DOCTOR from ECOLE POLYTECHNIQUE Yannick Glinec

Total Page:16

File Type:pdf, Size:1020Kb

DOCTOR from ECOLE POLYTECHNIQUE Yannick Glinec Thesis presented to obtain the grade of DOCTOR FROM ECOLE POLYTECHNIQUE Speciality : Plasma Physics by Yannick Glinec Propagation of an ultra-intense laser pulse in an under-dense plasma : production of quasi-monoenergetic electron beams and development of applications. defended on September, 22nd 2006 in front of the following committee : Mr. Patrick Mora Chairman Mr.VictorMalka Thesissupervisor Mr. Philippe Martin Referee Mr. Vladimir Tikhonchuk Referee Mme. Sylvie Jacquemot Mr. Henri Videau 3 This document is a translation of the french version of the PhD thesis published at Ecole Polytechnique. This is an interactive document which should evolve in time. De- pending on the improvements done to the document, the relevant figure in the version number will be modified : first digit increases for major modification, second digit for minor corrections (typesetting errors, layout, ...). List of changes made to the document Date Version Listofmodifications 2006-10-30 Beginningoftranslation 2006 1.0 Initial release, translation from the french version Contents Acknowledgments 9 Introduction 11 1 Theory and evolution of electron acceleration using laser-plasma interaction 15 1.1 Propagationofanelectromagneticwave . .... 15 1.1.1 Maxwellequations . .. .. .. .. .. .. .. 15 1.1.2 Laserparameters .......................... 16 1.1.3 Gaussianbeams........................... 16 1.2 Plasmawaves ................................ 18 1.2.1 Plasmaparameters . .. .. .. .. .. .. .. 18 1.2.2 Fluidequations ........................... 19 1.2.3 Unidimensionalmodel of the acceleration of electrons inaplasma wave ................................ 19 1.3 Non-lineareffects.............................. 23 1.3.1 Ponderomotiveforce . 23 1.3.2 Laserself-focusing . 24 1.3.3 Wavebreaking ........................... 25 1.4 Accelerationmechanisms. 26 1.4.1 Linearregime............................ 27 1.4.2 Non-linearregime . .. .. .. .. .. .. .. 28 1.5 Futureofthelaser-basedacceleration . ..... 32 1.5.1 Extension of the bubble regime to higher energies, scalinglaws . 32 1.5.2 Injectionandlinearacceleration . .. 37 1.5.3 Alternativetechniques . 38 2 Quasi monoenergetic spectrum and optimization 41 2.1 Descriptionoftheexperiment . 41 2.1.1 Characteristics of the laser in “salle jaune” at LOA . ...... 41 2.1.2 Experimentalsetup . 42 2.2 Quasimonoenergeticspectra . 44 2.2.1 Improvementofthequalityoftheelectronbeam . ... 44 2.2.2 Experimentalspectra . 45 2.2.3 Comparisonto3DPICsimulations . 46 2.2.4 Absolutecalibrationof thescintillatingscreen and discussion about thecharge.............................. 48 5 6 CONTENTS 2.3 “quasi monoenergetic” regime in a narrow range of parameters ...... 51 2.3.1 Influenceoftheelectrondensity . 51 2.3.2 Influenceofthepulseduration . 52 2.3.3 Influenceoflaserenergy . 54 2.3.4 Influenceoftheapertureofthefocusingoptics . .... 55 2.4 Stability................................... 56 2.4.1 Beampointingstability. 57 2.4.2 Spectralstability . .. .. .. .. .. .. .. 58 3 Structures of the electron beam and propagation of the laser 59 3.1 Oscillationsinthespectrum. .. 59 3.1.1 Experimentalresults . 59 3.1.2 Propagationofanasymmetriclaserpulse . .. 62 3.2 Transitionradiation . .. .. .. .. .. .. .. .. 64 3.2.1 AngularandspatialdistributionoftheOTR . ... 65 3.2.2 Experimentalsetup . 69 3.2.3 Imagingdiagnostic . 69 3.2.4 Spectralanalysis . .. .. .. .. .. .. .. 72 3.2.5 OscillationsintheOTRspectrum . 74 3.2.6 Measurementsintheterahertzrange . 76 3.3 Laserpulseproperties. 79 3.3.1 Originoftemporalshortening . 79 3.3.2 Laserspectrumbroadening. 80 3.3.3 Temporalshorteningofthelaserpulse . .. 80 3.3.4 Transmittedlaserintensity . 85 3.3.5 Thomsonscattering. 86 3.3.6 Interferometry ........................... 88 4 Applications of laser-based electron beams 91 4.1 Applicationtoradiography . 91 4.1.1 Highresolutionradiography . 92 4.1.2 Retrievaloftheinternalprofileoftheobject . ..... 93 4.1.3 Estimation of the γ-raysourcesize. 95 4.2 Applicationtoradiotherapy. .. 97 4.2.1 Simulationparameters . 98 4.2.2 Directirradiation . 99 4.2.3 Convergingelectronbeam . 103 4.2.4 Discussion ............................. 104 4.3 Applicationtofemtolysis . 106 4.4 Application to the generation of X-ray radiation (betatron mechanism) . 109 Conclusion and perspectives 113 A Betatron oscillation model 117 A.1 Analyticalequations .. .. .. .. .. .. .. .. 117 A.2 Optimisationofparameters . 119 CONTENTS 7 B Description of the electron spectrometer 121 B.1 Experimentalsetup ............................. 121 B.2 Analytictrajectory ............................. 122 B.2.1 Forarectangularmagnet . 122 B.2.2 Foracircularmagnet. 123 B.2.3 Adjustment to the magnetic field measured experimentally . 123 B.2.4 Dispersionpower. 124 B.3 Developmentofnewspectrometers. 127 C Determination of the amplitude of the electron spectrum 129 C.1 Simulation of the energy deposition in the scintillator ........... 129 C.2 CalibrationofthescintillatoratElyse . ...... 131 C.3 Absolutecalibration. 134 C.3.1 Conversioninphotonsinthescintillator . 134 C.3.2 Collectionbyoptics . 134 C.3.3 Yieldofthecamera. 134 C.4 Useofanintegratingcurrenttransformer. ...... 135 Acknowledgments I’ve spend three exciting years at Laboratoire d’Optique Appliqu´ee in Palaiseau. This laboratory belongs to three different administrations : ENSTA, Ecole´ Polytechnique and CNRS (UMR 7639). I would like to thank first my PhD supervisor, Victor Malka, vi- sionary and realistic leader, hyperactive but still always available for his students. I re- member having chosen this PhD subject after an interview at the laboratory in 2003. At that time, when most student wanted to start working in the field of cold atoms, i.e. the study of Bose-Einstein condensates, plasma physics was suffering of a lack of clarity. The list of instabilities and the restricted applicability of analytical equations to perturbative assumptions where responsible for my limited understanding of this physics. On the op- posite, the understanding of the physics of condensates obtained at very low temperature was provocative and attractive. Nevertheless, comments from Victor convinced me : the use of an ultra-short laser pulse limited the instability growth and allowed a better energy transfer to kinetic energy of accelerated electrons. The world record of the electron energy was thus obtained in this research group with laser-plasma interaction during the pioneer work carried out during Sven Fritzler’s PhD thesis. At the time, Jerome Faure also became a permanent researcher in this group. During these three years, we have worked together in many experiments during which Jerome taught me everything with a lot of care and patience. I’ve personally really enjoyed the relevance of his thoughts and his temper. Thanks to him, I couldn’t have wished a better formation than the one I was given. The group “Particle Sources by Laser”, in which I’ve been working, contains two research themes : electron acceleration and proton acceleration by laser. This second half of the group, working on the generation of a proton source, is composed of Alain Guemnie Tafo, Mauro Manclossi, Frederike Ewald and Joao Jorge Santos. Recently, Agustin Lifschitz has joined the team for a theoretical and simulation support. I would like to thank the whole team for their kind attention to me. I would like also to point at the impressive work of the laser team working in the laser room (“Salle Jaune”) : Jean-Philippe Rousseau, Fr´ed´eric Burgy, Brigitte Mercier and more recently Amar Tafzi who has just joined this team. I would like to underline their exceptional availability and their patience in front of an aggressive team of never- satisfied-experimentalists. I also remember the support from Dani`ele Hulin during my initial application in the laboratory. And I would like also to thank Olivier Albert for his gentleness and his peda- gogy during my training course in the laboratory as a future engineer because, following this training course, I’ve decided to continue with a PhD thesis. I would like to thank the administration of the laboratory, the director of which is currently G´erard Mourou, the work of the secretaries, the technical staff (the workshop, the maintenance, the multimedia 9 10 CONTENTS staff ...) and more generally all the teams working in the laboratory. But outside the daily work in the lab, the unconditional support of my relatives from Britanny, from Paris and my family are essential support to fulfill these three years of studies. The biggest thank goes for Lina who remained incredibly calm and stoic even when I was bad-tempered. Finally, I also remember all the collaborators I’ve been working with : The team from CEA DAM Ile-de-Franceˆ : Erik Lefebvre, Loic Le Dain, St´ephane • Darbon, B´en´edicte Guilpart. The team from Imperial College working at the Rutherford Appleton Laboratory : I • quote in particular Stuart Mangles and Alec Thomas from this team, who I had the opportunity to meet several times. Alexander Pukhov from the Virtual Laser Plasma Laboratory (VLPL) in Germany. • The laser and plasma group (GoLP) in Portugal : Luis O. Silva and Jorge Vieira. • The German group from DKFZ : Hanitra Szymanowski, Thomas Fuchs and Uwe • Oelfke. The laboratory Solides Irradi´es at Ecole´ Polytechnique : St´ephane Esnouf and Guil- • laume Petite. Guilhem Gallot from laboratory Optique et Biosciences at Ecole´ Polytechnique. • The team at Elyse´ in Orsay : Mehran Mostafavi, Vincent de Waele, Hugues Monard • and J.P. Larbre. Thank you for you help, your advice and all the good time spent together.
Recommended publications
  • SHAW-THESIS-2019.Pdf (6.059Mb)
    Copyright by Joseph Michael Shaw 2019 The Thesis Committee for Joseph Michael Shaw certifies that this is the approved version of the following thesis: Experimental Studies on High-Energy Radiation Sources from Laser Wakefield Accelerators APPROVED BY SUPERVISING COMMITTEE: Michael C. Downer, Supervisor Aaron C. Bernstein Experimental Studies on High-Energy Radiation Sources from Laser Wakefield Accelerators by Joseph Michael Shaw Thesis Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Arts The University of Texas at Austin May 2019 To my parents and the rest of my family for their unwavering support and love. Acknowledgments My sincerest gratitude goes to my adviser, Professor Downer, for introducing me to the incredibly interesting world of laser-plasma physics and allowing me to play with his expensive laser. I would like to thank Xioaming Wang and Hai-En Tsai whose initial tutelage in laser maintenance and laser plasma diagnostics would prove invalu- able throughout my entire time at UT. I would like to thank Rafal Zgadzaj and Aaron Bernstein for the countless hours of time donated towards setting up experiments, proofreading publications and presentations, and providing general advice of all kinds. Thank you to Vincent Chang, Andrea Hannasch, Max LaBerge, Kathleen Weichman, Jake Welch, Xiantao Cheng, Ganesh Ti- wari, and Luc Lisi for all their help setting up and conducting experiments. And thanks for being great company during late-night data runs. I would like to thank Farbod Shafiei, Neil Fazel, and Loucas Loumakos for all the lively conversations and being great office mates.
    [Show full text]
  • IAMPI2006 International Conference on the Interaction of Atoms, Molecules and Plasmas with Intense Ultrashort Laser Pulses 1 - 5 October, 2006 - Szeged, Hungary
    IAMPI2006 International Conference on the Interaction of Atoms, Molecules and Plasmas with Intense Ultrashort Laser Pulses 1 - 5 October, 2006 - Szeged, Hungary HU1100086 Organized by: COST - European Cooperation in the Field of Scientific and Technical Research XTRA - Marie-Curie Research Training Network of the European Community Hungarian Academy of Sciences University of Szeged Book of Abstracts with the program of the conference Main sponsor of the conference: FEMTO LASERS FEMTOLASERS Produktions GmbH FEMTOLASERS Produktions GmbH Fernkorngasse 10, A -1100 Vienna, Austria Phone: +43 1 503 70 02 0 • Fax: +43 1 503 70 02 99 E-mail: [email protected] • http://www.femtoiasers.com Sponsors: Hungarian Academy of Sciences • http://www.mta.hu/index.php?id=english Kurt I. Lesker Kurt J. Lesker Co • http://www.lesker.com TRADE K0N-TRADE + Ltd. • http://www.kon-trade.hu ft LEYBOLD Leybold Vacuum • http://www.leybold.com TECH RK Tech Ltd. • http://www.rktech.hu ©Spectra-Physics NewporExperience I Solutiont s A Dftrtsíön ol Newport Corporation Spectra-Physics a Division of Newport Corporation nttp://www.spectraphysics.com Organizers of the conference highly appreciate the generous support of the exhibitors and sponsors IAMPI2006 International Conference on the Interaction of Atoms, Molecules and Plasmas with Intense Ultrashort Laser Pulses 1-5 October, 2006 - Szeged, Hungary Organized by: COST - European Cooperation in the Field of Scientific and Technical Research XTRA - Marie-Curie Research Training Network of the European Community Hungarian Academy of Sciences University of Szeged Book of Abstracts with the program of the conference Dear Colleagues, On behalf of the Local Organizing Committee it is a great pleasure to welcome you to Szeged, on the occasion of IAMP12006, the International Conference on the Interaction of Atoms, Molecules and Plasmas with Intense Ultrashort Laser Pulses.
    [Show full text]
  • AUSTRALIA Serguei VLADIMIROV University of Sydney School Of
    AUSTRALIA Serguei VLADIMIROV University of Sydney School of Physics School of Physics, University of Sydney 2006 SYDNEY E-mail: [email protected] AUSTRIA Martin HEYN Technische Universitaet Graz Institut fuer Theoretische Physik Petersgasse 16 A-8010 GRAZ E-mail: [email protected] Codrina IONITA-SCHRITTWIESER Leopold-Franzens University Innsbruck Institute for Ion Physics Technikerstr. 25 A-6020 INNSBRUCK (Tyrol) E-mail: [email protected] Ivan IVANOV Technical University Graz Institute of Theoretical Physics Petersgasse 16 A-8010 GRAZ E-mail: [email protected] Nikola JELIC Theoretical Physics A-6020 INNSBRUCK E-mail: [email protected] Gerald KAMELANDER Atominstitut der Österreichischen Universität Stadionallée 2 A1020 VIENNA E-mail: [email protected] Alexander KENDL University of Innsbruck Institute for Theoretical Physics Technikerstrasse 25 6020 INNSBRUCK E-mail: [email protected] Winfried KERNBICHLER Technische Universitaet Graz Institut fuer Theoretische Physik Petersgasse 16 8010 GRAZ E-mail: [email protected] Siegbert KUHN University of Innsbruck Department of Theoretical Physics Technikerstrasse 25 A-6020 INNSBRUCK E-mail: [email protected] Roman SCHRITTWIESER Leopold-Franzens University Innsbruck Institute for Ion Physics Technikerstr. 25 A-6020 INNSBRUCK (Tyrol) E-mail: [email protected] Viktor YAVORSKIJ University of Innsbruck Institute for Theoretical Physics Technikerstrasse 25 A-6020 INNSBRUCK E-mail: [email protected] BELGIUM Douglas BARTLETT European Commission DG Research 1150 BRUSSELS E-mail: [email protected] Susana CLEMENT LORENZO European Commission DG Research, Directorate Energy 200 Rue de la Loi 1049 BRUXELLES E-mail: [email protected] Charles JOACHAIN Université Libre de Bruxelles Physique Théorique Campus Plaine CP 227, Bd.
    [Show full text]
  • CV of Victor MALKA Age: 58, Born in Casablanca (Morocco), Married, 2 Children (Maya and Dinah)
    CV of Victor MALKA Age: 58, born in Casablanca (Morocco), married, 2 children (Maya and Dinah) Professional address: Physics of Complex Systems, Weizmann Institute of Science, 234 Herzl street, Rehovot 7610001, Israel Tel: 089344294, [email protected] Fields of interest: plasmas physics, relativistic laser-plasma interaction, plasma accelerators, particles and X ray beam production, ultrafast phenomena, radiotherapy, radiobiology, material science, inertial fusion. EDUCATION 1998 HDR University d’Orsay, France 1988-1990 École Polytechnique, Palaiseau, France PhD, atomic and plasmas physics 1985-1987 University d’Orsay, France Master degree in physics 1982-1984 École Nationale Supérieure de Chimie de Rennes, France RESEARCH Since Oct. 2017 Exceptional Class Research Director at CNRS (on leave) Since Oct. 2015 Professor at Weizmann Institute of Science (Israel) Relativistic Laser Interaction 2009-2015 Tata Institute of Bombay (India) Adj. Faculty Member Relativistic Laser Interaction Since October 2004 - LOA, Ecole Polytechnique-ENSTA-CNRS, Palaiseau, France CNRS Research Director Development and application of plasma particles accelerators 2003-2015 Professor at École Polytechnique, Palaiseau, France Ecole Polytechnique Plasmas physics – laser physics courses October 2001-2004 LOA, Ecole Polytechnique-ENSTA-CNRS, Palaiseau, France CNRS Researcher Creation of the SPL group 1994-2001 LULI, École Polytechnique, Palaiseau, France CNRS Researcher Plasma laser interaction 1990-1993 LULI, École Polytechnique, Palaiseau, France CNRS Researcher Inertial fusion TEACHING Professor at Weizmann Institute of Science (since October 2015). Professor at Ecole Polytechnique (2003-2015). Supervisor of 19 PhD students in France, 5 in Italy (Laureat thesis) PUBLICATIONS 349 Publications, 227 in refereed journal (33 PRL, 3 Nature, 4 Nature Physics, 1 Science, 2 Nature Photonics, 4 Nature Communication, 1 Rev.
    [Show full text]
  • 1- Publications
    J. Fuchs - publications PUBLICATIONS - JULIEN FUCHS, as of August 28, 2017 H-index: 42 q PUBLICATIONS IN PEER-REVIEWED JOURNALS: My publications are listed with the following color code: w/o color for publications associed to the research mainly driven by my group (“SPRINT”1), blue for the publications performed jointly, but led by other groups, green for publications I did before having my own group (during my first years at CNRS when I was working in the group of C. Labaune), and in grey for the publications I did during my PhD. Student and postdoctoral advisees are underlined. Submitted publications D. P. Higginson, B. Khiar, G. Revet, J. Béard, M. Blecher, M. Borghesi, K. Burdonov, S. N. Chen, E. Filippov, D. Khaghani, K. Naughton, H. Pépin, S. Pikuz, O. Portugall, C. Riconda, R. Riquier, R. Rodriguez, S. N. Ryazantsev, I. Yu. Skobelev, A. Soloviev, M. Starodubtsev, T. Vinci, O. Willi, A. Ciardi, and J. Fuchs « Enhancement of quasi-stationary shocks and heating via temporal-staging in a magnetized, laser-plasma jet » in review at Phys. Rev. Lett. M. Nakatsutsumi, Y. Sentoku, S. N. Chen, S. Buffechoux, A. Kon, A. Korzhimanov, L. Gremillet, B. Atherton, P. Audebert, M. Geissel, L. Hurd, M. Kimmel, P. Rambo, M. Schollmeier, J. Schwarz, M. Starodubtsev, R. Kodama, and J. Fuchs « On magnetic inhibition of laser-driven, sheath-accelerated high-energy protons » in review at Nat. Comm. P. Antici, E. Boella, S.N. Chen, M. Barberio, J. Böker, F. Cardelli, M. Glesser, L. Romagnani, M. Sciscio, M. Starodubtsev, O. Willi, J.C. Kieffer, H. Pépin, L.
    [Show full text]
  • Particle Acceleration with Beam Driven Wakefield Antoine Doche
    Particle acceleration with beam driven wakefield Antoine Doche To cite this version: Antoine Doche. Particle acceleration with beam driven wakefield. Plasma Physics [physics.plasm-ph]. Université Paris-Saclay, 2018. English. <NNT : 2018SACLX023>. <tel-01767745> HAL Id: tel-01767745 https://pastel.archives-ouvertes.fr/tel-01767745 Submitted on 16 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Particle acceleration with beam driven plasma wakefield Thèse de doctorat de l'Université Paris-Saclay préparée à l’école Polytechnique :2018SACLX023 École doctorale n°572 : ondes et matières (EDOM) NNT Spécialité de doctorat: optique et physique des plasmas Thèse présentée et soutenue à Palaiseau, le 09 Mars 2018, par Antoine DOCHE Composition du Jury : M. Patrick MORA, Directeur de recherche CPhT, école Polytechnique - CNRS Président du jury M. Philippe BALCOU, Directeur de recherche CELIA, CEA – CNRS – Université de Bordeaux Rapporteur M. Emmanuel D’HUMIERES, Directeur de recherche CELIA, CEA – CNRS – Université de Bordeaux Rapporteur Mme. Edda GSCHWENDTNER, Directrice de recherche CERN, Engineering Department Examinatrice M. Sébastien CORDE, Maitre de conférence LOA, École Polytechnique Co-directeur de thèse M. Victor MALKA, Directeur de recherche LOA, École Polytechnique Directeur de thèse Particle acceleration with beam driven plasma wakefield Remerciements - Acknowledgements Avant toute chose, il faut préciser que différents acteurs ont rendu possible les campagnes expérimentales sur lesquelles repose ce travail et la rédaction de ce manuscrit.
    [Show full text]
  • Particle Acceleration with Beam Driven Plasma Wakefield
    Particle acceleration with beam driven plasma wakefield Thèse de doctorat de l'Université Paris-Saclay préparée à l’école Polytechnique :2018SACLX023 École doctorale n°572 : ondes et matières (EDOM) NNT Spécialité de doctorat: optique et physique des plasmas Thèse présentée et soutenue à Palaiseau, le 09 Mars 2018, par Antoine DOCHE Composition du Jury : M. Patrick MORA, Directeur de recherche CPhT, école Polytechnique - CNRS Président du jury M. Philippe BALCOU, Directeur de recherche CELIA, CEA – CNRS – Université de Bordeaux Rapporteur M. Emmanuel D’HUMIERES, Directeur de recherche CELIA, CEA – CNRS – Université de Bordeaux Rapporteur Mme. Edda GSCHWENDTNER, Directrice de recherche CERN, Engineering Department Examinatrice M. Sébastien CORDE, Maitre de conférence LOA, École Polytechnique Co-directeur de thèse M. Victor MALKA, Directeur de recherche LOA, École Polytechnique Directeur de thèse Particle acceleration with beam driven plasma wakefield Remerciements - Acknowledgements Avant toute chose, il faut préciser que différents acteurs ont rendu possible les campagnes expérimentales sur lesquelles repose ce travail et la rédaction de ce manuscrit. Eux seuls méritent tous les honneurs qui découlent des accomplissements scientifiques présentés dans ce texte, et pour leur temps, leur aide et leur confiance je tiens à les remercier individuellement. Je souhaite remercier en tout premier lieu mon directeur de thèse, Victor Malka pour son accueil au Laboratoire d’Optique Appliquée dès février 2014. C’est grâce à lui que ce manuscrit a pu être écrit, grâce à son soutien face aux difficultés, et à ses conseils quant à la direction à prendre à chaque moment important. J’exprime donc beaucoup de reconnaissance pour ses enseignements scientifiques et humains, pour toutes les opportunités qu’il a rendues possibles, notamment pour partir étudier sous d’autres horizons.
    [Show full text]
  • Laser-Driven Ion Acceleration from Carbon Nano-Targets with Ti:Sa Laser Systems
    Laser-Driven Ion Acceleration From Carbon Nano-Targets With Ti:Sa Laser Systems Jianhui Bin München 2015 Laser-Driven Ion Acceleration From Carbon Nano-Targets With Ti:Sa Laser Systems Jianhui Bin Dissertation angefertigt am Max-Planck-Institut für Quantenoptik an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Jianhui Bin aus Hunan, China München, den 09.04.2015 Erstgutachter: Prof. Dr. Jörg Schreiber Zweitgutachter: Prof. Dr. Matt Zepf Tag der mündlichen Prüfung: 19.06.2015 Zusammenfassung In den letzten Jahrzehnten hat die Erzeugung von Laserimpulsen mit relativistischen In- tensitäten eine hohe Aufmerksamkeit seit auf sich gezogen. Im Jahr 2000 haben bereits mehrere Gruppen von Forschern gezeigt, dass Protonen mit bis zu 58 MeV kinetischer Energie mit geringer transversaler Emittanz in Pikosekunden-Zeitskalen aus Festkörpern mit einigen µm Dicke beschleunigt werden können. Diese einzigartigen Eigenschaften Laser-beschleunigter Ionenstrahlen sind hervorragend für eine Vielzahl neuartiger An- wendungen geeignet. Gleichzeitig kompliziert die große Winkel- und Energiestreuung klassische Anwendungen, die auf konventionellen Beschleunigern beruhen. Die Verwendung von Nano-Targets als Laser-Ionenquelle bietet eine Reihe von Vorteilen gegenüber µm dicken Folien. Die hier vorgestellte Doktorarbeit hat sich zum Ziel gesetzt Lasergetriebene Ionenbeschleunigung mit Kohlenstoff-Nano-Targets zu demonstrieren und deren Nutzbarkeit für biologische Studien zu evaluieren. Zwei neuartige Nano-Targets werden vorgestellt: Nm dünne Diamantartige Kohlenstoff (DLC) Folien und Schaumtar- gets aus Kohlenstoff Nanoröhrchen (CNF). Beide wurden im technologischen Labor der Ludwig-Maximilians Universität München hergestellt. Mit DLC Folien konnten hoch kollimierte Ionenstrahlen mit extrem geringer Divergenz von 2◦, eine Größenordnung kleiner im Vergleich zu µm dicken Folien, gezeigt werden.
    [Show full text]
  • Laser-Driven Plasma-Wave Electron Accelerators
    Laser-driven plasma-wave electron accelerators Wim Leemans and Eric Esarey Surfing a plasma wave, a bunch of electrons or positrons can experience much higher accelerating gradients than a conventional RF linac could provide. Wim Leemans heads the LOASIS (Lasers, Optical Accelerator Systems Integrated Studies) program at the Lawrence Berkeley National Laboratory in Berkeley, California. Eric Esarey is the program’s deputy head. In conventional accelerators, energy from RF electro- proposed a new way to accelerate electrons.1 They argued magnetic waves in vacuum is transformed into kinetic energy that one could use a plasma medium—for example, ionized of particles driven by the electric field. In high-energy- hydrogen or helium—to transform electromagnetic energy physics colliders, some of that kinetic energy is in turn trans- from a laser pulse into the kinetic energy of accelerated elec- formed into short-lived exotic particles. The new crown jewel trons by letting laser pulses excite large-amplitude plasma of colliders is the recently completed Large Hadron Collider density waves.2 (See the article by Chandrashekhar Joshi and at CERN (see the Quick Study by Fabiola Gianotti and Chris Thomas Katsouleas in PHYSICS TODAY, June 2003, page 47.) In Quigg in PHYSICS TODAY, September 2007, page 90). The LHC, that scheme, called laser–plasma acceleration, radiation pres- a 27-km-circumference ring for accelerating and storing sure from an intense laser pulse fired into the plasma causes countercirculating beams of 7-TeV protons, has a stored beam the electrons to move out of its path. Because the much heav- energy exceeding 300 MJ.
    [Show full text]