Series, Jordan–Hölder Theorem and the Extension Problem .....187 9.1 Composition Series and the Jordan–Hölder Theorem

Total Page:16

File Type:pdf, Size:1020Kb

Series, Jordan–Hölder Theorem and the Extension Problem .....187 9.1 Composition Series and the Jordan–Hölder Theorem A Course on Finite Groups Universitext For other titles in this series, go to www.springer.com/series/223 H.E. Rose A Course on Finite Groups H.E. Rose Department of Mathematics University of Bristol University Walk Bristol BS8 1TW, UK [email protected] Editorial board: Sheldon Axler, San Francisco State University Vincenzo Capasso, Universitá degli Studi di Milano Carles Casacuberta, Universitat de Barcelona Angus Macintyre, Queen Mary, University of London Kenneth Ribet, University of California, Berkeley Claude Sabbah, CNRS, École Polytechnique Endre Süli, University of Oxford Wojbor Woyczynski, Case Western Reserve University ISBN 978-1-84882-888-9 e-ISBN 978-1-84882-889-6 DOI 10.1007/978-1-84882-889-6 Springer London Dordrecht Heidelberg New York British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2009942898 Mathematics Subject Classification (2000): 20-01 © Springer-Verlag London Limited 2009 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per- mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publish- ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, et cetera, in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. Cover design: WMXDesign GmbH Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface This book is an introduction to the remarkable range and variety of finite group the- ory for undergraduate and beginning graduate mathematicians, and all others with an interest in the subject. My original plan was to develop the theory to the point where I could present the proofs and supporting material for some of the main re- sults in the subject. These were to include the theorems of Lagrange, Sylow, Burn- side (Normal Complement), Jordan–Hölder, Hall and Schur–Zassenhaus amongst others, and to provide an introduction to character theory developed to the point where Burnside’s pr qs -theorem could be derived and Frobenius kernels and com- plements could be introduced. I have come to realise that this would have resulted in a rather long book and so some material would have to go. It was at this point that modern technology came to my aid. Solutions to the problems were also to be included, but these would have taken at least 90 rather dense pages and an appendix to this book was perhaps not the best place for this material. A number of textbooks now put solutions on a web site attached to the book which is maintained jointly by the author and the publisher. Extending this idea has allowed me to fulfil my original intentions and keep the printed text to manageable proportions. So the web site now attached to this book, which can be found by going to www.springer.com and following the product links, includes not only the Solution Appendix but also extra sections to many of the chapters and two extra web chapters. These items are listed on the contents pages, and present work that is not basic to a chapter’s topic being either slightly more specialised or slightly more challenging. Also, perhaps unfortunately, all work on character theory and applications (Chapters 13 and 14) is now on the web. As this book goes to press, about half of this web material is written and ‘latexed’, it is hoped that the remaining half will be available when the book is published or soon after. Of course, more web items could be added later. I attended Muchio Suzuki’s graduate group theory lectures given at the University of Illinois in 1974 and 1975, and so in tribute to him and the insight he gave into modern finite group theory I have ended the extended text with a discussion of his simple groups Sz(2n) as an application of the Frobenius theory. v vi Preface Prerequisites This book begins with the definition of a group, and Appendices A and B give a brief résumé of the background material from Set Theory and Number Theory that is required. So in one sense, the book needs no prerequisites, only the ability to ‘think-straight’ and a desire to learn the subject. On the other hand, it would help if the reader had undertaken the following. (a) We are assuming that the reader is familiar with the material of a basic abstract algebra course, and so he or she has seen at least a few examples of groups and fields, associative and commutative operations, et cetera, and also has had some experience working in an abstract setting. (b) We are also assuming that the reader is familiar with the basics of linear al- gebra including facts about vector spaces, matrices and determinants, and the definitions of inner and Hermitian forms. We also use the elementary opera- tions, similarity and rational canonical forms, and related topics. Most standard one-semester linear algebra textbooks provide more than is required. (c) It would also help if the reader had undertaken a first course on analysis which included the basic set operations, elementary properties of the standard num- ber systems: integers Z, rational numbers Q, real numbers R, and the complex numbers C, and the standard set-theoretic methods summarised in Appendix A. (d) Lastly, some familiarity with elementary number theory would be an asset, Ap- pendix B summarises most that is required. The Euclidean Algorithm is used widely in this book, as are the basic congruence properties. Plan of the Book The author of an introductory group theory text has a problem: the theory is self- contained and coherent, many topics are interconnected, and several are needed more or less from the start. On the other hand, the material in a book has perforce to be presented linearly starting at Page 1. During the planning and writing of this book, I have assumed that most readers will not read it sequentially from cover to cover, but will occasionally ‘dot-about’. Hence I have allowed some ‘forward refer- ence’, mostly for examples. The essential topics that the reader should ‘get to grips with’ first include the basic facts about groups and subgroups, homomorphisms and isomorphisms, direct products and solubility. Also some aspects of the theory of actions—conjugacy, the centraliser and the normaliser—are not far behind. Of course, as noted above, although the material has to be presented linearly, it need not be read linearly, and there are considerable advantages in presenting the basic facts of a topic— homomorphisms, for example—in one place. One consequence of this fact is that the order of the chapters has some flexibility. So Chapter 7 could be read before Chapters 5 and 6 with only a small amount of back-reference in the examples. Some group-theorists may consider it essential for students to have a good grounding in the Abelian theory before the non-Abelian theory is tackled. Similarly, Chapters 10 Preface vii and 11 can be read in either order with little back-reference required. So a possible non-linear reading of the text is Sections 2.1, 2.3, 2.4 and 4.1—the basic core of the subject, then the rest of Chapter 2, Sections 4.2, 4.3, 7.1 and 11.1 in this order, then the following sections where the reading order might be varied Part or all of Chapters 3 and 5, Sections 7.2, 7.3, and 9.1, and Chapters 6 and 10. Following this the remaining printed sections or possibly some of the web sections could be tackled. In the text, I have sometimes introduced topics ‘early’ and out of their logical order, for example, isomorphisms in Chapter 2, to deal with this point. Also, as a general rule, the ‘easier’ and/or more elementary parts of a topic come near the beginning of the chapter, and so the final sections often contain more specialised and/or challenging material. Further Reading The reader would do not harm studying any of the books listed in the bibliogra- phy, we suggest a few concentrating on the more recent titles. For a general further development of the finite theory try: Robinson (1982), Suzuki (1982, 1986), Aschbacher (1986), Kurzweil and Stellmacher (2004), and Isaacs (2008). Also the three volume Huppert and Blackburn (1967, 1982a, 1982b) is very com- prehensive and deals with many topics not found elsewhere. For more specialised topics, the following should be read: Doerk and Hawkes (1992) for soluble groups, Carter (1972), the ATLAS (1985), and Conway and Sloane (1993) for finite simple groups, James and Liebeck (1993), Huppert (1998) and Isaacs (2006) for character theory, and Kaplansky (1969), Fuchs (1970, 1973), and Rotman (1994) for infinite Abelian groups. Of course, some of the older books still have much to offer, these include Burnside (1911, reprinted 2004), Kurosh (1955), Scott (1964) and Rose (1978)—no relation! Although 45 years old, in my opinion, Scott’s book remains one of the best in- troductions to the subject.
Recommended publications
  • Determining Group Structure from the Sets of Character Degrees
    DETERMINING GROUP STRUCTURE FROM THE SETS OF CHARACTER DEGREES A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Kamal Aziziheris May 2011 Dissertation written by Kamal Aziziheris B.S., University Of Tabriz, 1999 M.A., University of Tehran, 2001 Ph.D., Kent State University, 2011 Approved by M. L. Lewis, Chair, Doctoral Dissertation Committee Stephen M. Gagola, Jr., Member, Doctoral Dissertation Committee Donald White, Member, Doctoral Dissertation Committee Brett D. Ellman, Member, Doctoral Dissertation Committee Anne Reynolds, Member, Doctoral Dissertation Committee Accepted by Andrew Tonge, Chair, Department of Mathematical Sciences Timothy S. Moerland, Dean, College of Arts and Sciences ii . To the Loving Memory of My Father, Mohammad Aziziheris iii TABLE OF CONTENTS ACKNOWLEDGEMENTS . v INTRODUCTION . 1 1 BACKGROUND RESULTS AND FACTS . 12 2 DIRECT PRODUCTS WHEN cd(Oπ(G)) = f1; n; mg . 22 3 OBTAINING THE CHARACTER DEGREES OF Oπ(G) . 42 4 PROOFS OF THEOREMS D AND E . 53 5 PROOFS OF THEOREMS F AND G . 62 6 EXAMPLES . 70 BIBLIOGRAPHY . 76 iv ACKNOWLEDGEMENTS This dissertation is due to many whom I owe a huge debt of gratitude. I would especially like to thank the following individuals for their support, encouragement, and inspiration along this long and often difficult journey. First and foremost, I offer thanks to my advisor Prof. Mark Lewis. This dissertation would not have been possible without your countless hours of advice and support. Thank you for modeling the actions and behaviors of an accomplished mathematician, an excellent teacher, and a remarkable person.
    [Show full text]
  • PRONORMALITY in INFINITE GROUPS by F G
    PRONORMALITY IN INFINITE GROUPS By F G Dipartimento di Matematica e Applicazioni, Universita' di Napoli ‘Federico II’ and G V Dipartimento di Matematica e Informatica, Universita' di Salerno [Received 16 March 1999. Read 13 December 1999. Published 29 December 2000.] A A subgroup H of a group G is said to be pronormal if H and Hx are conjugate in fH, Hxg for each element x of G. In this paper properties of pronormal subgroups of infinite groups are investigated, and the connection between pronormal subgroups and groups in which normality is a transitive relation is studied. Moreover, we consider the pronorm of a group G, i.e. the set of all elements x of G such that H and Hx are conjugate in fH, Hxg for every subgroup H of G; although the pronorm is not in general a subgroup, we prove that this property holds for certain natural classes of (locally soluble) groups. 1. Introduction A subgroup H of a group G is said to be pronormal if for every element x of G the subgroups H and Hx are conjugate in fH, Hxg. Obvious examples of pronormal subgroups are normal subgroups and maximal subgroups of arbitrary groups; moreover, Sylow subgroups of finite groups and Hall subgroups of finite soluble groups are always pronormal. The concept of a pronormal subgroup was introduced by P. Hall, and the first results about pronormality appeared in a paper by Rose [13]. More recently, several authors have investigated the behaviour of pronormal subgroups, mostly dealing with properties of pronormal subgroups of finite soluble groups and with groups which are rich in pronormal subgroups.
    [Show full text]
  • Group and Ring Theoretic Properties of Polycyclic Groups Algebra and Applications
    Group and Ring Theoretic Properties of Polycyclic Groups Algebra and Applications Volume 10 Managing Editor: Alain Verschoren University of Antwerp, Belgium Series Editors: Alice Fialowski Eötvös Loránd University, Hungary Eric Friedlander Northwestern University, USA John Greenlees Sheffield University, UK Gerhard Hiss Aachen University, Germany Ieke Moerdijk Utrecht University, The Netherlands Idun Reiten Norwegian University of Science and Technology, Norway Christoph Schweigert Hamburg University, Germany Mina Teicher Bar-llan University, Israel Algebra and Applications aims to publish well written and carefully refereed mono- graphs with up-to-date information about progress in all fields of algebra, its clas- sical impact on commutative and noncommutative algebraic and differential geom- etry, K-theory and algebraic topology, as well as applications in related domains, such as number theory, homotopy and (co)homology theory, physics and discrete mathematics. Particular emphasis will be put on state-of-the-art topics such as rings of differential operators, Lie algebras and super-algebras, group rings and algebras, C∗-algebras, Kac-Moody theory, arithmetic algebraic geometry, Hopf algebras and quantum groups, as well as their applications. In addition, Algebra and Applications will also publish monographs dedicated to computational aspects of these topics as well as algebraic and geometric methods in computer science. B.A.F. Wehrfritz Group and Ring Theoretic Properties of Polycyclic Groups B.A.F. Wehrfritz School of Mathematical Sciences
    [Show full text]
  • The Theory of Finite Groups: an Introduction (Universitext)
    Universitext Editorial Board (North America): S. Axler F.W. Gehring K.A. Ribet Springer New York Berlin Heidelberg Hong Kong London Milan Paris Tokyo This page intentionally left blank Hans Kurzweil Bernd Stellmacher The Theory of Finite Groups An Introduction Hans Kurzweil Bernd Stellmacher Institute of Mathematics Mathematiches Seminar Kiel University of Erlangen-Nuremburg Christian-Albrechts-Universität 1 Bismarckstrasse 1 /2 Ludewig-Meyn Strasse 4 Erlangen 91054 Kiel D-24098 Germany Germany [email protected] [email protected] Editorial Board (North America): S. Axler F.W. Gehring Mathematics Department Mathematics Department San Francisco State University East Hall San Francisco, CA 94132 University of Michigan USA Ann Arbor, MI 48109-1109 [email protected] USA [email protected] K.A. Ribet Mathematics Department University of California, Berkeley Berkeley, CA 94720-3840 USA [email protected] Mathematics Subject Classification (2000): 20-01, 20DXX Library of Congress Cataloging-in-Publication Data Kurzweil, Hans, 1942– The theory of finite groups: an introduction / Hans Kurzweil, Bernd Stellmacher. p. cm. — (Universitext) Includes bibliographical references and index. ISBN 0-387-40510-0 (alk. paper) 1. Finite groups. I. Stellmacher, B. (Bernd) II. Title. QA177.K87 2004 512´.2—dc21 2003054313 ISBN 0-387-40510-0 Printed on acid-free paper. © 2004 Springer-Verlag New York, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis.
    [Show full text]
  • Formulating Basic Notions of Finite Group Theory Via the Lifting Property
    FORMULATING BASIC NOTIONS OF FINITE GROUP THEORY VIA THE LIFTING PROPERTY by masha gavrilovich Abstract. We reformulate several basic notions of notions in nite group theory in terms of iterations of the lifting property (orthogonality) with respect to particular morphisms. Our examples include the notions being nilpotent, solvable, perfect, torsion-free; p-groups and prime-to-p-groups; Fitting sub- group, perfect core, p-core, and prime-to-p core. We also reformulate as in similar terms the conjecture that a localisation of a (transnitely) nilpotent group is (transnitely) nilpotent. 1. Introduction. We observe that several standard elementary notions of nite group the- ory can be dened by iteratively applying the same diagram chasing trick, namely the lifting property (orthogonality of morphisms), to simple classes of homomorphisms of nite groups. The notions include a nite group being nilpotent, solvable, perfect, torsion- free; p-groups, and prime-to-p groups; p-core, the Fitting subgroup, cf.2.2-2.3. In 2.5 we reformulate as a labelled commutative diagram the conjecture that a localisation of a transnitely nilpotent group is transnitely nilpotent; this suggests a variety of related questions and is inspired by the conjecture of Farjoun that a localisation of a nilpotent group is nilpotent. Institute for Regional Economic Studies, Russian Academy of Sciences (IRES RAS). National Research University Higher School of Economics, Saint-Petersburg. [email protected]://mishap.sdf.org. This paper commemorates the centennial of the birth of N.A. Shanin, the teacher of S.Yu.Maslov and G.E.Mints, who was my teacher. I hope the motivation behind this paper is in spirit of the Shanin's group ÒÐÝÏËÎ (òåîðèòè÷åñêàÿ ðàçðàáîòêà ýâðèñòè÷åñêîãî ïîèñêà ëîãè÷åñêèõ îáîñíîâàíèé, theoretical de- velopment of heuristic search for logical evidence/arguments).
    [Show full text]
  • Daniel Gorenstein 1923-1992
    Daniel Gorenstein 1923-1992 A Biographical Memoir by Michael Aschbacher ©2016 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. DANIEL GORENSTEIN January 3, 1923–August 26, 1992 Elected to the NAS, 1987 Daniel Gorenstein was one of the most influential figures in mathematics during the last few decades of the 20th century. In particular, he was a primary architect of the classification of the finite simple groups. During his career Gorenstein received many of the honors that the mathematical community reserves for its highest achievers. He was awarded the Steele Prize for mathemat- New Jersey University of Rutgers, The State of ical exposition by the American Mathematical Society in 1989; he delivered the plenary address at the International Congress of Mathematicians in Helsinki, Finland, in 1978; Photograph courtesy of of Photograph courtesy and he was the Colloquium Lecturer for the American Mathematical Society in 1984. He was also a member of the National Academy of Sciences and of the American By Michael Aschbacher Academy of Arts and Sciences. Gorenstein was the Jacqueline B. Lewis Professor of Mathematics at Rutgers University and the founding director of its Center for Discrete Mathematics and Theoretical Computer Science. He served as chairman of the universi- ty’s mathematics department from 1975 to 1982, and together with his predecessor, Ken Wolfson, he oversaw a dramatic improvement in the quality of mathematics at Rutgers. Born and raised in Boston, Gorenstein attended the Boston Latin School and went on to receive an A.B.
    [Show full text]
  • The Fitting Subgroup of a Linear Solvable Group
    THE FITTING SUBGROUP OF A LINEAR SOLVABLE GROUP JOHN D. DIXON (Received 5 May 1966) 1. Introduction Let G be a group. The Fitting subgroup F(G) of G is defined to be the set union of all normal nilpotent subgroups of G. Since the product of two normal nilpotent subgroups is again a normal nilpotent subgroup (see [10] p. 238), F(G) is the unique maximal normal, locally nilpotent subgroup of G. In particular, if G is finite, then F(G) is the unique maximal normal nilpotent subgroup of G. If G is a nontrivial solvable group, then clearly F(G) * 1. The principal result of this paper is the following theorem. THEOREM 1. Let G be a completely reducible solvable subgroup of the general linear group GL (n, &) over an algebraically closed field 3F. Then \G:F(G)\ ^a-W where a = 2.3* = 2.88 • • • and b = 2.3? = 4.16 • • •. Moreover the bound is attained by some finite solvable group over the complex field whenever n = 2.4* (k = 0, 1, • • •). NOTE. When G is finite and SF is perfect, then the condition "alge- braically closed" is unnecessary since the field may be extended without affecting the complete reducibility. See [3] Theorem (70.15). A theorem of A. I. Mal'cev shows that there is a bound /?„ such that each completely reducible linear solvable group of degree n has a normal abelian subgroup of index at most /?„. (See [5].) The previous estimates for /?„ are by no means precise, but Theorem 1 allows us to give quite a precise estimate of the corresponding bound for a subnormal abelian subgroup.
    [Show full text]
  • Arxiv:1705.06265V1 [Math.GR] 17 May 2017 Subgroup
    GROUPS IN WHICH EVERY NON-NILPOTENT SUBGROUP IS SELF-NORMALIZING COSTANTINO DELIZIA, URBAN JEZERNIK, PRIMOZˇ MORAVEC, AND CHIARA NICOTERA Abstract. We study the class of groups having the property that every non-nilpotent subgroup is equal to its normalizer. These groups are either soluble or perfect. We completely describe the structure of soluble groups and finite perfect groups with the above property. Furthermore, we give some structural information in the infinite perfect case. 1. Introduction A long standing problem posed by Y. Berkovich [3, Problem 9] is to study the finite p-groups in which every non-abelian subgroup contains its centralizer. In [8], the finite p-groups which have maximal class or exponent p and satisfy Berkovich’s condition are characterized. Furthermore, the infi- nite supersoluble groups with the same condition are completely classi- fied. Although it seems unlikely to be able to get a full classification of finite p-groups in which every non-abelian subgroup is self-centralizing, Berkovich’s problem has been the starting point for a series of papers investigating finite and infinite groups in which every subgroup belongs to a certain family or is self-centralizing. For instance, in [6] and [7] locally finite or infinite supersoluble groups in which every non-cyclic arXiv:1705.06265v1 [math.GR] 17 May 2017 subgroup is self-centralizing are described. A more accessible version of Berkovich’s problem has been proposed by P. Zalesskii, who asked to classify the finite groups in which every non-abelian subgroup equals its normalizer. This problem has been solved in [9].
    [Show full text]
  • Product of Periodic Groups
    ISSN 2664-4150 (Print) & ISSN 2664-794X (Online) South Asian Research Journal of Engineering and Technology Abbreviated Key Title: South Asian Res J Eng Tech | Volume-1 | Issue-1| Jun-Jul -2019 | Research Article Product of Periodic Groups Behnam Razzaghmaneshi* Assistant Professor, Department of Mathematics and Computer Science, Islamic Azad University Talesh Branch, Talesh, Iran *Corresponding Author Behnam Razzaghmaneshi Article History Received: 06.07.2019 Accepted: 12.07.2019 Published: 30.07.2019 Abstract: A group G is called radicable if for each element x of G and for each positive integer n there exists an element y of G such that x=yn. A group G is reduced if it has no non-trivial radicable subgroups. Let the hyper-((locally nilpotent) or finte) group G=AB be the product of two periodic hyper-(abelian or finite) subgroups A and B. Then the following hold: (i) G is periodic. (ii) If the Sylow p- subgroups of A and B are Chernikov (respectively: finite, trivial), then the p-component of every abelian normal section of G is Chernikov (respectively: finite, trivial). Keywords: Residual, factorize, minimal condition, primary subgroup 2000 Mathematics subject classification: 20B32, 20D10. INTRODUCTION In 1968 N. F. Sesekin proved that a product of two abelian subgroups with minimal condition satisfies also the minimal condition [1]. N. F. Seskin and B.Amberg independently obtained a similar result for maximal condition around 1972 [1, 2]. Moreover, a little later the later proved that a soluble product of two nilpotent subgroups with maximal condition likewise satisfies the minimal condition, and its Fitting subgroup inherits the factorization.
    [Show full text]
  • A Fitting Theorem for Simple Theories Daniel Palacin, Frank Olaf Wagner
    A Fitting Theorem for Simple Theories Daniel Palacin, Frank Olaf Wagner To cite this version: Daniel Palacin, Frank Olaf Wagner. A Fitting Theorem for Simple Theories. 2014. hal-01073018v1 HAL Id: hal-01073018 https://hal.archives-ouvertes.fr/hal-01073018v1 Preprint submitted on 8 Oct 2014 (v1), last revised 28 Sep 2015 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A FITTING THEOREM FOR SIMPLE THEORIES DANIEL PALAC´IN AND FRANK O. WAGNER Abstract. The Fitting subgroup of a type-definable group in a simple theory is relatively definable and nilpotent. Moreover, the Fitting subgroup of a supersimple hyperdefinable group has a nor- mal hyperdefinable nilpotent subgroup of bounded index, and is itself of bounded index in a hyperdefinable subgroup. 1. Introduction The Fitting subgroup F (G) of a group G is the group generated by all normal nilpotent subgroups. Since the product of two normal nilpotent subgroups of class c and c′ respectively is again a normal nilpotent subgroup of class c + c′, it is clear that the Fitting subgroup of a finite group is nilpotent. In general, this need not be the case, and some additional finiteness conditions are needed.
    [Show full text]
  • On the Fitting Subgroup of a Polycylic-By-Finite Group and Its Applications
    Journal of Algebra 242, 176᎐187Ž. 2001 doi:10.1006rjabr.2001.8803, available online at http:rrwww.idealibrary.com on On the Fitting Subgroup of a Polycyclic-by-Finite Group and Its Applications Bettina Eick View metadata, citation and similar papers at core.ac.uk brought to you by CORE ¨ Fachbereich fur¨¨ Mathematik und Informatik, Uni ersitat Kassel, provided by Elsevier - Publisher Connector 34109 Kassel, Germany E-mail: [email protected] Communicated by Walter Feit Received May 12, 2000 We present an algorithm for determining the Fitting subgroup of a polycyclic- by-finite group. As applications we describe methods for calculating the centre and the FC-centre and for exhibiting the nilpotent-by-abelian-by-finite structure of a polycyclic-by-finite group. ᮊ 2001 Academic Press 1. INTRODUCTION The Fitting subgroup of a polycyclic-by-finite group can be defined as its maximal nilpotent normal subgroup. For Fitting subgroups of finite groups various other characterizations are known: For example, they can be described as the centralizer of a chief series. We observe that the Fitting subgroup of a polycyclic-by-finite group can also be characterized as the centralizer of a certain type of series, and this series can be considered as a ‘‘generalized chief series.’’ We describe a practical algorithm for computing a generalized chief series of a polycyclic-by-finite group G. Our method is based on the determination of radicals of finite-dimensional KG-modules, where K is either a finite field or the rational numbers. Once a generalized chief series of G is given, we can construct its centralizer and thus we obtain an algorithm to compute the Fitting subgroup of G.
    [Show full text]
  • A Survey: Bob Griess's Work on Simple Groups and Their
    Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 13 (2018), No. 4, pp. 365-382 DOI: 10.21915/BIMAS.2018401 A SURVEY: BOB GRIESS’S WORK ON SIMPLE GROUPS AND THEIR CLASSIFICATION STEPHEN D. SMITH Department of Mathematics (m/c 249), University of Illinois at Chicago, 851 S. Morgan, Chicago IL 60607-7045. E-mail: [email protected] Abstract This is a brief survey of the research accomplishments of Bob Griess, focusing on the work primarily related to simple groups and their classification. It does not attempt to also cover Bob’s many contributions to the theory of vertex operator algebras. (This is only because I am unqualified to survey that VOA material.) For background references on simple groups and their classification, I’ll mainly use the “outline” book [1] Over half of Bob Griess’s 85 papers on MathSciNet are more or less directly concerned with simple groups. Obviously I can only briefly describe the contents of so much work. (And I have left his work on vertex algebras etc to articles in this volume by more expert authors.) Background: Quasisimple components and the list of simple groups We first review some standard material from the early part of [1, Sec 0.3]. (More experienced readers can skip ahead to the subsequent subsection on the list of simple groups.) Received September 12, 2016. AMS Subject Classification: 20D05, 20D06, 20D08, 20E32, 20E42, 20J06. Key words and phrases: Simple groups, classification, Schur multiplier, standard type, Monster, code loops, exceptional Lie groups. 365 366 STEPHEN D. SMITH [December Components and the generalized Fitting subgroup The study of (nonabelian) simple groups leads naturally to consideration of groups L which are: quasisimple:namely,L/Z(L) is nonabelian simple; with L =[L, L].
    [Show full text]