]. BIOLOGY Cilia and Flagella: FromCilia and Discovery Flagella: to Disease From Discovery to Disease BY DYLAN CAHILL ‘18 Introduction certain insect sperm fagella (3, 5, 6). A unique Figure 1: Chlamydomonas intracellular transport mechanism known as reinhardtii, a single-celled, bi- In 1674, peering through the lens of a crude flagellate green alga, viewed intrafagellar transport is responsible for the light microscope, Antoni van Leeuwenhoek with a scanning electron assembly and maintenance of these organelles Chlamydomonas observed individual living cells for the frst time microscope. is (3, 6). Cilia and fagella are primarily composed a model organism in flagellar in history (1). He noted long, thin appendages of the protein tubulin, which polymerizes into dynamics and motility studies.
    [Show full text]
  • Ciliary Dyneins and Dynein Related Ciliopathies
    cells Review Ciliary Dyneins and Dynein Related Ciliopathies Dinu Antony 1,2,3, Han G. Brunner 2,3 and Miriam Schmidts 1,2,3,* 1 Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany; [email protected] 2 Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands; [email protected] 3 Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands * Correspondence: [email protected]; Tel.: +49-761-44391; Fax: +49-761-44710 Abstract: Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel Citation: Antony, D.; Brunner, H.G.; developments in the field.
    [Show full text]
  • 3D Structure of Eukaryotic Flagella in a Quiescent State Revealed by Cryo-Electron Tomography
    3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography Daniela Nicastro*†, J. Richard McIntosh‡§, and Wolfgang Baumeister* *Abteilung Molekulare Strukturbiologie, Max-Planck-Institut fu¨r Biochemie, 82152 Martinsried, Germany; and ‡Laboratory for 3D Electron Microscopy of Cells, Department of Molecular, Cellular, and Developmental Biology, UCB 347, University of Colorado, Boulder, CO 80309 Contributed by J. Richard McIntosh, September 21, 2005 We have used cryo-electron tomography to investigate the 3D position. McEwen et al. (12) have used electron tomography structure and macromolecular organization of intact, frozen- (ET) to study chemically fixed and resin-embedded cilia from hydrated sea urchin sperm flagella in a quiescent state. The newt lung. ET uses 2D projection images from many different tomographic reconstructions provide information at a resolution viewing angles to reconstruct an object in three dimensions (13, better than 6 nm about the in situ arrangements of macromolecules 14). These researchers were able to identify major features of that are key for flagellar motility. We have visualized the hep- axonemes in the tomographic reconstructions of the 250-nm- tameric rings of the motor domains in the outer dynein arm thick sections, but at a resolution of Ϸ12 nm, detailed insights complex and determined that they lie parallel to the plane that into the molecular organization of the axoneme were not contains the axes of neighboring flagellar microtubules. Both the available. material associated with the central pair of microtubules and the Thanks to technological advances of the past decade, ET can radial spokes display a plane of symmetry that helps to explain the now be applied to relatively large, frozen-hydrated structures.
    [Show full text]
  • RSPH6A Is Required for Sperm Flagellum Formation and Male
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs221648. doi:10.1242/jcs.221648 RESEARCH ARTICLE RSPH6A is required for sperm flagellum formation and male fertility in mice Ferheen Abbasi1,2,‡, Haruhiko Miyata1,‡, Keisuke Shimada1, Akane Morohoshi1,2, Kaori Nozawa1,2,*, Takafumi Matsumura1,3, Zoulan Xu1,3, Putri Pratiwi1 and Masahito Ikawa1,2,3,4,§ ABSTRACT (Carvalho-Santos et al., 2011) and is used for sensing and The flagellum is an evolutionarily conserved appendage used for locomotion. Mammalian spermatozoan flagella are highly sensing and locomotion. Its backbone is the axoneme and a specialized to carry male genetic material into the female component of the axoneme is the radial spoke (RS), a protein reproductive tract and fertilize the oocyte. Internal cross-sections ‘ ’ complex implicated in flagellar motility regulation. Numerous diseases show that the flagellum comprises a 9+2 microtubule structure: a occur if the axoneme is improperly formed, such as primary ciliary bundle of nine microtubule doublets that surround a central pair of dyskinesia (PCD) and infertility. Radial spoke head 6 homolog A single microtubules (Satir and Christensen, 2007). Called the (RSPH6A) is an ortholog of Chlamydomonas RSP6 in the RS head axoneme, this structure consists of macromolecular complexes such and is evolutionarily conserved. While some RS head proteins have as the outer and inner dynein arms and radial spokes (RSs) been linked to PCD, little is known about RSPH6A. Here, we show that (Fig. 1A). mouse RSPH6A is testis-enriched and localized in the flagellum. First characterized in sea urchins (Afzelius, 1959), the RS is a Rsph6a knockout (KO) male mice are infertile as a result of their short T-shaped protein complex that extends from the doublet immotile spermatozoa.
    [Show full text]
  • Direction of Sliding and Relative Sliding Velocities Within Trypsinized Sperm Axonemes of Gallus Domesticus
    Direction of sliding and relative sliding velocities within trypsinized sperm axonemes of Gallus domesticus DAVID M. WOOL LEY and ANDREW BRAMMALL* Department ofl'liysioloi>y. The Medical School, L'niversity of Bristol, Bristol BSS ITD, L'K •Present address: MRC Experimental Embryology and Teratology Unit, Medical Research Council Laboratories, Carshalton, Surrev SMS 4EF, UK Summary Trypsin digestion of demembranated fowl sper- orderly way by inter-doublet sliding. All the matozoa caused a longitudinal splitting of the doublets of the axoneme could be reactivated and distal part of the axoneme. The resulting strands, in all instances the direction of sliding was the consisting of groups of doublet microtubules, same as that reported for the cilia of Tetrahy- formed left-handed helices. On the evidence of tnena. Within the groups of doublets the electron micrographs, the digestion had caused measured inter-doublet displacements were gen- the loss of dynein arms from the outer row; it is erally similar, suggesting that the rates of sliding assumed that the doublets remained linked had been equivalent. These findings are con- together by dynein arms of the inner row. When trasted with the differential pattern of activation such helices were mechanically detached from that is assumed to occur in vivo. the proximal flagellum and reactivated with ad- Key words: Gallus domestic/is, sperm axonemes, sliding enosine triphosphate, they lengthened in an velocity. Introduction We have therefore made use of these preparations to study two aspects of the sliding behaviour relevant to It is well established that the motion of eukaryotic cilia the question of control and coordination.
    [Show full text]
  • Microtubule Motors
    Microtubule Forces Kevin Slep Microtubules are a Dynamic Scaffold Microtubules in red, XMA215 family MT polymerase protein in green Some Microtubule Functions Cell Structure Polarized Motor Track (kinesins and dynein) Cilia structure (motile and sensory) Mitotic and meiotic spindle structure Cell polarity Coordinate cell motility with the F-actin network Architecture of Tubulin and the Microtubule α/β-Tubulin: The Microtubule Building Block Tubulin is a heterodimer composed of α and β tubulin α and β tubulin are each approximately • 55 kD and are structurally very similar to •each other. •Each tubulin binds GTP: The α GTP is non- exchangeable and the dimer is very stable, Kd = 10-10; the β GTP is exchangeable in the dimer The Microtubule Architecture Tubulin binds head-to-tail along + protofilaments, forming LONGITUDINAL interactions. Longitudinal interactions complete the active site for GTP hydrolysis 13 protofilaments form a hollow tube-the microtubule: 25 nm OD, 14 nm ID (protofilaments interact via LATERAL interactions) The MT is a left-handed helix with a seam, it rises 1.5 heterodimers per turn (α and β form lateral interactions) MTs are polar-they have a plus end and a minus end - The γTubulin Ring Complex (γTuRC) forms a lockwasher to nucleate MTs Axial view Side View γTuRC positions nucleated 13 γTubulins in a ring γTuRC attachment microtubule The Centrosome is a Microtubule Organizing Center (MTOC) rich in γTuRC MTOC’s control where microtubules are formed Centrosomes contain peri-centrosomal material (PCM) surrounding a pair of centrioles γTuRC nucleation complexes are localized to the PCM Centrioles within centrosomes become basal bodies, which are nucleation centers for cilia (motile and primary) and flagella Centrosomes duplicate once per cell cycle Mother centriole nucleates growth of a daughter centriole with an orthogonal orientation Microtubule Polarity and Dynamics Polarized Microtubule Organization in Vivo Centrosome + + + + + + + + + Interphase Mitosis Microtubules are Dynamic Fish melanophore injected with Cy3-tubulin Vorobjev, I.A.
    [Show full text]
  • Dynamic Curvature Regulation Accounts for the Symmetric and Asymmetric Beats of Chlamydomonas Flagella
    Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella Pablo Sartori1,*, Veikko F. Geyer2,*, Andre Scholich1, Frank J¨ulicher1, Jonathon Howard2,† 1 Max Planck Institute for the Physics of Complex Systems, Dresden, Germany 2 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut * These authors contributed equally to this work. †[email protected] Abstract Cilia and flagella are model systems for studying how mechanical forces control mor- phology. The periodic bending motion of cilia and flagella is thought to arise from mechanical feedback: dynein motors generate sliding forces that bend the flagellum, and bending leads to deformations and stresses, which feed back and regulate the motors. Three alternative feedback mechanisms have been proposed: regulation by the sliding forces, regulation by the curvature of the flagellum, and regulation by the normal forces that deform the cross-section of the flagellum. In this work, we combined theoretical and experimental approaches to show that the curvature control mechanism is the one that accords best with the bending waveforms of Chlamydomonas flagella. We make the surprising prediction that the motors respond to the time derivative of curvature, rather than curvature itself, hinting at an adaptation mechanism controlling the flagellar beat. Introduction Cilia and flagella are long, thin organelles whose oscillatory bending waves propel cells through fluids and drive fluid flows across the surfaces of cells. The internal motile structure, the axoneme, contains nine doublet microtubules, a central pair of single microtubules, motor proteins of the axonemal dynein family and a large number of additional structural and regulatory proteins [Pazour et al., 2005].
    [Show full text]
  • Axoneme Structure from Motile Cilia
    Axoneme Structure from Motile Cilia Takashi Ishikawa1,2 1Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland 2Department of Biology, ETH Zurich, 5232 Villigen PSI, Switzerland Correspondence: [email protected] The axoneme is the main extracellular part of cilia and flagella in eukaryotes. It consists of a microtubule cytoskeleton, which normally comprises nine doublets. In motile cilia, dynein ATPase motor proteins generate sliding motions between adjacent microtubules, which are integrated into a well-orchestrated beating or rotational motion. In primary cilia, there are a number of sensory proteins functioning on membranes surrounding the axoneme. In both cases, as the study of proteomics has elucidated, hundreds of proteins exist in this compart- mentalized biomolecular system. In this article, we review the recent progress of structural studies of the axoneme and its components using electron microscopy and X-ray crystallog- raphy, mainly focusing on motile cilia. Structural biology presents snapshots (but not live imaging) of dynamic structural change and gives insights into the force generation mecha- nism of dynein, ciliary bending mechanism, ciliogenesis, and evolution of the axoneme. lagella and cilia are appendage-like organ- (Fig. 1E). The axoneme consists of microtubule Felles in eukaryotic cells. Cilia and flagella doublets (MTDs) and many other proteins (these two terms are used interchangeably) are encapsulated in the plasma membrane. The ax- categorized into two classes by function and oneme from most of the species has a 5- to 10- structure. One is motile cilia, which have dy- mm length and an 300-nm diameter. nein, a family of ATPase motor proteins, and The axoneme of motile cilia is a closed sys- generate motion, whereas primary cilia are non- tem—when it is isolated from the basal body motile and play roles in sensory function and and the cell body, it can still generate bending transportation.
    [Show full text]
  • Flagella Apparatus
    MOTILE CELL Characters and Character States Location code / cell type ZO, zoospore Flagella apparatus Kinetosome Electron-opaque material in core in kinetosome 0, absent (everything else); 1, present (Kappamyces). Electron-opaque material in axoneme core and between axoneme and flagellar membrane 0, absent; 1, present (many Chytridiales). Kinetosome characters Scalloped ring within kinetosome, extensions of the A, B, or C microtubule Flagellum coating 0, absent; 1, present (Polyphagus euglenae). Number of flagella 0, one 1, multiple Kinetosome-associated structures (KAS) Kinetosome support 0, absent 1, kinetosome props; 2, broken kinetosome props (Olpidium radicale); 3, saddle-like structure surrounding kinetosome (Neocallimastigales) Kinetosome-associated plates 0, absent; 1, present. Kinetosome-associated spur 0, absent; 1, present. Kinetosome-associated shield 0, absent; 1, present. Kinetosome-associated veil 0, absent; 1, present. Anteriorly oriented kinetosome microtubule organizing center (MTOC) (Spizellomycetales) 0, absent; 1, simple solid, not laminate, only one part (Spizellomyces); 2, stacked plates with radiating anteriorly oriented microtubules (Powellomyces) 3, stacked plates with laterally anteriorly oriented microtubules (Gaerteromyces) 4, compound, two in stacked arrangement (Kochiomyces) 5, tripartitalcar rod with 3 lobes in cross-section Primary microtubule roots 0, absent; 1, 2-5 parallel microtubules are stacked with space between them, no connectors (Rhyzophydium); 2, approx. 6-7 parallel microtubules chord-like; 3, more than 20 parallel microtubules, bundled and have connectors/linkers between them (Nowakowskiella); 4, microtubules posterior to anterior, parallel to kinetosome triplets (Batracomyces – not separated like Rhysophydium). Striated rhizoplast 0, absent; 1, present. Flagellar rootlet absolute configuration 0, absent; 1, 20 degrees left; 2, 10 degrees right; 3, 50 degrees left.
    [Show full text]
  • Flagellar Regeneration in Chlamydomonas Introduction: Chlamydomonas Are Single-Celled, Motile Green Algae
    Biology 29 Cell Structure and Function Spring, 2009 Lab 4 - Flagellar regeneration in Chlamydomonas Introduction: Chlamydomonas are single-celled, motile green algae. They move by rotating two flagella that extend from the anterior end of the cell. Figure 1 shows a typical cell. These are photosynthetic eukaryotic cells that contain a nucleus, and a single large cup-shaped chloroplast. Within the chloroplast is a carbon-fixation region called the pyrenoid. The pyrenoid is encased in highly refractive starch molecules and so appears as a bright spot in phase microscopy. The flagella contain cytoskeletal structures called Figure 1: Phase contrast image of microtubules which are in turn polymers of protein called C. reinhardtii, showing locations of chloroplast, pyrenoid and flagella tubulin (see Figure 2). The microtubules are arrayed into a cylindrical shape called an axoneme (see Figure 3), surrounded by an extension of the cell membrane. Chlamydomonas loses its flagella just before dividing and after mating. The cell can regenerate its flagella by rebuilding the microtubule polymers of the axoneme. As the new flagellum grows, monomeric tubulins are transported to the distal end by molecular motors called kinesins, and added to the growing structure at this end. The process of regeneration is triggered by signals transduced through both Calcium ion and cAMP-activated pathways. Figure 3: Cross-section of a flagellar axoneme, with microtubule polymers visible as rings (adapted from Alberts et al, 2008) Figure 2: composition of microtubules showing tubulin monomers (adapted from Alberts et al, 2008) 1 The experiment 1. Each lab group will start by familiarizing themselves with Chlamydomonas reinhardtii cells with intact flagella.
    [Show full text]