Interaction Between Singularity Theory and the Minimal Model
INTERACTION BETWEEN SINGULARITY THEORY AND THE MINIMAL MODEL PROGRAM CHENYANG XU Abstract. We survey some recent topics on singularities, with a focus on their connection to the minimal model program. This includes the construction and properties of dual complexes, the proof of the ACC conjecture for log canonical thresholds and the recent progress on the ‘local stability theory’ of an arbitrary Kawamata log terminal singularity. 1. Introduction Through out this paper, we will consider algebraic singularities in characteristic 0. It is well known that even if we are mostly interested in smooth varieties, for many different reasons, we have to deal with singular varieties. For the minimal model program (MMP) (also known as Mori’s program), the reason is straightforward, mildly singular varieties are built into the MMP process, and there is no good way to avoid them (see e.g. [KM98]). In fact, the development of the MMP has been intertwined with the progress of our understanding of the corresponding singularity theory, in particular for the classes of singularities preserved by an MMP sequence. This is one of the main reasons why when the theory was started around four decades ago, people spent a lot of time to classify these singularities. However, once we move beyond dimension three, an explicit characterisation of these singularities is often too complicated, and we have to search for a more intrinsic and qualitative method. It turns out that MMP theory itself provides many new tools for the study of singularities. In this note, we will survey some recent progress along these lines. More precisely, we will discuss the construction and properties of dual complexes, the proof of the ACC conjecture for log canonical thresholds, and the recently developed concept of ‘local stability theory’ of an arbitrary Kawamata log terminal singularity.
[Show full text]