Human Dirofilariasis: Current Situation and Possibilities for Diagnosis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dirofilaria Repens Nematode Infection with Microfilaremia in Traveler Returning to Belgium from Senegal
RESEARCH LETTERS 6. Sohan K, Cyrus CA. Ultrasonographic observations of the fetal We report human infection with a Dirofilaria repens nema- brain in the first 100 pregnant women with Zika virus infection in tode likely acquired in Senegal. An adult worm was extract- Trinidad and Tobago. Int J Gynaecol Obstet. 2017;139:278–83. ed from the right conjunctiva of the case-patient, and blood http://dx.doi.org/10.1002/ijgo.12313 7. Parra-Saavedra M, Reefhuis J, Piraquive JP, Gilboa SM, microfilariae were detected, which led to an initial misdiag- Badell ML, Moore CA, et al. Serial head and brain imaging nosis of loiasis. We also observed the complete life cycle of of 17 fetuses with confirmed Zika virus infection in Colombia, a D. repens nematode in this patient. South America. Obstet Gynecol. 2017;130:207–12. http://dx.doi.org/10.1097/AOG.0000000000002105 8. Kleber de Oliveira W, Cortez-Escalante J, De Oliveira WT, n October 14, 2016, a 76-year-old man from Belgium do Carmo GM, Henriques CM, Coelho GE, et al. Increase in Owas referred to the travel clinic at the Institute of Trop- reported prevalence of microcephaly in infants born to women ical Medicine (Antwerp, Belgium) because of suspected living in areas with confirmed Zika virus transmission during the first trimester of pregnancy—Brazil, 2015. MMWR Morb loiasis after a worm had been extracted from his right con- Mortal Wkly Rep. 2016;65:242–7. http://dx.doi.org/10.15585/ junctiva in another hospital. Apart from stable, treated arte- mmwr.mm6509e2 rial hypertension and non–insulin-dependent diabetes, he 9. -
Worms, Nematoda
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2001 Worms, Nematoda Scott Lyell Gardner University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Gardner, Scott Lyell, "Worms, Nematoda" (2001). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 78. https://digitalcommons.unl.edu/parasitologyfacpubs/78 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Encyclopedia of Biodiversity, Volume 5 (2001): 843-862. Copyright 2001, Academic Press. Used by permission. Worms, Nematoda Scott L. Gardner University of Nebraska, Lincoln I. What Is a Nematode? Diversity in Morphology pods (see epidermis), and various other inverte- II. The Ubiquitous Nature of Nematodes brates. III. Diversity of Habitats and Distribution stichosome A longitudinal series of cells (sticho- IV. How Do Nematodes Affect the Biosphere? cytes) that form the anterior esophageal glands Tri- V. How Many Species of Nemata? churis. VI. Molecular Diversity in the Nemata VII. Relationships to Other Animal Groups stoma The buccal cavity, just posterior to the oval VIII. Future Knowledge of Nematodes opening or mouth; usually includes the anterior end of the esophagus (pharynx). GLOSSARY pseudocoelom A body cavity not lined with a me- anhydrobiosis A state of dormancy in various in- sodermal epithelium. -
Parasite Kit Description List (PDF)
PARASITE KIT DESCRIPTION PARASITES 1. Acanthamoeba 39. Diphyllobothrium 77. Isospora 115. Pneumocystis 2. Acanthocephala 40. Dipylidium 78. Isthmiophora 116. Procerovum 3. Acanthoparyphium 41. Dirofilaria 79. Leishmania 117. Prosthodendrium 4. Amoeba 42. Dracunculus 80. Linguatula 118. Pseudoterranova 5. Ancylostoma 43. Echinochasmus 81. Loa Loa 119. Pygidiopsis 6. Angiostrongylus 44. Echinococcus 82. Mansonella 120. Raillietina 7. Anisakis 45. Echinoparyphium 83. Mesocestoides 121. Retortamonas 8. Armillifer 46. Echinostoma 84. Metagonimus 122. Sappinia 9. Artyfechinostomum 47. Eimeria 85. Metastrongylus 123. Sarcocystis 10. Ascaris 48. Encephalitozoon 86. Microphallus 124. Schistosoma 11. Babesia 49. Endolimax 87. Microsporidia 1 125. Spirometra 12. Balamuthia 50. Entamoeba 88. Microsporidia 2 126. Stellantchasmus 13. Balantidium 51. Enterobius 89. Multiceps 127. Stephanurus 14. Baylisascaris 52. Enteromonas 90. Naegleria 128. Stictodora 15. Bertiella 53. Episthmium 91. Nanophyetus 129. Strongyloides 16. Besnoitia 54. Euparyphium 92. Necator 130. Syngamus 17. Blastocystis 55. Eustrongylides 93. Neodiplostomum 131. Taenia 18. Brugia.M 56. Fasciola 94. Neoparamoeba 132. Ternidens 19. Brugia.T 57. Fascioloides 95. Neospora 133. Theileria 20. Capillaria 58. Fasciolopsis 96. Nosema 134. Thelazia 21. Centrocestus 59. Fischoederius 97. Oesophagostmum 135. Toxocara 22. Chilomastix 60. Gastrodiscoides 98. Onchocerca 136. Toxoplasma 23. Clinostomum 61. Gastrothylax 99. Opisthorchis 137. Trachipleistophora 24. Clonorchis 62. Giardia 100. Orientobilharzia 138. Trichinella 25. Cochliopodium 63. Gnathostoma 101. Paragonimus 139. Trichobilharzia 26. Contracaecum 64. Gongylonema 102. Passalurus 140. Trichomonas 27. Cotylurus 65. Gryodactylus 103. Pentatrichormonas 141. Trichostrongylus 28. Cryptosporidium 66. Gymnophalloides 104. Pfiesteria 142. Trichuris 29. Cutaneous l.migrans 67. Haemochus 105. Phagicola 143. Tritrichomonas 30. Cyclocoelinae 68. Haemoproteus 106. Phaneropsolus 144. Trypanosoma 31. Cyclospora 69. Hammondia 107. Phocanema 145. Uncinaria 32. -
Improved Postmortem Diagnosis of Taenia Saginata Cysticercosis
IMPROVED POSTMORTEM DIAGNOSIS OF TAENIA SAGINATA CYSTICERCOSIS A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfilment of the Requirements for the Degree of Masters of Science in the Department of Veterinary Microbiology University of Saskatchewan Saskatoon By WILLIAM BRADLEY SCANDRETT Keywords: Taenia saginata, bovine cysticercosis, immunohistochemistry, histology, validation © Copyright William Bradley Scandrett, July, 2007. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a postgraduate degree from the University of Saskatchewan, I agree that the libraries of this university may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make use of material in this thesis in whole or in part should be addressed to: Head of the Department of Veterinary Microbiology University of Saskatchewan Saskatoon, Saskatchewan, S7N 5B4 i ABSTRACT Bovine cysticercosis is a zoonotic disease for which cattle are the intermediate hosts of the human tapeworm Taenia saginata. -
Anthology of Dirofilariasis in Russia (1915–2017)
pathogens Review Anthology of Dirofilariasis in Russia (1915–2017) Anatoly V. Kondrashin 1, Lola F. Morozova 1, Ekaterina V. Stepanova 1, Natalia A. Turbabina 1, Maria S. Maksimova 1 and Evgeny N. Morozov 1,2,* 1 Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119435 Moscow, Russia; [email protected] (A.V.K.); [email protected] (L.F.M.); [email protected] (E.V.S.); [email protected] (N.A.T.); [email protected] (M.S.M.) 2 Department of Tropical, Parasitic Diseases and Disinfectology, Russian Medical Academy of Continuous Professional Education, 125445 Moscow, Russia * Correspondence: [email protected] Received: 21 March 2020; Accepted: 7 April 2020; Published: 9 April 2020 Abstract: Dirofilariasis is a helminths vector-borne disease caused by two species of Dirofolaria— D. repens and D. immitis. The former is overwhelmingly associated with human dirofilariasis. The vector of the worm are mosquitoes of the family Culicidae (largely Culex, Aedes and Anopheles). The definitive hosts of Dirofilaria are dogs and to a lesser extent cats. Humans are an accidental host. A total of 1200 human cases caused by Dirofilaria were registered in the territory of the ex-USSR during the period 1915–2016. Zonal differences have been seen in the prevalence of infected dogs and mosquitoes. Studies undertaken in the southern part of the Russian Federation (RF) revealed the prevalence of Dirofilaria in dogs to be 20.8% with wild variations of larva density. Studies carried out in the central part of the RF found that the prevalence of parasites in dogs was 4.1%. -
Hookworm-Related Cutaneous Larva Migrans
326 Hookworm-Related Cutaneous Larva Migrans Patrick Hochedez , MD , and Eric Caumes , MD Département des Maladies Infectieuses et Tropicales, Hôpital Pitié-Salpêtrière, Paris, France DOI: 10.1111/j.1708-8305.2007.00148.x Downloaded from https://academic.oup.com/jtm/article/14/5/326/1808671 by guest on 27 September 2021 utaneous larva migrans (CLM) is the most fre- Risk factors for developing HrCLM have specifi - Cquent travel-associated skin disease of tropical cally been investigated in one outbreak in Canadian origin. 1,2 This dermatosis fi rst described as CLM by tourists: less frequent use of protective footwear Lee in 1874 was later attributed to the subcutane- while walking on the beach was signifi cantly associ- ous migration of Ancylostoma larvae by White and ated with a higher risk of developing the disease, Dove in 1929. 3,4 Since then, this skin disease has also with a risk ratio of 4. Moreover, affected patients been called creeping eruption, creeping verminous were somewhat younger than unaffected travelers dermatitis, sand worm eruption, or plumber ’ s itch, (36.9 vs 41.2 yr, p = 0.014). There was no correla- which adds to the confusion. It has been suggested tion between the reported amount of time spent on to name this disease hookworm-related cutaneous the beach and the risk of developing CLM. Consid- larva migrans (HrCLM).5 ering animals in the neighborhood, 90% of the Although frequent, this tropical dermatosis is travelers in that study reported seeing cats on the not suffi ciently well known by Western physicians, beach and around the hotel area, and only 1.5% and this can delay diagnosis and effective treatment. -
Facts About Wildlife Diseases: Raccoon-Borne Pathogens of Importance to Humans—Parasites1 Caitlin Jarvis and Mathieu Basille2
WEC434 Facts about Wildlife Diseases: Raccoon-Borne Pathogens of Importance to Humans—Parasites1 Caitlin Jarvis and Mathieu Basille2 Northern raccoons (Procyon lotor, Figure 1) can carry many diseases that present significant health hazards to both people and pets. Some of these diseases are asymp- tomatic, showing no signs of infection, and often do not affect raccoons, but can still be passed on and deadly to other animals, including humans. Because it is not possible to be certain if a wild animal is sick, it is safer to consider the animal a hazard and avoid it. Contact animal control or a wildlife rehabilitator if you suspect an animal is sick or behaving abnormally (contact details for Florida wildlife rehabilitators can be found on the Florida Fish and Wildlife Conservation Commission website). Sick wild animals can act tame and confused but should never be approached as if they are domesticated. They are still wild animals that Figure 1. A juvenile raccoon in a tree in Broward County, south Florida. will likely see you as a threat, and can act aggressively. Credits: Mathieu Basille, UF/IFAS Due to their successful adaptation to urban environments, it is common for raccoons to come into contact with Internal Parasites humans. This document is part of a series addressing health Baylisascaris procyonis (raccoon hazards associated with raccoons and specifically describes important internal and external parasites. Information on roundworm) raccoon-borne viruses and bacteria, as well as more details Baylisascaris procyonis, known as the raccoon roundworm about the raccoon roundworm Baylisascaris procyonis, can (Figure 2), is a nematode in the family Ascarididae that be found in other documents of this series. -
TCM Diagnostics Applied to Parasite-Related Disease
TCM Diagnostics Applied to Parasite-Related Disease by Laraine Crampton, M.A.T.C.M., L. Ac. Capstone Advisor: Lawrence J. Ryan, Ph.D. Presented in partial fulfillment of the requirements for the degree Doctor of Acupuncture and Oriental Medicine Yo San University of Traditional Chinese Medicine Los Angeles, California April 2014 TCM and Parasites/Crampton 2 Approval Signatures Page This Capstone Project has been reviewed and approved by: April 30th, 2014 ____________________________________________________________________________ Lawrence J. Ryan, Ph. D. Capstone Project Advisor Date April 30th, 2014 ________________________________________________________________________ Don Lee, L. Ac. Specialty Chair Date April 30th, 2014 ________________________________________________________________________ Andrea Murchison, D.A.O.M., L.Ac. Program Director Date TCM and Parasites/Crampton 3 Abstract Complex, chronic disease affects millions in the United States, imposing a significant cost to the affected individuals and the productivity and economic realities those individuals and their families, workplaces and communities face. There is increasing evidence leading towards the probability that overlooked and undiagnosed parasitic disease is a causal, contributing, or co- existent factor for many of those afflicted by chronic disease. Yet, frustratingly, inadequate diagnostic methods and clever adaptive mechanisms in parasitic organisms mean that even when physicians are looking for parasites, they may not find what is there to be found. Examining the practice of medicine in the United States just over a century ago reveals that fully a third of diagnostic and treatment concerns for leading doctors of the time revolved around parasitic organisms and related disease, and that the population they served was largely located in rural areas. By the year 2000, more than four-fifths of the population had migrated to cities, enjoying the benefits of municipal services, water treatment systems, grocery stores and restaurants. -
Prevention, Diagnosis, and Management of Infection in Cats
Current Feline Guidelines for the Prevention, Diagnosis, and Management of Heartworm (Dirofilaria immitis) Infection in Cats Thank You to Our Generous Sponsors: Printed with an Education Grant from IDEXX Laboratories. Photomicrographs courtesy of Bayer HealthCare. © 2014 American Heartworm Society | PO Box 8266 | Wilmington, DE 19803-8266 | E-mail: [email protected] Current Feline Guidelines for the Prevention, Diagnosis, and Management of Heartworm (Dirofilaria immitis) Infection in Cats (revised October 2014) CONTENTS Click on the links below to navigate to each section. Preamble .................................................................................................................................................................. 2 EPIDEMIOLOGY ....................................................................................................................................................... 2 Figure 1. Urban heat island profile. BIOLOGY OF FELINE HEARTWORM INFECTION .................................................................................................. 3 Figure 2. The heartworm life cycle. PATHOPHYSIOLOGY OF FELINE HEARTWORM DISEASE ................................................................................... 5 Figure 3. Microscopic lesions of HARD in the small pulmonary arterioles. Figure 4. Microscopic lesions of HARD in the alveoli. PHYSICAL DIAGNOSIS ............................................................................................................................................ 6 Clinical -
Endoparasites of American Marten (Martes Americana): Review of the Literature and Parasite Survey of Reintroduced American Marten in Michigan
International Journal for Parasitology: Parasites and Wildlife 5 (2016) 240e248 Contents lists available at ScienceDirect International Journal for Parasitology: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Endoparasites of American marten (Martes americana): Review of the literature and parasite survey of reintroduced American marten in Michigan * Maria C. Spriggs a, b, , Lisa L. Kaloustian c, Richard W. Gerhold d a Mesker Park Zoo & Botanic Garden, Evansville, IN, USA b Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, USA c Diagnostic Center for Population and Animal Health, Michigan State University, Lansing, MI, USA d Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA article info abstract Article history: The American marten (Martes americana) was reintroduced to both the Upper (UP) and northern Lower Received 1 April 2016 Peninsula (NLP) of Michigan during the 20th century. This is the first report of endoparasites of American Received in revised form marten from the NLP. Faeces from live-trapped American marten were examined for the presence of 2 July 2016 parasitic ova, and blood samples were obtained for haematocrit evaluation. The most prevalent parasites Accepted 9 July 2016 were Capillaria and Alaria species. Helminth parasites reported in American marten for the first time include Eucoleus boehmi, hookworm, and Hymenolepis and Strongyloides species. This is the first report of Keywords: shedding of Sarcocystis species sporocysts in an American marten and identification of 2 coccidian American marten Endoparasite parasites, Cystoisospora and Eimeria species. The pathologic and zoonotic potential of each parasite Faecal examination species is discussed, and previous reports of endoparasites of the American marten in North America are Michigan reviewed. -
Filarial Worms
Filarial worms Blood & tissues Nematodes 1 Blood & tissues filarial worms • Wuchereria bancrofti • Brugia malayi & timori • Loa loa • Onchocerca volvulus • Mansonella spp • Dirofilaria immitis 2 General life cycle of filariae From Manson’s Tropical Diseases, 22 nd edition 3 Wuchereria bancrofti Life cycle 4 Lymphatic filariasis Clinical manifestations 1. Acute adenolymphangitis (ADLA) 2. Hydrocoele 3. Lymphoedema 4. Elephantiasis 5. Chyluria 6. Tropical pulmonary eosinophilia (TPE) 5 Figure 84.10 Sequence of development of the two types of acute filarial syndromes, acute dermatolymphangioadenitis (ADLA) and acute filarial lymphangitis (AFL), and their possible relationship to chronic filarial disease. From Manson’s tropical Diseases, 22 nd edition 6 Bancroftian filariasis Pathology 7 Lymphatic filariasis Parasitological Diagnosis • Usually diagnosis of microfilariae from blood but often negative (amicrofilaraemia does not exclude the disease!) • No relationship between microfilarial density and severity of the disease • Obtain a specimen at peak (9pm-3am for W.b) • Counting chamber technique: 100 ml blood + 0.9 ml of 3% acetic acid microscope. Species identification is difficult! 8 Lymphatic filariasis Parasitological Diagnosis • Staining (Giemsa, haematoxylin) . Observe differences in size, shape, nuclei location, etc. • Membrane filtration technique on venous blood (Nucleopore) and staining of filters (sensitive but costly) • Knott concentration technique with saponin (highly sensitive) may be used 9 The microfilaria of Wuchereria bancrofti are sheathed and measure 240-300 µm in stained blood smears and 275-320 µm in 2% formalin. They have a gently curved body, and a tail that becomes thinner to a point. The nuclear column (the cells that constitute the body of the microfilaria) is loosely packed; the cells can be visualized individually and do not extend to the tip of the tail. -
Zoonotic Nematodes of Wild Carnivores
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 Zoonotic nematodes of wild carnivores Otranto, Domenico ; Deplazes, Peter Abstract: For a long time, wildlife carnivores have been disregarded for their potential in transmitting zoonotic nematodes. However, human activities and politics (e.g., fragmentation of the environment, land use, recycling in urban settings) have consistently favoured the encroachment of urban areas upon wild environments, ultimately causing alteration of many ecosystems with changes in the composition of the wild fauna and destruction of boundaries between domestic and wild environments. Therefore, the exchange of parasites from wild to domestic carnivores and vice versa have enhanced the public health relevance of wild carnivores and their potential impact in the epidemiology of many zoonotic parasitic diseases. The risk of transmission of zoonotic nematodes from wild carnivores to humans via food, water and soil (e.g., genera Ancylostoma, Baylisascaris, Capillaria, Uncinaria, Strongyloides, Toxocara, Trichinella) or arthropod vectors (e.g., genera Dirofilaria spp., Onchocerca spp., Thelazia spp.) and the emergence, re-emergence or the decreasing trend of selected infections is herein discussed. In addition, the reasons for limited scientific information about some parasites of zoonotic concern have been examined. A correct compromise between conservation of wild carnivores and risk of introduction and spreading of parasites of public health concern is discussed in order to adequately manage the risk of zoonotic nematodes of wild carnivores in line with the ’One Health’ approach. DOI: https://doi.org/10.1016/j.ijppaw.2018.12.011 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-175913 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.