SHAW-THESIS-2019.Pdf (6.059Mb)

Total Page:16

File Type:pdf, Size:1020Kb

SHAW-THESIS-2019.Pdf (6.059Mb) Copyright by Joseph Michael Shaw 2019 The Thesis Committee for Joseph Michael Shaw certifies that this is the approved version of the following thesis: Experimental Studies on High-Energy Radiation Sources from Laser Wakefield Accelerators APPROVED BY SUPERVISING COMMITTEE: Michael C. Downer, Supervisor Aaron C. Bernstein Experimental Studies on High-Energy Radiation Sources from Laser Wakefield Accelerators by Joseph Michael Shaw Thesis Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Arts The University of Texas at Austin May 2019 To my parents and the rest of my family for their unwavering support and love. Acknowledgments My sincerest gratitude goes to my adviser, Professor Downer, for introducing me to the incredibly interesting world of laser-plasma physics and allowing me to play with his expensive laser. I would like to thank Xioaming Wang and Hai-En Tsai whose initial tutelage in laser maintenance and laser plasma diagnostics would prove invalu- able throughout my entire time at UT. I would like to thank Rafal Zgadzaj and Aaron Bernstein for the countless hours of time donated towards setting up experiments, proofreading publications and presentations, and providing general advice of all kinds. Thank you to Vincent Chang, Andrea Hannasch, Max LaBerge, Kathleen Weichman, Jake Welch, Xiantao Cheng, Ganesh Ti- wari, and Luc Lisi for all their help setting up and conducting experiments. And thanks for being great company during late-night data runs. I would like to thank Farbod Shafiei, Neil Fazel, and Loucas Loumakos for all the lively conversations and being great office mates. Thanks to Watson Henderson for all of his advice on a myriad of subjects. Finally, I would like to thank the entire Texas Petawatt staff for their hard work over several month- long experimental runs. The data and analysis in this thesis would never have been possible without the hard work and determination of everyone mentioned above. v Abstract Experimental Studies on High-Energy Radiation Sources from Laser Wakefield Accelerators Joseph Michael Shaw, M.A. The University of Texas at Austin, 2019 Supervisor: Michael C. Downer In this work I discuss a series of experiments on generating and characterizing a compact, ultrashort-duration source of Thomson backscatter γ-rays at the University of Texas, Austin. The γ-rays are created in a three-step process that begins with the Texas Petawatt laser-plasma accelerator producing GeV- scale electron beams. At the exit of the accelerator, the leading edge of the TPW laser pulse ionizes the surface of a glass or plastic substrate to form a plasma mirror. The plasma mirror retro-reflects a majority of the remaining laser energy back into the accelerated electrons to act as an optical undula- tor, which stimulates the production of γ-rays. By adjusting the separation between the plasma mirror and exit of the accelerator, we were able to simulta- neously confirm that the inherently self-aligning quality of the plasma mirror is maintained over a wide range of intensities and observe the transition from linear to nonlinear Thomson backscatter. Linear Thomson backscatter cal- culations inferred from accelerated electron spectra imply γ-ray spectra with peaked components ranging from 5 - 85 MeV. vi Table of Contents List of Tables x List of Figures xi Chapter 1 Introduction 1 1.1 Laser Plasma Accelerators . 1 1.2 Radiation Sources . 2 1.3 Thomson Scattering . 3 1.4 Laser Strength Parameter . 5 1.5 Thomson Backscatter of Relativistic Electrons . 5 Chapter 2 Relevant Laser-Plasma Dynamics 8 2.1 Light Propagation in Plasma . 9 2.2 Laser Wakefield Acceleration . 10 2.3 Plasma Mirrors . 12 2.4 Thomson Backscatter Experiments . 13 Chapter 3 Thomson Backscatter Experiments with the TPW 15 3.1 LPA Experimental Setup . 15 3.1.1 Plasma Mirror Performance . 16 3.1.2 Radiation Diagnostics . 18 3.2 Linear Thomson Backscatter . 20 3.2.1 Laser Intensity Approximation . 20 3.2.2 Bremsstrahlung Contributions . 22 vii 3.2.3 Linear Thomson Spectra . 25 3.3 Nonlinear Thomson Backscatter . 27 3.4 Future Work and Conclusions . 30 3.4.1 γ-ray Spectrometer Measurements . 30 3.4.2 Conclusions . 32 Bibliography 33 viii List of Tables 2.1 Neutral helium number densities by orders of magnitude and the approximate electron and He2+ ion oscillation periods for a fully-ionized plasma, respectively. 9 3.1 Scaling of the γ-beam divergence (FWHM) along the laser po- larization axis with PM z-position. 30 ix List of Figures 1.1 (a) A dipole radiation pattern in the rest frame of an electron (i:e: γe =1). (b) A dipole radiation pattern for an electron moving upward with total energy twice its rest energy (i:e: γe =2). 6 2.1 A computational simulation of electron injection and accelera- tion in the bubble regime for the TPW LPA, where the color scaling represents the electron density [cm−3]. (a) A laser wake- field bubble near the beginning of its formation and corresponds to the propagation distance z = 0:14 cm. (b) Corresponds to z = 0:336 cm. (c) Corresponds to z = 1:04 cm. [Image and caption are modified versions of a figure courtesy of Stefan Bedacht, University of Texas at Austin] [Original simulations/ figure courtesy of Serguei Kalmykov and Arnaud Beck] . 11 2.2 The Texas Petawatt laser pulse temporal contrast measured via third-order autocorrelation [29]. 13 3.1 A top-down schematic of the LWFA 5.5 experimental setup used for generating and characterizing the GeV-scale laser wakefield accelerator and PM-based Thomson γ-ray source at the Texas Petawatt. 15 x 3.2 Probe beam reflectivity calibration: (a) The (null) probe beam profile imaged from the coverslip surface after scaling the gray values, accounting for reflection and transmission losses of the imaging system, to the initial incident intensity (I0). (b),(c) A localized region of the coverslip surface is activated by the transmitted LPA-driving pulse, enabling a greater proportion of probe light to be reflected from the surface. The gray values are then normalized to I0 to approximate the percent reflected. 17 3.3 (a) Electron spectrum (left) with peak at 2.2 GeV and corre- sponding betatron x-ray profile (upper right) recorded on IP. Secondary particles from γ-ray conversion produced a bright spot near center of metal disk (lower right) on a separate shot. (b) Scintillator signals with PM in place (top), showing Thom- son γ-ray profile, and with no PM (bottom). 18 3.4 Shot-to-shot pointing fluctuations. (a) Electron spectra (left), γ-ray profiles (right) for two shots showing equal but opposite vertical displacements and differing horizontal γ-ray displace- ments, with respect to the alignment axis. (b) Plot of vertical γ-ray vs. electron displacements. 19 3.5 Side-scatter emission of the laser-induced plasma channel seen through a glass window in the helium gas cell. The laser prop- agates from left to right. A logarithmic function was applied to the image to dampen the strong scattering near the beginning of the gas cell and enhance the visibility of the channel near the end. The bright edge on the right is the exit aperture of the gas cell. 21 3.6 Scaling of scintillator signal with position z and thickness L of PM: (a) z = 3:3 cm, L = 100µm; (b) z = 5:5 cm, L = 180 µm. Nearly identical laser pulses drove both shots; both yielded electrons with energy peaked at 0.92 GeV and corresponding charge (a) 50 or (b) 125 pC. 23 xi 3.7 Scaling of the integrated fluence with fbrem at zPM = 3:3 cm. The blue, dashed curve has a slope of unity and illustrates the expected scaling if bremsstrahlung radiation were the only con- tributor of signal. The grey, dotted curve represents the best-fit for a linear relationship. 25 3.8 Quasi-monochromatic Thomson γ-ray spectra generated as Ee tuned from 0.5 to 2.2 GeV. Spectra are labeled with multipliers that normalize true peak heights to the height of the two lowest energy curves. 26 3.9 A typical electron dN/dE for LWFA 6.0 and 7.0. 27 3.10 (a) The first three harmonics of a TBS spectrum calculated from the above dN/dE, assuming a0 = 0:25. (b) The first three harmonics of a TBS spectrum calculated from the above dN/dE, assuming a0 = 0:5. 28 3.11 Scaling of the integrated fluence with the PM's z-position. The blue trendline is a second-order polynomial fit for a total of 39 shots, represented by the light-orange boxes. The vertical red line represents the nominal exit plane of the gas cell. A statistical average and standard deviation is represented by the singular data point with error bars at each respective PM position. 29 3.12 Simulation of e− / e+ energy-angle distributions produced by a monoenergetic, 10 MeV photon beam in 2 cm of carbon. Image and simulations courtesy of Luc Lisi. 31 3.13 (Left) A top-down view of the Compton & pair-production spec- trometer design. Higher energy electrons or positrons will de- posit their signal further down the length of the spectrometer. (Right) The design and specifications of the magnet housed within the spectrometer. Magnet drawing and specifications courtesy of Ganesh Tiwari. 31 xii Chapter 1 Introduction 1.1 Laser Plasma Accelerators Laser-plasma accelerators (LPAs) harness intense, ultrashort light pulses to drive charge-density waves in a plasma, ranging in electron density from 0.01 - 0.1 atm, to capture and accelerate electron bunches up to relativistic energies.
Recommended publications
  • DOCTOR from ECOLE POLYTECHNIQUE Yannick Glinec
    Thesis presented to obtain the grade of DOCTOR FROM ECOLE POLYTECHNIQUE Speciality : Plasma Physics by Yannick Glinec Propagation of an ultra-intense laser pulse in an under-dense plasma : production of quasi-monoenergetic electron beams and development of applications. defended on September, 22nd 2006 in front of the following committee : Mr. Patrick Mora Chairman Mr.VictorMalka Thesissupervisor Mr. Philippe Martin Referee Mr. Vladimir Tikhonchuk Referee Mme. Sylvie Jacquemot Mr. Henri Videau 3 This document is a translation of the french version of the PhD thesis published at Ecole Polytechnique. This is an interactive document which should evolve in time. De- pending on the improvements done to the document, the relevant figure in the version number will be modified : first digit increases for major modification, second digit for minor corrections (typesetting errors, layout, ...). List of changes made to the document Date Version Listofmodifications 2006-10-30 Beginningoftranslation 2006 1.0 Initial release, translation from the french version Contents Acknowledgments 9 Introduction 11 1 Theory and evolution of electron acceleration using laser-plasma interaction 15 1.1 Propagationofanelectromagneticwave . .... 15 1.1.1 Maxwellequations . .. .. .. .. .. .. .. 15 1.1.2 Laserparameters .......................... 16 1.1.3 Gaussianbeams........................... 16 1.2 Plasmawaves ................................ 18 1.2.1 Plasmaparameters . .. .. .. .. .. .. .. 18 1.2.2 Fluidequations ........................... 19 1.2.3 Unidimensionalmodel of the acceleration of electrons inaplasma wave ................................ 19 1.3 Non-lineareffects.............................. 23 1.3.1 Ponderomotiveforce . 23 1.3.2 Laserself-focusing . 24 1.3.3 Wavebreaking ........................... 25 1.4 Accelerationmechanisms. 26 1.4.1 Linearregime............................ 27 1.4.2 Non-linearregime . .. .. .. .. .. .. .. 28 1.5 Futureofthelaser-basedacceleration . ..... 32 1.5.1 Extension of the bubble regime to higher energies, scalinglaws .
    [Show full text]
  • IAMPI2006 International Conference on the Interaction of Atoms, Molecules and Plasmas with Intense Ultrashort Laser Pulses 1 - 5 October, 2006 - Szeged, Hungary
    IAMPI2006 International Conference on the Interaction of Atoms, Molecules and Plasmas with Intense Ultrashort Laser Pulses 1 - 5 October, 2006 - Szeged, Hungary HU1100086 Organized by: COST - European Cooperation in the Field of Scientific and Technical Research XTRA - Marie-Curie Research Training Network of the European Community Hungarian Academy of Sciences University of Szeged Book of Abstracts with the program of the conference Main sponsor of the conference: FEMTO LASERS FEMTOLASERS Produktions GmbH FEMTOLASERS Produktions GmbH Fernkorngasse 10, A -1100 Vienna, Austria Phone: +43 1 503 70 02 0 • Fax: +43 1 503 70 02 99 E-mail: [email protected] • http://www.femtoiasers.com Sponsors: Hungarian Academy of Sciences • http://www.mta.hu/index.php?id=english Kurt I. Lesker Kurt J. Lesker Co • http://www.lesker.com TRADE K0N-TRADE + Ltd. • http://www.kon-trade.hu ft LEYBOLD Leybold Vacuum • http://www.leybold.com TECH RK Tech Ltd. • http://www.rktech.hu ©Spectra-Physics NewporExperience I Solutiont s A Dftrtsíön ol Newport Corporation Spectra-Physics a Division of Newport Corporation nttp://www.spectraphysics.com Organizers of the conference highly appreciate the generous support of the exhibitors and sponsors IAMPI2006 International Conference on the Interaction of Atoms, Molecules and Plasmas with Intense Ultrashort Laser Pulses 1-5 October, 2006 - Szeged, Hungary Organized by: COST - European Cooperation in the Field of Scientific and Technical Research XTRA - Marie-Curie Research Training Network of the European Community Hungarian Academy of Sciences University of Szeged Book of Abstracts with the program of the conference Dear Colleagues, On behalf of the Local Organizing Committee it is a great pleasure to welcome you to Szeged, on the occasion of IAMP12006, the International Conference on the Interaction of Atoms, Molecules and Plasmas with Intense Ultrashort Laser Pulses.
    [Show full text]
  • AUSTRALIA Serguei VLADIMIROV University of Sydney School Of
    AUSTRALIA Serguei VLADIMIROV University of Sydney School of Physics School of Physics, University of Sydney 2006 SYDNEY E-mail: [email protected] AUSTRIA Martin HEYN Technische Universitaet Graz Institut fuer Theoretische Physik Petersgasse 16 A-8010 GRAZ E-mail: [email protected] Codrina IONITA-SCHRITTWIESER Leopold-Franzens University Innsbruck Institute for Ion Physics Technikerstr. 25 A-6020 INNSBRUCK (Tyrol) E-mail: [email protected] Ivan IVANOV Technical University Graz Institute of Theoretical Physics Petersgasse 16 A-8010 GRAZ E-mail: [email protected] Nikola JELIC Theoretical Physics A-6020 INNSBRUCK E-mail: [email protected] Gerald KAMELANDER Atominstitut der Österreichischen Universität Stadionallée 2 A1020 VIENNA E-mail: [email protected] Alexander KENDL University of Innsbruck Institute for Theoretical Physics Technikerstrasse 25 6020 INNSBRUCK E-mail: [email protected] Winfried KERNBICHLER Technische Universitaet Graz Institut fuer Theoretische Physik Petersgasse 16 8010 GRAZ E-mail: [email protected] Siegbert KUHN University of Innsbruck Department of Theoretical Physics Technikerstrasse 25 A-6020 INNSBRUCK E-mail: [email protected] Roman SCHRITTWIESER Leopold-Franzens University Innsbruck Institute for Ion Physics Technikerstr. 25 A-6020 INNSBRUCK (Tyrol) E-mail: [email protected] Viktor YAVORSKIJ University of Innsbruck Institute for Theoretical Physics Technikerstrasse 25 A-6020 INNSBRUCK E-mail: [email protected] BELGIUM Douglas BARTLETT European Commission DG Research 1150 BRUSSELS E-mail: [email protected] Susana CLEMENT LORENZO European Commission DG Research, Directorate Energy 200 Rue de la Loi 1049 BRUXELLES E-mail: [email protected] Charles JOACHAIN Université Libre de Bruxelles Physique Théorique Campus Plaine CP 227, Bd.
    [Show full text]
  • CV of Victor MALKA Age: 58, Born in Casablanca (Morocco), Married, 2 Children (Maya and Dinah)
    CV of Victor MALKA Age: 58, born in Casablanca (Morocco), married, 2 children (Maya and Dinah) Professional address: Physics of Complex Systems, Weizmann Institute of Science, 234 Herzl street, Rehovot 7610001, Israel Tel: 089344294, [email protected] Fields of interest: plasmas physics, relativistic laser-plasma interaction, plasma accelerators, particles and X ray beam production, ultrafast phenomena, radiotherapy, radiobiology, material science, inertial fusion. EDUCATION 1998 HDR University d’Orsay, France 1988-1990 École Polytechnique, Palaiseau, France PhD, atomic and plasmas physics 1985-1987 University d’Orsay, France Master degree in physics 1982-1984 École Nationale Supérieure de Chimie de Rennes, France RESEARCH Since Oct. 2017 Exceptional Class Research Director at CNRS (on leave) Since Oct. 2015 Professor at Weizmann Institute of Science (Israel) Relativistic Laser Interaction 2009-2015 Tata Institute of Bombay (India) Adj. Faculty Member Relativistic Laser Interaction Since October 2004 - LOA, Ecole Polytechnique-ENSTA-CNRS, Palaiseau, France CNRS Research Director Development and application of plasma particles accelerators 2003-2015 Professor at École Polytechnique, Palaiseau, France Ecole Polytechnique Plasmas physics – laser physics courses October 2001-2004 LOA, Ecole Polytechnique-ENSTA-CNRS, Palaiseau, France CNRS Researcher Creation of the SPL group 1994-2001 LULI, École Polytechnique, Palaiseau, France CNRS Researcher Plasma laser interaction 1990-1993 LULI, École Polytechnique, Palaiseau, France CNRS Researcher Inertial fusion TEACHING Professor at Weizmann Institute of Science (since October 2015). Professor at Ecole Polytechnique (2003-2015). Supervisor of 19 PhD students in France, 5 in Italy (Laureat thesis) PUBLICATIONS 349 Publications, 227 in refereed journal (33 PRL, 3 Nature, 4 Nature Physics, 1 Science, 2 Nature Photonics, 4 Nature Communication, 1 Rev.
    [Show full text]
  • 1- Publications
    J. Fuchs - publications PUBLICATIONS - JULIEN FUCHS, as of August 28, 2017 H-index: 42 q PUBLICATIONS IN PEER-REVIEWED JOURNALS: My publications are listed with the following color code: w/o color for publications associed to the research mainly driven by my group (“SPRINT”1), blue for the publications performed jointly, but led by other groups, green for publications I did before having my own group (during my first years at CNRS when I was working in the group of C. Labaune), and in grey for the publications I did during my PhD. Student and postdoctoral advisees are underlined. Submitted publications D. P. Higginson, B. Khiar, G. Revet, J. Béard, M. Blecher, M. Borghesi, K. Burdonov, S. N. Chen, E. Filippov, D. Khaghani, K. Naughton, H. Pépin, S. Pikuz, O. Portugall, C. Riconda, R. Riquier, R. Rodriguez, S. N. Ryazantsev, I. Yu. Skobelev, A. Soloviev, M. Starodubtsev, T. Vinci, O. Willi, A. Ciardi, and J. Fuchs « Enhancement of quasi-stationary shocks and heating via temporal-staging in a magnetized, laser-plasma jet » in review at Phys. Rev. Lett. M. Nakatsutsumi, Y. Sentoku, S. N. Chen, S. Buffechoux, A. Kon, A. Korzhimanov, L. Gremillet, B. Atherton, P. Audebert, M. Geissel, L. Hurd, M. Kimmel, P. Rambo, M. Schollmeier, J. Schwarz, M. Starodubtsev, R. Kodama, and J. Fuchs « On magnetic inhibition of laser-driven, sheath-accelerated high-energy protons » in review at Nat. Comm. P. Antici, E. Boella, S.N. Chen, M. Barberio, J. Böker, F. Cardelli, M. Glesser, L. Romagnani, M. Sciscio, M. Starodubtsev, O. Willi, J.C. Kieffer, H. Pépin, L.
    [Show full text]
  • Particle Acceleration with Beam Driven Wakefield Antoine Doche
    Particle acceleration with beam driven wakefield Antoine Doche To cite this version: Antoine Doche. Particle acceleration with beam driven wakefield. Plasma Physics [physics.plasm-ph]. Université Paris-Saclay, 2018. English. <NNT : 2018SACLX023>. <tel-01767745> HAL Id: tel-01767745 https://pastel.archives-ouvertes.fr/tel-01767745 Submitted on 16 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Particle acceleration with beam driven plasma wakefield Thèse de doctorat de l'Université Paris-Saclay préparée à l’école Polytechnique :2018SACLX023 École doctorale n°572 : ondes et matières (EDOM) NNT Spécialité de doctorat: optique et physique des plasmas Thèse présentée et soutenue à Palaiseau, le 09 Mars 2018, par Antoine DOCHE Composition du Jury : M. Patrick MORA, Directeur de recherche CPhT, école Polytechnique - CNRS Président du jury M. Philippe BALCOU, Directeur de recherche CELIA, CEA – CNRS – Université de Bordeaux Rapporteur M. Emmanuel D’HUMIERES, Directeur de recherche CELIA, CEA – CNRS – Université de Bordeaux Rapporteur Mme. Edda GSCHWENDTNER, Directrice de recherche CERN, Engineering Department Examinatrice M. Sébastien CORDE, Maitre de conférence LOA, École Polytechnique Co-directeur de thèse M. Victor MALKA, Directeur de recherche LOA, École Polytechnique Directeur de thèse Particle acceleration with beam driven plasma wakefield Remerciements - Acknowledgements Avant toute chose, il faut préciser que différents acteurs ont rendu possible les campagnes expérimentales sur lesquelles repose ce travail et la rédaction de ce manuscrit.
    [Show full text]
  • Particle Acceleration with Beam Driven Plasma Wakefield
    Particle acceleration with beam driven plasma wakefield Thèse de doctorat de l'Université Paris-Saclay préparée à l’école Polytechnique :2018SACLX023 École doctorale n°572 : ondes et matières (EDOM) NNT Spécialité de doctorat: optique et physique des plasmas Thèse présentée et soutenue à Palaiseau, le 09 Mars 2018, par Antoine DOCHE Composition du Jury : M. Patrick MORA, Directeur de recherche CPhT, école Polytechnique - CNRS Président du jury M. Philippe BALCOU, Directeur de recherche CELIA, CEA – CNRS – Université de Bordeaux Rapporteur M. Emmanuel D’HUMIERES, Directeur de recherche CELIA, CEA – CNRS – Université de Bordeaux Rapporteur Mme. Edda GSCHWENDTNER, Directrice de recherche CERN, Engineering Department Examinatrice M. Sébastien CORDE, Maitre de conférence LOA, École Polytechnique Co-directeur de thèse M. Victor MALKA, Directeur de recherche LOA, École Polytechnique Directeur de thèse Particle acceleration with beam driven plasma wakefield Remerciements - Acknowledgements Avant toute chose, il faut préciser que différents acteurs ont rendu possible les campagnes expérimentales sur lesquelles repose ce travail et la rédaction de ce manuscrit. Eux seuls méritent tous les honneurs qui découlent des accomplissements scientifiques présentés dans ce texte, et pour leur temps, leur aide et leur confiance je tiens à les remercier individuellement. Je souhaite remercier en tout premier lieu mon directeur de thèse, Victor Malka pour son accueil au Laboratoire d’Optique Appliquée dès février 2014. C’est grâce à lui que ce manuscrit a pu être écrit, grâce à son soutien face aux difficultés, et à ses conseils quant à la direction à prendre à chaque moment important. J’exprime donc beaucoup de reconnaissance pour ses enseignements scientifiques et humains, pour toutes les opportunités qu’il a rendues possibles, notamment pour partir étudier sous d’autres horizons.
    [Show full text]
  • Laser-Driven Ion Acceleration from Carbon Nano-Targets with Ti:Sa Laser Systems
    Laser-Driven Ion Acceleration From Carbon Nano-Targets With Ti:Sa Laser Systems Jianhui Bin München 2015 Laser-Driven Ion Acceleration From Carbon Nano-Targets With Ti:Sa Laser Systems Jianhui Bin Dissertation angefertigt am Max-Planck-Institut für Quantenoptik an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Jianhui Bin aus Hunan, China München, den 09.04.2015 Erstgutachter: Prof. Dr. Jörg Schreiber Zweitgutachter: Prof. Dr. Matt Zepf Tag der mündlichen Prüfung: 19.06.2015 Zusammenfassung In den letzten Jahrzehnten hat die Erzeugung von Laserimpulsen mit relativistischen In- tensitäten eine hohe Aufmerksamkeit seit auf sich gezogen. Im Jahr 2000 haben bereits mehrere Gruppen von Forschern gezeigt, dass Protonen mit bis zu 58 MeV kinetischer Energie mit geringer transversaler Emittanz in Pikosekunden-Zeitskalen aus Festkörpern mit einigen µm Dicke beschleunigt werden können. Diese einzigartigen Eigenschaften Laser-beschleunigter Ionenstrahlen sind hervorragend für eine Vielzahl neuartiger An- wendungen geeignet. Gleichzeitig kompliziert die große Winkel- und Energiestreuung klassische Anwendungen, die auf konventionellen Beschleunigern beruhen. Die Verwendung von Nano-Targets als Laser-Ionenquelle bietet eine Reihe von Vorteilen gegenüber µm dicken Folien. Die hier vorgestellte Doktorarbeit hat sich zum Ziel gesetzt Lasergetriebene Ionenbeschleunigung mit Kohlenstoff-Nano-Targets zu demonstrieren und deren Nutzbarkeit für biologische Studien zu evaluieren. Zwei neuartige Nano-Targets werden vorgestellt: Nm dünne Diamantartige Kohlenstoff (DLC) Folien und Schaumtar- gets aus Kohlenstoff Nanoröhrchen (CNF). Beide wurden im technologischen Labor der Ludwig-Maximilians Universität München hergestellt. Mit DLC Folien konnten hoch kollimierte Ionenstrahlen mit extrem geringer Divergenz von 2◦, eine Größenordnung kleiner im Vergleich zu µm dicken Folien, gezeigt werden.
    [Show full text]
  • Laser-Driven Plasma-Wave Electron Accelerators
    Laser-driven plasma-wave electron accelerators Wim Leemans and Eric Esarey Surfing a plasma wave, a bunch of electrons or positrons can experience much higher accelerating gradients than a conventional RF linac could provide. Wim Leemans heads the LOASIS (Lasers, Optical Accelerator Systems Integrated Studies) program at the Lawrence Berkeley National Laboratory in Berkeley, California. Eric Esarey is the program’s deputy head. In conventional accelerators, energy from RF electro- proposed a new way to accelerate electrons.1 They argued magnetic waves in vacuum is transformed into kinetic energy that one could use a plasma medium—for example, ionized of particles driven by the electric field. In high-energy- hydrogen or helium—to transform electromagnetic energy physics colliders, some of that kinetic energy is in turn trans- from a laser pulse into the kinetic energy of accelerated elec- formed into short-lived exotic particles. The new crown jewel trons by letting laser pulses excite large-amplitude plasma of colliders is the recently completed Large Hadron Collider density waves.2 (See the article by Chandrashekhar Joshi and at CERN (see the Quick Study by Fabiola Gianotti and Chris Thomas Katsouleas in PHYSICS TODAY, June 2003, page 47.) In Quigg in PHYSICS TODAY, September 2007, page 90). The LHC, that scheme, called laser–plasma acceleration, radiation pres- a 27-km-circumference ring for accelerating and storing sure from an intense laser pulse fired into the plasma causes countercirculating beams of 7-TeV protons, has a stored beam the electrons to move out of its path. Because the much heav- energy exceeding 300 MJ.
    [Show full text]